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Intellectual Property Rights and Crop-Improving R&D under Adaptive Destruction

Abstract

This paper studies how the strength of intellectual property rights (IPRs) affects investments
in biological innovations when the value of an innovation is stochastically reduced to zero
because of the evolution of pest resistance. We frame the problem as a research and
development (R&D) investment game in a duopoly model of sequential innovation. We
characterize the incentives to invest in R&D under two competing IPR regimes, which differ
in their treatment of the follow-on innovations that become necessary because of pest
adaptation. Depending on the magnitude of the R&D cost, ex ante firms might prefer an
intellectual property regime with or without a “research exemption” provision. The study of
the welfare function that also accounts for benefit spillovers to consumers—which is
possible analytically under some parametric conditions, and numerically otherwise—shows

that the ranking of the two IPR regimes depends critically on the extent of the R&D cost.

Keywords: biological resistance, intellectual property rights, Markov perfect equilibrium,
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1. Introduction

A major objective of crop breeding has long been that of improving the resistance of
commercial varieties to pests, diseases, and environmental stresses, which are known to
cause significant yield reductions. For U.S. agriculture alone, it is estimated that the damage
ranges between $2 billion and $7 billion per year, with an additional $1.2 billion spent on
various crop protection measures (Palumbi, 2001). The task of improving crop resistance,
however, is particularly challenging because the evolution of pest species makes possible the
emergence of resistance in the pest population, which leads to the obsolescence over time of
past improvements. This calls for continuing and sustained research and development
(R&D) efforts, combining both traditional breeding and newer biotechnology tools, aimed at
crop improvements. Furthermore, in an era of declining public support for agricultural
research, it is imperative that private R&D activities be encouraged and fostered by suitable
policies. In this paper we focus on the role of intellectual property rights, and specifically
investigate some implications that arise in the context of innovations that may be rendered
ineffective over time because of the onset of pest resistance.

Whereas agricultural biotechnology promises new, powerful tools for crop
improvement, the possibility of unintended or unforeseen consequences suggests that some
form of government regulation might be necessary (Just, Alston, and Zilberman, 20006;
Swanson, 2002). One way to address biotechnology policy issues is through a general
economic approach to the optimal management of biological resources that includes
methods for valuing existing species in the context of maximizing expected social welfare
(Brock and Xepapadeas, 2003). This approach has been used extensively to study the
dynamics of the pest adaptation process, and it is often argued that some form of policy
intervention may improve welfare because farmers generally lack incentives to take into
account the consequences of their pest management practices, including planting decisions.
For this reason, the U.S. Environmental Protection Agency has introduced in some cases (in
particular in the cases of Bt cotton and Bt corn) regulations that require farmers to plant at
least some of their land with crops that are not genetically modified (GM) to slow down the
rate of resistance development (Fisher and Laxminarayan, 2005). Such policies are usually
analyzed in a bioeconomic model that takes into account interplay between the evolutionary

adaptation by pests and economic incentives of farmers (Hutley et al., 2002).



The effectiveness of such policy creating “crop refuges” has been questioned on
purely biological grounds, as well as more generally. Specifically, it has been argued that
private breeders should have an incentive to take into account the problem of the evolution
of pest resistance, because this process directly affects their profits (Noonan, 2002). Thus,
private breeders would ensure that existing pest management techniques are used efficiently
and would invest in the development of new technologies to overcome the resistance
problem (Fisher and Laxminarayan, 2004).

The literature on optimal resistance management has been of interest for both pest
resistance in agriculture and antibiotics resistance in public health, and it is now well
understood that economics can be useful in understanding various forms of externalities in
both cases (Goeschl and Swanson, 2002a). The economic approach to pest resistance
management in agriculture was pioneered by Hueth and Regev (1974). Subsequent studies
on the excessive use of pesticides and the possibility of market failure when dealing with the
pest resistance problem has yielded important insights, but some see a need to move beyond
the renewable/nonrenewable resource framework that has been used so far and to consider
other important features of the economic environment (Alix-Garcia and Zilberman, 2005).
In particular, the incentive of private sector breeders to invest in crop innovations depends
on the delineation of property rights in the various attributes of the new crop varieties, and,
therefore, the issues of intellectual property rights and the resulting market structure should
occupy a central place in this debate.

Existing research on the interplay between social and private incentives to innovate
in the context of the resistance problem leads to some interesting conclusions. First, while
society as a whole reaps a large benefit from technologies that decrease the scope of the
resistance problem, the benefits are dissipated among many users and thus may not attract
sufficient private investments. This point was made by Goeschl and Swanson (2003b), who
also note that the nature of innovation in the context of a biological race against nature
differs from that of the standard quality ladder model of many innovation and growth
models. They coined the term “adaptive destruction” to characterize this process,
emphasizing the analogy to and difference from the Schumpeterian paradigm of “creative
destruction” (in which each product is eventually superseded by a higher-quality one).
Second, as shown by Goeschl and Swanson (2003a), private and social incentives to invest in

R&D might diverge with an increase in the degree of adaptive destruction, because the more



severe is the resistance problem, the lower is the private benefit of crop R&D and the higher
are the social returns from such investment. Goeschl and Swanson (2002b), in the context of
an R&D race with antibiotic resistance, similarly find that private incentives fall short of
generating the first-best outcome.

In this paper we explore in more detail how the form and extent of intellectual
property rights (IPRs) impact the incentive to innovate and the welfare consequences of
innovation, in a context characterized by adaptive destruction. Moschini and Yerokhin
(2006) show that a particularly useful characterization of the strength of IPRs for plants
consists of whether or not such IPRs contain a “research exemption” or “experimental use”
provision. Following that approach, here we compare and contrast the effects of two
alternative IPR regimes that capture some essential features of the current institutional
setting. The “stronger” IPR mode, referred to as the full patent (FP) regime, corresponds to
the standard utility patents (as awarded in the United States by the U.S. Patent and
Trademark Office). The relatively “weaker” IPR mode, referred to as the research exemption
(RE) regime, corresponds to the so-called plant breeders’ rights (PBRs). As we will discuss in
more detail, the critical difference between these two IPR modes concerns a feature that
bears on the sequential and cumulative nature of innovation, which is a distinctive feature of
agricultural and biotechnology innovations.

In addition to the consideration of alternative IPR regimes, in our analysis we also
emphasize the importance of the market structure of the innovation industry, a feature
largely ignored to date in the analysis of the biological resistance problem. In particular, we
build a duopoly model of an R&D race in which the value of the final product is destroyed
with exogenously given probability, thus making the duration of the monopoly power finite
even under the (simplifying) assumption of an infinite patent life. Conceptually, this model
belongs to the class of symmetric stochastic R&D races in which innovations arrive
according to a Poisson process (Reinganum, 1989, provides an early survey of this literature).
In addition to addressing the resistance problem, our analysis contributes to the literature on
IPR incentives for sequential innovation. Models in this area typically consider the effects of
patent length and breadth on the division of profit between the owners of the first and
second generations of innovation, both in a sequential setting (Green and Scotchmer, 1995)
and in the context of R&D races (O’Donoghue, 1998; Denicolo, 2000). In contrast to most

of these models, we assume that the second generation of the innovation is patentable and



non-infringing, and we concentrate on the question of whether the first innovator has the
right to block all further R&D activities related to the patented product (i.e., whether or not
there exists a research exemption).

In our setting, under the FP regime, the research on the patented product constitutes
an infringement. Because of the sequential nature of the innovation process, with this kind
of IPR protection the winner of the first race obtains an exclusive right to improve the
product in the future. On the other hand, under the RE regime, firms cannot be excluded
from participating in any improvement project, so that each improvement stage is a race
between two firms. Throughout the analysis, we assume that no licensing takes place, in
order to emphasize the effects of the IPR regimes on the incentives for innovation. In the
next section, we provide a brief background that illustrates some critical features of our
stylized model. We then describe the demand side of the model and lay out the structure of
the R&D model that embeds, among other things, the notion of adaptive destruction. We
characterize the Markov perfect equilibria that arise and study the incentive and welfare

effects of the two IPR regimes of interest.

2. IPRs and Crop-Improving R&D in Agriculture
The need to account explicitly for the nature of IPRs is given more urgency by the dramatic
changes that have characterized the R&D enterprise in crop improvements and
biotechnology over the last quarter of a century. Intellectual property protection in these
areas has been strengthened enormously, leading to what amounts to a revolution in the set
of opportunities facing innovators (Wright and Pardey, 20006). In the United States,
following the 1980 landmark U.S. Supreme Court decision in Diamond v. Chakrabarty, a major
change has been the extension of the applicability of standard utility patents to virtually any
biologically based invention, if obtained through human intervention. That utility patents can
be used for the products of plant breeding and biotechnology in agriculture was confirmed
by the 2001 U.S. Supreme Court ruling in J.E.M. Ag Supply, Inc. v. Pioneer Hi-Bred International,
Ine., which held that plant seeds and plants themselves (both traditionally bred or produced
by genetic engineering) are patentable under U.S. law (Janis and Kesan, 2002).

Whereas the availability of utility patents for plant and animal innovations has also
been introduced in many other developed countries, in most developing countries PBRs

remain the strongest IPR protection instrument available. Indeed, in the international



context the impetus to harmonize and strengthen IPRs in agriculture has resulted from the
implementation of the TRIPS (trade related aspects of intellectual property rights) agreement
of the World Trade Organization (WTO) (Moschini, 2004). A crucial feature of TRIPS is
that it mandates that minimum standards of IPR protection be provided by each WTO
member in each of the main areas of intellectual property that it covers. Specifically, patent
protection must be accorded for both products and processes, for at least 20 years, in almost
all fields of technology. But agriculture-related innovations enjoy a somewhat special
treatment within TRIPS because plant and animal innovations need not be protected by
patents, as long as a suitable s#7 generis protection is offered. Modern agriculture-related R&D
relies heavily on biotechnology innovations, as in the development of GM crop varieties, and
it turns out that the flexibility provided by TRIPS extends further than plant and animal
innovation: “essentially biological processes” may also be excluded from patentability
(although patents must be provided for microorganisms, and for microbiological processes
for producing plants or animals).

As noted, if plants and animals are excluded from patentability, then under TRIPS a
sui generis IPR system must be provided. PBRs are commonly used internationally for plant
varieties and appear to be the su7 generis IPR system of choice for many countries, including
virtually all developing countries. But, unlike utility patents, PBRs allow for a well-defined
“research exception.” That is, a protected variety may be used by others in their breeding
programs aimed at developing a new variety. Thus, PBRs are clearly a weaker IPR protection
instrument than patents, and whether the feature that separates these two IPR protection
modes has important consequences for the innovation enterprise appears to be an important
and yet unsettled question.

Concomitant with the rise of the importance of IPRs for agricultural R&D, the last
few decades have also witnessed a number of other critical developments. The secular trend
in the decline of public R&D relative to private R&D (Fuglie et al., 1996) has intensified, and
at present the private sector provides the bulk of biological research efforts in agriculture.
Furthermore, the agricultural seed and chemical industries have undergone a tremendous
consolidation. The earlier emphasis on the “life sciences” concept was abandoned because
of a perceived lack of sufficient synergies between plant and human-health biotechnology.
What has emerged, instead, is a strong consolidation between the seed and the agrochemical

industrial segments aimed at exploiting the way modern GM varieties can complement



and/or substitute for more traditional herbicide and pesticide products. A wave of
acquisitions has resulted in a highly concentrated and integrated agro-chemical sector
(UNCTAD, 2000).

In what follows, we develop a stylized model of innovation that features the
biological resistance problem and the notion of adaptive destruction, and we do so in a more
realistic institutional context that is consistent with the critical role played by IPRs and the
market structure of the relevant industry. In particular, we compare and contrast the effects
of two IPR regimes that differ precisely with respect to the presence of a research
exemption, and, based on the foregoing discussion of consolidation in the agro-chemical

sector, we cast the analysis in an imperfectly competitive setting (specifically, a duopoly).

3. A Model of Sequential Innovation

We imagine a situation in which a biological innovation, such as an improved seed variety
resistant to a particular pest, can be developed upon a costly and risky R&D process. Once
developed, this innovation is adopted by a competitive sector, which we represent as made
up of heterogeneous agents (e.g., farmers), that is, a population of potential costumers with
differing willingness to pay for the innovation. Consistent with the notion of adaptive
destruction discussed in the introduction, we also postulate that the value of the innovation
is stochastically reduced to zero as time goes by. After the value of the existing innovation is
thus destroyed, a new R&D process can start to re-introduce the resistance trait of interest
into the variety. Whether both firms can take part in this new innovation effort or only the
firm that developed the improved variety in the initial innovations state depends on the
nature of the IPR system. With an RE regime, both firms can participate in follow-on
research. But if the IPR system does not allow for a research exemption (i.e., the FP regime),
then we presume that only the winner of the initial stage can engage in efforts to restore the
value of the variety after the onset of pest resistance. In either case, the winner of each race
becomes the monopolist for the duration of the period in which innovation has a positive

market value.

3.1. Demand for innovation

The derived demand D(p) for the innovated product protected by IPRs is presumed

downward sloping, as in Figure 1, where v denotes the choke price. Given the exclusivity



afforded by IPRs, the innovator can price monopolistically at p™ so that, at the quantity
demanded by users at that price, the marginal production cost mc equals the marginal
revenue mr . Ex post, therefore, the innovator can extract a profit equal to 7 (the green area
in Figure 1), but some of the innovation’s benefits also accrue to users, and relative to the ex
post first-best use of the innovation there is also a deadweight loss—these two effects are
labeled c¢s and dwl in Figure 1 (e.g., Langinier and Moschini, 2002). To make the model
tractable, we specifically postulate that there is a unit mass of end-users whose valuation of
the new product is distributed uniformly on the interval [0,v]. For any given price of a new
product, only users with valuations above that price will make a purchase. This implies that
the monopolist faces a linear demand function of the form D(p)=1-p/v. If the marginal
cost of production is constant, as in Figure 1, then without further loss of generality we can
write mc =0. Under these assumptions, the monopolist’s profit per unit of time is given by
m=v/4. Given this simplified demand structure, the surplus accruing to consumers under

this (uniform) monopolistic pricing satisties cs=7/2.

Figure 1. Demand for innovation
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3.2. Stochastic production of itnnovation
At the start of the R&D contest, or after the value of innovation is reduced to zero, the
firms engage in an R&D race in which the time of discovery is stochastic. As in other
strategic R&D models (e.g., Reinganum, 1989), we assume that innovations arrive according
to a Poisson process with arrival rate x . Specifically, each firm that incurs a fixed R&D cost
c at the start of a race has an instantaneous probability of producing a new product equal to
x (Denicolo, 1999), and the resulting stochastic time of the arrival of the innovation 7(x) is
distributed independently with the (exponential) cumulative distribution function given by
Pr[z(x) < z]=1-exp(—xz).

The expected profit of a firm, when the total number of R&D firms is equal to 7, is

derived in the standard fashion as follows. Denote by z; the random time of artival of

innovation for firm j=1,2,..,n and let 7; = min{rj} . Then the probability that at least one
]7:1

of firm 7s rivals has made a discovery at time z is given by Pr[7; <z]= 1—e D% If we let

W denote the prize to the winner of the race and r denote the common discount rate of all
firms, the expected profit of firm i when n firms participate in the R&D contest is obtained
by integrating stochastic future returns with the joint density of (z;,7;) over the support in
which 7; <7;, that s,

V= f I e " Wax(n—1)e” "D e dzds — ¢ 1)
0 s
where, again, ¢ is the fixed R&D cost. Thus, upon evaluating the integrals in (1), we obtain

nx—+r

3.3. Adaptive destruction

A critical element of our model is the explicit modeling of the possible devaluation of the
innovation due to pest adaptation. Such an “adaptive destruction” feature is captured by
postulating that the value of the new product can be reduced to zero at each point in time
with instantaneous probability b. That is, the stochastic arrival of adaptive destruction time

Tap is distributed exponentially so that Pr[r,p <z]=1-exp(-bz). Admittedly, this

convenient way to parameterize adaptive destruction is somewhat special, and there are



other reasonable ways to model this process. First, we abstract from the possibility that
adaptive destruction can be affected by some variables endogenous to the model (e.g.,
adoption). Such an extension is not crucial in our setting because we do not emphasize the
diffusion phase of innovation but instead focus on the R&D strategic interactions brought
about by different IPR regimes. Second, a more realistic specification would perhaps assume
that the instantaneous probability of destruction is increasing with time, so that the longer a
variety is on the market, the higher is the likelihood of pest resistance making it obsolete. As
explained in more detail in the next section, however, given the assumed structure of R&D
competition between firms, neglecting the possibility that the probability of resistance

changes over time does not entail further loss of generality.

4. Duopoly Model of Innovation

As noted in the introduction, we capture the imperfectly competitive industry structure by
postulating that there are at most two firms in any stage of the game. At the beginning of
each stage, both firms decide whether to take part in the race. The winner of each race
obtains IPRs that afford exclusivity in the final product market. Upon the onset of adaptive
destruction, leading to the loss of market value for the innovated product, the race to
produce a new product starts again. In this setting we interpret the RE regime as allowing
both firms to enter the improvement race after the value of the innovated crop variety has
been reduced to zero by adaptive destruction. Similarly, we interpret the stronger FP regime
as restricting access to the improvement stage that follows adaptive destruction, so that only
the winner of the first race has the right to practice the innovation for subsequent
improvements. These interpretations are certainly consistent with the distinction between
PBRs and patents discussed in the introduction, namely, that a patent gives full control of
the improved variety to the innovator whereas PBRs allow others to use the variety for the
development of further improvement. In what follows, we characterize the symmetric
stationary equilibrium of the infinite horizon game under these two IPR regimes.

There are two assumptions in our model that make it tractable and may deserve
turther discussion. The first, and the most restrictive one, is the assumption on the timing of
the R&D process: under the RE regime, a firm can start a new R&D project only when the
value of the previous innovation is reduced to zero. While assuming that a new R&D project

can be started at any point in time, after the previous inventive step was made, may appear



more realistic, it would also complicate the analysis considerably. In order to focus on the
sequential nature of innovation and its implications in the adaptive destruction context, we
choose to abstract from the timing considerations by assuming that firms cannot preempt
each other in the R&D process.

The second simplifying assumption, mentioned in the previous section, is that of a
constant hazard rate for the adaptive destruction process. This modeling choice is less
restrictive than it might appear when one considers the implications of the previous
assumption (on the timing of the R&D race). In particular, because the timing of R&D
investment is exogenous, introducing the hazard function that is increasing in time is
equivalent to simply decreasing the expected flow of profit from each innovation uniformly
across the two IP regimes. While such a change will have an impact on the incentive to
invest under the RE and FP regimes, there is an equivalent and more economical way to
study this effect: one can increase the discount rate or the (constant) destruction hazard rate
and compare the social ranking of the two IP regimes. This is, in fact, one of the

comparative static exercises that we consider in our welfare analysis.

4.1. Research exemption

Under an RE regime, both firms can enter the race after the value of the crop has been
reduced to zero. This implies that the game is essentially a sequence of identical races with
two firms in each contest. The solution concept we employ in this paper is that of a Markov
perfect equilibrium; i.e., we assume that strategies of the firms can depend only on the

current state of the game (Fudenberg and Tirole, 1991). Let (0;,0;) €[0,1]x[0,1] denote a
stationary strategy profile of this game and let V(0;,0;) denote the expected payoff of firm

i at the beginning of the race (i.e., when no firm has yet produced an innovation). Upon
arrival of the innovation, the successful firm (which we label the “leader”) can market the
innovation. But because of the adaptive destruction feature discussed eatlier, the value of
this innovation is eventually destroyed. When that happens, a new innovation race can start,
and under the RE regime both firms can participate. This means that the firm that is not
successful in the firm innovation (which we label the “follower”) still obtains value from the

opportunity to take part in future innovation rounds. Thus, let V;(0;,0;) and Vi(o;,0;)
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denote the expected payoffs of firm i when it is the leader and when it is the follower,

respectively. Then these functions are determined by the following conditions:

(XVL(GI-,O']-)+XVF(O'I-,O']<) —CJ

Vo(oy,0)=00;

2x+7r )
+(1-0))0; 2eloi o) +(1-0))o; (—XVL(?’GJ’ ) —c]
X+r
Vi (0,0,) =7 +b(Vy(07,0,)-Vi(07,0))) )
”VF(O'irO'j):b(vo(o'irc'j)—vp(o'izo'j))- ©)

Equation (3) is the expected profit of firm i for a given strategy profile (o;,0;).

Equation (4) is a standard Bellman equation, which says that the instantaneous return to
being the innovation leader in this duopoly equals the flow of profit 7 from marketing the
innovation while it obtains plus the expected loss of value caused by the possibility of
adaptive destruction. The Bellman equation (5) exhibits the property that there is value to
being in this duopoly industry, even without any marketable product, because the possibility
of adaptive destruction entails (in the RE regime) the possibility of taking part in future (and
potentially profitable) R&D contests.

Equations (3)-(5) allow us to derive the Markov perfect equilibrium (MPE) of the
game under the RE regime. It turns out that the equilibrium behavior of firms depends on

how the cost-to-profit ratio C/ 7 relates to the following threshold levels:

RE _ X

b= (r+b)(2x+7) ©
_ X

fo = (r+b)(x+71) )

Given that, the following proposition characterizes the MPE of the game under the RE

regime.

Proposition 1. The symmetric MPE under the RE regime is given by the

strategy profile (o, ogg) that satisfies the following conditions:

0o If %s tRE then ogp =1.
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@) If tRE < S <t then o €(0,1).
T

@) If %z t, then ogp =0.

A detailed proof of this result is provided in the Appendix, which also reports an explicit
expression for the ogp that applies to the case (if). The structure of equilibrium under the
RE regime is summarized graphically in the top part of Figure 2. Intuitively, both t= and
ty decrease in the discount and adaptive destruction rates, the higher values of which
decrease expected profit and consequently incentives to invest in R&D.

The fact that the two firms are ex ante identical justifies interest in the symmetric
MPE. In such a context, a pure-strategy equilibrium in which both firms invest with
probability one emerges when the R&D cost ¢ is sufficiently low (relative to the per-period

payoff ), that is, when ¢/7 < tF . Similarly, when the R&D cost is too high, that is, when

c/m > ty, both firms abstain from investing. For intermediate values of the R&D cost, that is,

when #F < c/m <ty, either firm would be willing to invest if the other firm did not, and
would prefer to not invest if the other firm did. In addition to such asymmetric pure-strategy
equilibria, there is a symmetric mixed-strategy MPE in which each firm invests with
probability org €(0,1), as per Proposition 1. The particular value of this probability, as well
as the value of the threshold levels #* and t,, of course depends on the primitive

parameters of the model (i.e., the Poisson arrival rates x and b, and the discount rate r).

4.2. Full patent

Under the FP regime, the winner of the first race is the only one who has the right to
practice the innovation for subsequent improvements. Let V,, denote the value to the
monopolist who has the property rights for the (existing) improved variety that is sold in the
market, and let Vj" denote the expected profit of the firm that has the exclusive right
(because of the FP regime) to engage in the R&D process in order to produce the next

generation of a product. Recalling equation (2), these value functions must satisfy

V=X ®
X+r

12



as well as the asset equation
WV, =z+b(Vg" -V,,). )

Solving for the value functions, we obtain

_ (m=bc)(x+r)
" (r+b)(x+7)—bx’

(10)

_ (m=bc)x—c(r+b)(x+r)—bx
- (r+b)(x+r)—bx

FP
VO

(11)

Recall that under the FP regime there is only one race at the start of the game, the
winner of which will exclude the other firm from trying to improve the product in the
future. In order to solve for the equilibrium we need to find the optimal strategies of the two
firms in the initial race. It turns out that the equilibrium behavior of firms depends on how

the cost-to-profit ratio ¢/z relates to t; as defined in equation (7) and to the following

threshold level:

FP _ x(x+r)
v Qx+r)(x+r+b)r+bx(x+71)

(12)

Given that, the equilibrium under the FP regime is described in the following proposition.

Proposition 2. The symmetric MPE under the FP regime is given by the

strategy profile (opp,opp) that satisfies the following conditions:

@O If S<tP then opp =1.
T
@)  If P < S <ty then opp €(0,1).
T

i) If %z t, then opp =0.

A detailed proof of this result is provided in the Appendix, which also reports an explicit
expression for the opp that applies to the case (ii). The structure of this equilibrium is
illustrated in the bottom part of Figure 2.

As for the case of the RE regime, we find that the symmetric MPE can involve pure
strategies with both firms investing when the R&D cost is low enough (relative to the per-

period payoff ), or with both firms not investing when the R&D cost is too high. For a

13



specific domain of the cost-to-profit ratio, specifically ' < c/m <ty, the two firms follow an
equilibrium mixed strategy. It is informative to observe the relationship between threshold
levels under the two regimes. First, note that the parameter #; is common to both regimes.
Next, from the expressions given in (6) and (12) it can be verified that £ > t{F . This result

is intuitive because it implies that the level of the cost-to-profit ratio at which both firms
start to invest with probability one is higher when the winner becomes a monopolist in the

improvement game. A comparison of the two IPR regimes’ equilibria is given in Figure 2.

Figure 2. Equilibria under the two IPR alternatives

Research Both _
. Mixed Strategy i No Investment
Exemption: Invest 3
i c
t1R g tlFP b
Full Both Invest . Mixed No Investment
Patent: . Strategy |

5. Comparing IPR Alternatives: Ex Ante Profits

Having characterized the various equilibria that can emerge in our R&D model, we can now
compare the economic implications of the two IPR regimes of interest. Consider first the ex
ante expected payoff to the two firms. When firms follow a non-degenerate mixed strategy,
they must be indifferent between the actions upon which they are randomizing. Given that
not investing entails a zero expected payoff, it follows that the expected payoff of a mixed

strategy that assigns nonzero probability to not investing is itself zero. Hence, we know that

(a) in the interval [t ,t,], profits are zero under both IPR regimes; (b) in the interval
[t1E, 471, profits are zero under the RE regime, and positive under the FP regime; and (c) in

the interval [0, 1], profits are positive under both IPR regimes.
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In the interval [0,# "], both firms invest with probability one under the FP regime.
Recalling equation (2), the ex ante expected profit of each firm in this case is given by

e = Yt (13)
2x+r

where V,, is the value of being the monopolist of the innovation (and of the right to pursue
further innovations, upon the onset of pest resistance), as defined eatlier. By using equation
(10) we find that the ex ante expected profit can be written as TI§" = zapp —cfgp , where

_ x(x+7r)
- Qx+r)(r+b+x)r

Qrp (14)

and SBrp =1+Dbagp.
Similarly, in the interval [0, tRE], both firms invest with probability one under the RE
regime. By using the expression of the proof of Proposition 1 in the Appendix, when

o; =0; =1, the ex ante expected profit of each firm can be written as I3 = Zage — CPre »

where
B X
“Re = 2x+r+b)r 15
_ @2x+r)(r+b)
Pre = 2x+r+b)yr ' (16)

From the foregoing equations it follows that agzp > app, and also that Srp > frp. It follows

that, for a given 7, for low values of the cost parameter c, the ex anfe expected profit is
higher under the RE regimes, whereas for higher values of the cost parameter, the FP regime
yields higher ex ante expected profit. More specifically, the ranking of ex ante expected profit

under the two IPR regimes can be summarized as in the following proposition.

Proposition 3. The firm’s expected profit under the RE regime is higher than

the expected profit under the FP regime if and only if E<REZRP _F

7 Pre = Prp
Figure 3 illustrates the expected profit functions under the two IPR regimes for a

given level of the per-period profit (i.e., varying only the cost parameter while keeping the

profit parameter fixed). In this graph, the threshold f, as defined in Proposition 3, is the
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point at which TT§ =TI§". As established in Proposition 3, Figure 3 shows that firms will ex
ante prefer the RE regime—the weaker of the two IPR regimes—if cis low enough, that is,

as long as ¢/m <t.

Figure 3. Comparison of ex ante profits

{ = ! > C/7Z'

The intuition for this result can be obtained by considering the objective functions of

cach firm under the two IPR regimes when both firms invest with probability one in
equilibrium, which happens in the interval [0,f]. From equation (3) we know that when

both firms invest with probability one, the ex ante expected profit can be written as

e _ 20(05V, (L) +05V;(LD)

0 (17)

2x+7r
where V;(1,1) and Vy(1,1) are defined in equations (4) and (5). Note that this can be
interpreted as if each firm could pay amount ¢ to get a lottery with equal chances of

becoming the leader and the follower, with corresponding expected payoff discounted by the

factor . On the other hand, from equation (13) we can write

2x+r
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e 22(05Y,,)

: —c. (18)

2x+r
Similarly to the RE regime, this can be interpreted as each firm obtaining a lottery with equal
probabilities of becoming a monopolist and dropping out of the race.

By comparing equations (17) and (18), it is now clear that the firm’s ex ante profits are
higher under the RE regime if and only if

ViLD)+Ve(L,1)2V,,. (19)

In other words, this would be the case when the expected payoff of the industry with two
firms both investing with probability one is higher than the expected payoff of the industry
with only one firm investing with probability one. Note that the industry with two firms will
have both higher R&D costs and a higher arrival rate of innovation, resulting in larger total
profit when the R&D cost is close to zero, as was previously shown.

This finding that firms may, ex ante, prefer the RE regimes is similar to the result of
Bessen and Maskin (2006), who show that sometimes firms might prefer a weaker IP regime
before the start of a race. This result in Bessen and Maskin arises because of the authors’
assumption that innovations are complementary (diversity of innovation increases the
probability of discovery, which is essential to keep the innovation process going). In our
model, the downside of the FP regime from a firm’s ex ante perspective is that losing the first
innovation stage forecloses the possibility of profitable innovations in the future. This lost

opportunity is particularly valuable when the R&D cost is relatively low.

6. Comparing IPR Alternatives: Welfare
In addition to the profit flowing to the firms, for the welfare comparison of the two IPR
regimes we need to account for the surplus that flows to consumers whenever an innovation

is commercialized (recall Figure 1).

6.1. Expected consumer surplus

Considering the RE regime first, let S&° denote the ex ante expected surplus to consumers

when the IPR system allows for a research exemption. Also, let S{° denote the expected
consumer surplus, under this regime, whenever a successful innovation is achieved. Then

SoE and S{F must satisfy the following asset equations:
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2 2xSRE xSRE

So- =(ore) '+ 20y (1~ opp ) = (20)
+r xX+vr

rSRE = %+b(S§E — SRE) . 21)

As can be seen from equation (20), the expected ex ante surplus depends on the number of
firms investing in R&D. With probability (ogg )2 both firms invest in R&D, and with

probability 2oy (1-ogg) there is a single firm in the race. In the latter case the expected
time until the arrival of innovation is longer, with instantaneous probability of discovery
equal to x (as opposed to 2x when both firms invest). Equation (21) is a standard Bellman
equation and represents the flow of consumer surplus from the existing innovation.
According to this equation, the instantaneous expected return to consumers to having an
innovation (i.e., rS{F) is equal to the flow of consumer surplus while the innovation lasts
(i.e.,, /2) plus the expected loss of this surplus due to the possibility of adaptive destruction
(ie., b(SKE —SfEY).
Solving equations (20) and (21) yields

GRE _ ﬂx[aRE(2x+r)—(o-RE)2x]

- r+b)2x+r)(x+71)— 2bx[JRE(2x +7)— (O'RE)ZXJ '

(22)

To derive the consumer surplus under the FP alternative, consider the moment at
which a firm has won the initial R&D contest such that this firm can now market the
innovation at a profit flow of 7 (as long as resistance does not arise). Upon the onset of

resistance, the FP regime gives the firm the sole right to research for an improvement that
overcomes the resistance. In such a setting, let S¥ denote the expected consumer surplus
when there is an innovation at hand, and let S,, denote the expected consumer surplus when
no innovation is available and only one firm (a monopoly) has the right to invest in R&D.

Then ;¥ and S,, must satisfy the following asset equations:

xSFP
g ==L 23
" oxtr (23)
FP_ 7T __ QFP
rS" = E +b(S,, -5 )- (24)

Solving these two equations yields
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PP _(7 X+r
y _(2)(x+r+b)r' ®)

Now let Sp¥ denote the ex ante expected consumer surplus under the FP regime. Given the

equilibrium strategy profile, this expected consumer surplus would be equal to

2xSFP xSFP
Sa = (opp ) T+ 20 (1- L. 26
0 (O'FP) p UFP( O-FP)x+r (20)
Using the solution in equation (25), it follows that
Sgp _ X GFP(2X+1”)—(GFP)ZX ‘ (27)
(x+r+b)r (2x+7)

The expected consumer surplus is increasing in 7 (recall that the instantaneous consumer

surplus in our model equals 7/2) and, as one would expect, it is decreasing in the adaptive

destruction hazard rate.

6.2. Welfare comparison: Analytic results
By using the foregoing derivation for SY° and S{¥, we can unambiguously rank social

welfare when the cost of R&D, relative to the potential payoff of the innovation, in not too

high.

Proposition 4. The RE regime results in a higher level of social welfare if e [0,£].
7

To see why this result must hold, evaluate equations (22) and (27) at opp =ogg =1. It can
then be verified that when both firms invest with probability one, the consumer surplus
functions satisfy Sy=(1)> St" (1), and so we conclude that in the domain of interest, the RE
regime results in a higher level of social welfare. This result is very intuitive. Because both
firms invest with probability one under either regime in the domain c/7z [0,£1F], the RE

regime results in a higher rate of innovation for all improvement stages (after the onset of

resistance), and so in this domain consumers are necessarily better off under the RE regime.

Furthermore, as long as ¢/ €[0,f], we have shown that firms also ex ante prefer the RE

regime. Because f < t{E  we can then conclude that in the domain of interest social welfare is

higher with the RE regime.
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6.3. Welfare comparison: Numerical results

Proposition 4 does not rank the two IPR regimes when R&D cost is sufficiently high, that is,
when ¢/7 €[, t,]. To compare social welfare in this domain, we need to take into account

the types of equilibria that can occur. In particular, we have to distinguish three cases:

(A) (¢/7) e [tlp p,to]. In this interval, firms’ profits are equal to zero under both regimes, so

the social welfare under both regimes is equal to the corresponding consumer surplus.

B) (c/7)e [tRE, 7). In this interval, firms make positive profit under the FP regime, and

social welfare under the FP regime is equal to the sum of profits and consumer surplus.

©) (c/n)€elt, t;"]. In this interval, firms make positive profit under both regimes, and both

welfare functions are equal to the sum of profit and consumer surplus.

Because the equilibrium strategies opp and ogp are in general functions of 7 and ¢

parameters (see the Appendix), it does not appear possible to provide an analytic result that
would establish unambiguously the welfare ranking of the two IPR regimes. To gain some
insights, here we resort to comparing welfare numerically. In particular, we normalize profit

to be equal to one (7 =1) and study social welfare as a function of ¢ for a given set of

parameter values. We calibrate the model so that the resulting durations of an innovation
race and the useful life of a new variety are broadly consistent with what is observed in the
plant breeding industry. In particular, we perform our numerical analysis for the following
parameter values. The discount factor is fixed at r = 0.05. The arrival rate of innovation x is
equal to either 0.25 or 0.125, which corresponds to the expected times until discovery of 4 or
8 years, respectively. The destruction rate b is equal to 0.2, 0.1, or 0.05, which corresponds
to the expected lifetime of a new variety of 5, 10, or 20 years, respectively. The resulting
threshold values (which determine the domains of equilibria A, B, and C for which

numerical analysis is performed) are given in Table 1.
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Table 1. Threshold values

x=0.125,b=0.1 f=1.32 tRE—278 | tF =347 ty =4.76
x=0.25b=0.1 f=1.02 tE=3.03 | H"=4.05 to = 5.56
x=0.125,b=0.05 F=1.69 tRE = 4.17 P = 4.89 ty=7.14
x=025,0=0.05 f=1.22 tRE—455 | P =561 to =8.33
x=0.125,b=0.2 F=091 th =1.67 tfp =2.19 ty =2.86
x=025b=0.2 f=0.77 tRE—182 | HP =261 ty =3.33

For each pair (x,b) we computed the social welfare functions under RE and under the
FP regimes on the interval c €[f,t,] (we already know the welfare ranking for the range

ce[0,f] from Proposition 4). These computed welfare levels are graphed in Figure 4, where

welfare is measured on the vertical axes and R&D cost on the horizontal axes (welfare under
the RE regimes is represented by the dashed line and welfare under the FP regime is
represented by the solid line).

Consistent with what was established in Proposition 4, at c =t social welfare is
higher under the RE regime. But as ¢ increases, the numerical analysis shows that at some
point the FP regime dominates. Hence, this suggests the general conclusion that for the
parameter values, which reflect the nature of the plant breeding industry, the FP regime is
socially optimal when the cost of innovation is relatively high. In this case the stronger
incentives provided by the FP regime lead to a higher flow of innovations and higher social
welfare. On the other hand, when the cost of R&D is relatively low, a weaker intellectual
property regime such as RE is beneficial from the social point of view. Additional numerical
analysis, not reported here for space reasons, shows that this general conclusion appears
robust to changes in the underlying parameter values well outside the range explored in

Figure 4.

21



Figure 4. Welfare under FP (solid line) and RE (dashed line) regimes

x=0.125;b=0.2 x=0.25;b=0.2
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6.4. Licensing

The model of this article has assumed that the patent-holder does not license its innovation
to the competitor. It should be clear at the outset that the only meaningful licensing in our
context is for the right to innovate. Because the model limits the scale of R&D activity,
theoretically there might be a scope for licensing under the FP regime (under the RE regime
the follower always has access to innovation by definition). In particular, as shown earlier,
there exists a region of the parameter space in which the joint profit of the two firms is
larger than the monopolist’s profit, which would make licensing profitable. Because there is
no asymmetric information in the model, the monopolist would be able to extract the entire
expected surplus through licensing. In such a case both expected consumer surplus and
profit will increase. Hence, licensing would make the total welfare under the FP regime
higher than without licensing while having no welfare impact under the RE regime.
Therefore, we conclude that assuming away the possibility of licensing biases our results to

some degree in favor of the RE regime.

7. Conclusion
The analysis of this paper contributes to the discussion of economic policies that may
mitigate problems caused by pest resistance. In contrast to much of the previous literature,
which deals with this issue within the renewable or non-renewable resource framework, this
study has focused on the role of an institutional factor that is having an increasing influence
on the R&D process in plant breeding, namely, the nature of intellectual property rights. In
particular, we construct an explicit model of the two types of intellectual property regimes
that are widely used to protect plant innovations and study the effect of the resulting market
structure on the incentive to invest in plant breeding R&D and social welfare. The two types
of intellectual property protection in question are those provided by utility patents and those
provided by Plant Variety Protection certificates. The latter intellectual property regime
results in a weaker form of protection because it allows for a well-defined research
exemption provision. We specifically focus on the adaptive destruction process, which arises
because of the reduction of the market value of the crops due to pest adaptation.

The model that we have analyzed is necessarily very stylized, yet it yields some
interesting analytic and numerical results. Specifically, we find that the welfare ranking of the

intellectual property regimes depends on the cost-to-profit ratio. In our model, the R&D
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activity requires a fixed outlay at the start of the innovation race, which can be interpreted as
the cost of starting and maintaining a new plant breeding program. The analytic results
established in this paper imply that when the cost is relatively low, the research exemption
regime yields a higher welfare. Our numerical results suggest that for a high cost-to-profit
ratio it is the full patent regime that provides better incentives to invest in R&D and yields
higher social welfare. These results are established by calibrating the model so that the
expected durations of innovation and adaptive destruction processes are broadly
representative of the plant breeding industry. An additional result established in this paper
implies that when the value of the cost-to-profit ratio is low, firms ex ante prefer the research
exemption regime, even though it is a weaker form of protection (this conclusion is similar
to that obtained by Bessen and Maskin [2002] in a different model of sequential innovation).

In addition to deriving the profit and welfare effects of alternative intellectual
property regimes used in the plant breeding, the analysis of this paper also emphasizes that
the form of intellectual property rights defines the market structure of the industry, and that
this market structure will not necessarily coincide with the two extreme cases of monopoly
and perfect competition that have been the focus of the majority of previous studies. Future
work toward the derivation of cogent implications for policymakers concerned with the
adaptive destruction problem, therefore, may need to account more explicitly for the
(sometimes subtle) effects of alternative institutions that establish and strengthen intellectual

property rights.
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Appendix

Proof of Proposition 1 (RE regime)
Substituting (4) and (5) into (3) we obtain

x z 2x bVO(GiIGj)J ( x )bvo(ailaj)
+ +(1-o0;)o;
2x+r)(r+b) (2x+r) (r+b) I\ x+r r+b

T+bV,y(o;,0;
+(1-0;)0o; il (o ]) —c(o;o;+(1-0;)0;)
J X+r r+b J !
Rearranging:
Vo(o;,00)= L 0;0; al z +(1—<7')0'iL z —-co; |,
J ®(0;,0)) T x+71) (r+b) PP (x+7) (r+b)
where
2xbo;o; xb|(1-o0;)o; +(1-0;)0;
o0, ) =1 22 (=000, +(1-0))71)

Qx+7)(r+b) (x+7)(r+b)

Part (i). First note thatif o; =1, then

®(c;,1)| (2x+7) (r+b)
(o b ro; \)
Note also that the first term = i (1+ d ) , 1s increasing in
D(o;,1) (x+7)(r+b) 2x+7r
o;. This implies that if _x 1 > then o; =1 is the best response and both firms

2x+r)(r+b) =«
invest with probability 1 in equilibrium.
Part (ii). For notational simplicity let o =0 *. In the interior equilibrium, firm i is
indifferent between investing and not for any given o;. Then the equilibrium symmetric

strategy o0; = 0; =0 * must satisfy Vy(1,0%) =V;(0,0%), that s,

1 { X T X T }
o* +(1-0%) —c|=0
(1, 0%) 2x+r)(r+b) (x+71)(r+b)

from which we can solve

o = (2x+r)(1_£(r+b)(x+r)j.

X T X
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Next, the condition 0 < o* <1 implies that this solution applies if and only if

X C X

(r+b)2x+r) =z (r+b)(x+r) '

Part (iii). Note thatif o; =0 then

_ i a d -
Voloy,07) = q)(o-i,()){(x+r) (r+b) C}-

x 1 c . . .
<—, then o; =0 is a best response and none of the firms invests in

Cleatly, if
(x+r)(r+b) =«

equilibrium.

Proof of Proposition 2 (FP regime)
Consider the initial stage of the game. For a given strategy profile (O‘i,O'j) €[0,1]* the payoff

of firmiin the initial stage is given by

2x+r X+7r

VO(O-i/Gj) = O'lO']( me —CJ'FO'i(l—Gj)(V’nx —Cj,
where V,, is given by equation (10). Rearranging,

V,x o;X
Vy(o:,0,)=0;| 2= 1-—L —c|.
(i) '[err( 2x+r] J

Part (i). Note that if o; =1 we have

VO(O-i/Gj):Gi( me —Cj.
2x+r

This implies that if —2

5 >c then o; =1 is the best response and both firms invest with
X+r

probability 1 in equilibrium. Substituting for V,, yields

< x(x+7)

7 QRx+r)(x+r+b)r+bx(x+r)

Part (ii). For notational simplicity let opp =c*. In the interior equilibrium, firm i is
indifferent between investing and not for any given o;. Then the equilibrium symmetric

strategy profile 0; = 0; =0 must satisfy V;(1,0%) =V;(0,0%), from which we obtain

O_*

_ me—c(x+r)(2x+r)

V,x X
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Again, the condition 0< c* <1 implies that this solution applies if and only if

x(x+7) c X

x+r)(x+r+byr+bx(x+r) 7 (r+b)(x+r)

Part (iii). Note thatif o; =0, then

V,x

xX+r

This implies that if VinX

<c then o; =0 is the best response and none of the firms invests
xX+r

in equilibrium. This condition can be further simplified, by using the expression for V,,, to
obtain

A S—
7 (x+r)(r+b)
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