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Abstract

The urgency for a global and fundamental transformation of food systems is un-
deniable in these days. Agriculture, together with its associated land-use changes,
significantly contributes to climate change and deforestation for agriculture and the
intensification of agricultural landscapes are major contributors to biodiversity loss.
Moreover, the current management of food systems leads to environmental damage
that exacerbates various disruptions.

Ecological-economic models are the first choice to assess the impacts of policies
but neglect the political process. What is needed are political economy modeling
approaches which allow both the identification of optimal public policies as well as
the assessment of their political feasibility. Hence, ideally political economy model-
ing integrates both an ecological-economic model to identify first best policies, and a
quantitative political decision-making model that allows the assessment of the political
feasibility of public policies.

Given the fact that for real world systems often a trade-off between ecological-
economic efficiency and political feasibility can be observed, i.e. the probability that
scientifically identified first best policies will be effectively implemented in real world
political systems is rather low, while vice-versa policy choices resulting from real world
policy processes lead to rather inefficient and less sustainable policy outcomes, it is
especially important that integrated political economy modeling frameworks allow the
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identification of second best policies, i.e. policies which are political feasible given
specific features of real world political systems and which lead to policy outcomes
which achieve efficiency levels that compare to first best policies.

In this context this paper suggests an innovative political economy approach com-
bining quantitative economic-ecological modeling with a non-cooperative legislative
bargaining model. In particular, public policies result as an equilibrium outcome of
a multi-stakeholder process, where policy decisions are the outcome of legislative bar-
gaining among involved legislative actors. Based on our theory, a mean voter theorem
applies, i.e., final policy outcomes result as a weighted mean of legislators ideal points,
where the weights of individual legislators depend on the constitutional decision-making
rule. Legislators’ policy preferences are derived from political communication processes
among governmental and non-governmental stakeholders, where actors up-date their
beliefs how specific polices impact on relevant policy outcomes.

To go into detail, we use the economic-ecological model CAPRI which has been
used extensively to assess the impacts of policies mainly on the European agricultural
sector. Further, we use metamodeling to derive an analytical form of policy impact
functions which are used to derive endogenous policy preferences determining the non-
cooperative legislative bargaining equilibrium.

We apply our innovative framework to the European Green Deal which has been
designed to transform the European economy to become climate neutral, modern and
resource-efficient. To reach the goals in the agricultural sector, the Farm To Fork
Strategy has been proposed in 2020 and is still heavily disputed. As previous research
has shown, if implemented as proposed, the Farm To Fork Strategy in connection
with the Biodiversity Strategy will have far reaching impacts on the economy and
environment not only in Europe but worldwide.

However, we use our innovative framework to assess the following questions:

1. To what extend do first-best policies differ from the Farm To Fork Strategy in
terms of efficiency and ecological effectiveness?

2. To what extend are first-best policies politically feasible?

3. What are second best policies and to what extend do they deliver results which
compare to first-best policies?
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1 Introduction

The Green Deal is Europe’s new growth strategy to become the first climate-neutral continent
by 2050. The overall goal is to transform the European economy to become modern, resource-
efficient and competitive. An effective implementation of the European Green Deal appears
to be heavily disputed between societal groups within and across EU-member states. A good
case in point is the Farm To Fork Strategy, suggested by the EU-commission in May 2020, to
achieve the goals of the Green Deal in agriculture. The Farm To Fork Strategy, together with
the Biodiversity Strategy, initially focuses on the implementation of the goals of the Green
Deal in agriculture, which are defined as the following technical production restrictions and
target values (European Commission, 2020):

- Reduction of mineral fertilizer use by 20% [fertilizer]

- Reduction of pesticide use by 50% [pesticide]

- Reduction of the Nitrogen-balance surplus by 50% [nsurplus]

- Share of high diversity landscape features/set-aside of at least 10% [national/set-aside]

- Share of organic farming of at least 25% [organic]

Several studies have assessed and quantified the ecologic and economic effects of the
Green Deal and the Farm To Fork Strategy (see Beckman et al. (2020); Barreiro-Hurle et al.
(2021); Bremmer et al. (2021); Henning et al. (2021); Jongeneel et al. (2021)). The studies
differ methodologically: both Barreiro-Hurle et al. (2021) and Henning et al. (2021) use the
partial equilibrium model CAPRI, Beckman et al. (2020) use the general equilibrium model
GTAP while Bremmer et al. (2021) use the partial equilibrium model AGMEMOD and case
studies while Jongeneel et al. (2021) beside others perform a literature analysis and case
studies. In short, the findings are similar in that the Green Deal leads to a reduction of
agricultural output while farm income increases and consumer welfare decreases.

Yet, as the Farm To Fork Strategy is no concrete policy, the question remains whether
this proposed strategy will eventually be implemented. Moreover, as it is not public how
the policies of the F2F Strategy were decided upon and appear to be at best guessed, there
might be alternative policy sets which achieve the goals of the Green Deal more efficiently.

Therefore, the objective of this paper is to explore the possibility of apply the meta-
modeling approach on the CAPRI model to derive optimal political positions with respect
to the Farm To Fork Strategy which are both efficient and effective in achieving the Green
Deal goals. Further, the optimal policies are derived for each member state to reproduce
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the European Union decision making process. In addition to the policy measures of the
Farm To Fork Strategy, a price for CO2eq emissions is included in the optimization model to
determine what impacts expanding the CO2 price, currently established in i.a. the energy
and industry sector, by agriculture would imply.

The paper is organized as follows. Data and methods are presented in section 3. Subse-
quently, optimal policies on member state and EU level are presented in section 4. Finally,
the paper concludes with a discussion in section 5.

2 Computational Political Economy Framework

2.1 Ideal policy choice of a social planner

Formally, let F denote a model, which implicitly determines outputs, z, as a function of a
set of policies, γ, and a set of model parameters, ω:

F (z, γ, ω) ≡ 0. (1)

F is an I-dimensional vector-valued function, z an I-dimensional vector of endogenous
output variables, γ is a J-dimensional vector of policy dimensions, and ω a K-dimensional
vector of exogenous model parameters. Relevant outputs z might include economic growth
measured by growth in income per capita, environmental protection, e.g., measured by re-
duction in CO2 emissions, as well as poverty reduction, measured by the share of households
below the poverty line. Policy dimensions include policies controlled by the government, e.g.,
taxes, subsidies, or tariffs, as well as government expenditure on specific policy programs
like, for example, public investments in extension services, infrastructure, or education as
well as provision of public services, e.g., health or social services. Model parameters can be
further disaggregated into different subsets, e.g., behavioral parameters or exogenous vari-
ables. Exogenous variables include demographic or economic variables uncontrolled by the
government, e.g., world market prices or population growth. Changes in the values of ex-
ogenous variables correspond to exogenous shocks, which induce changes in the endogenous
variables. The latter corresponds to the response of the economic, ecological, and social
systems to exogenous shocks. Behavioral parameters define the response of the system to
these shocks. Hence, assuming behavioral parameters correspond to their true values implies
that the model replicates the true response of the economy to exogenous shocks. F defines
an intervention logic of transforming γ into z and could correspond to any scientific model.
However, we focus in the following on Computable General Equilibrium (CGE) models. An
advantage of CGEs is that one can simulate counterfactual scenarios, i.e., one can calculate
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the values of the endogenous variables that result from assuming parameter values that differ
from their corresponding baseline values.

2.1.1 Policy Choice under Model Uncertainty

In a pure modeling framework, a benevolent social planner is assumed to choose policies
γ that maximize an evaluation function (social welfare function) S(z), i.e. policies are the
choice variables controlled by a social planner, while evaluation of policy choices depend on
specific output variables, z, that are determined by policy variables. Technically, the relation
between policies, γ, and outputs, z, is determined by a model, F , as defined in 1. Hence,
formally rational policy choices of a benevolent planner can be derived from the following
social welfare maximization problem:

max
γ

S(z)

F (z, γ, ω) ≡ 0.
(2)

Standard CGE policy analysis is often focused on policies that can be directly integrated
into a CGE model, e.g., taxes, subsidies, transfers, or tariffs. The latter are incorporated in
the CGE model as exogenous parameters. In contrast, other policies can only be indirectly
implemented applying the concept of policy impact functions. For example, the Maquette
for MDG Simulations (MAMS) model defines Millennium Development Goals (MDGs) as
a political production function of budget allocation across specific public services (Löfgren
et al., 2002). Analogously, analyzing the impact of investment policies under the Comprehen-
sive Africa Agriculture Development Programme (CAADP), the change in sectoral technical
progress is defined as a function of budget allocation across different CAADP-policy pro-
grams (Henning et al., 2017). In order to analyze these policies within a CGE framework,
their impact has to be transformed into corresponding policy shocks, which are integrated in
the CGE model as exogenous parameters. Formally, this transformation corresponds to our
concept of policy impact functions (PIFs). Accordingly, F is specified as a nested function:

F : (γ, ω) → z, T (z, η, θ)) ≡ 0 ∧ H(η, γ, ξ) ≡ 0, (3)

comprising of an economic-ecological model, T (η, z, θ) and a PIF, H(η, γ, ξ), with ω = (θ, ξ).
The PIF transforms γ into policy shocks η. The outcomes z are an indirect effect of policies
defined through policy shocks η induced by policies. For example, public investment policy
programs might induce technical progress defined by the PIF, while technical progress, in
turn, is modeled as an exogenous parameter, η, in the CGE implying a change in poverty or
economic growth defined by the economic-ecological model. ξ denotes a vector of parameters
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determining the relationship between policies and induced shocks, e.g., the effectiveness of
public investment in specific policy programs. The parameters defining the behavior of the
economic-ecological model are denoted by θ.

To demonstrate how to derive optimal polices (γ∗) under model uncertainty, we define
the following maximization problem:

max
γ

S(z) evaluation function

s.t
T (z, η, θ) ≡ 0 economic-ecological model
H(η, γ, ξ) ≡ 0 policy impact function
R(z, η, θ, γ, ξ) ≡ 0 restrictions

(4)

The function R represents any further restrictions defined on policies, policy outputs, or
model parameters that reflect exogenous framework conditions or correspond to restrictions
implied by economic theory.

Given a specification for T , H and R one is able to solve 4 and obtain the corresponding
optimal policy. However, the solution of 4 is driven by a lot of model assumptions, e.g.,
functional forms, parameter values, model structure, which are highly uncertain. In partic-
ular, fundamental model uncertainty can be separated into parametric and non-parametric
uncertainty (Marinacci, 2015). Non-parametric uncertainty corresponds to different model
structures and different functional forms within the same model structure. In contrast, para-
metric uncertainty corresponds to different parameter specifications within the same model
structure and the same functional forms.

Formally, let M denote a set of model structures, and m ∈ M a specific model, i.e.
corresponding to a specific Tm() and a specific Hm() with specific parameters, θm and ξm,
respectively. Then the solution of 4 implies: Fm(z∗

m, ωm, γ∗
m) ≡ 0, where Fm corresponds to

a specific intervention logic defined by the model m.
Further, let Pr(m) denote the probability that the structural model m corresponds to

the true data generating process, while Pr(ωm | m) denote the conditional probability dis-
tribution of the model parameters ωm = (θm, ξm) given the structural model m. Assuming
a rational, risk-averse actor, we can define the expected evaluation as follows:

E(S(z)) =
∑
m

Pr(m)
∫
Ω

S(Fm(z, ωm, γ))Pr(ωm | m) dω (5)

Solving the policy choice problem involves the solution of the integrand. However, the
integrand may be difficult or impossible to evaluate analytically. Accordingly, in most cases,
one is forced to evaluate the integral numerically. In general, numerical approximations of
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the integral take the form:

∫
Ω

S(Fm(z, ωm, γ))Pr(ωm | m) dω ≈
∑

J

gjS(Fm(ωm,j, γ))Pr(ωm,j | m), (6)

where J represents the total number of evaluations of S(Fm() and gj represents the weight
associated with each evaluation j (Haber, 1970). The Monte Carlo approach represents a
special case where one generates L pseudo-random numbers from the distribution Pr(ωm |
m), evaluates the integrand L times, and attaches a weight of 1/L to the result from each
evaluation, i.e., drawing L random samples ωm,l from the distribution Pr(ω | m), we can
approximate the integrand by:

1
L

L∑
l=1

S(Fm(ωm,l, γ)) (7)

If L is sufficiently large, the approximation will be good under extremely mild conditions
on the integrand. Alternatively, one might use Gaussian Quadrature methods to keep the
number of evaluations of the integrand, L, small (Arndt and Pearson, 1998; Villoria and
Preckel, 2017).

Beyond a numerical solution of the integral, solving the policy choice problem still in-
cludes the evaluation of the function Fm, which is usually only implicitly defined and not in
an explicit analytical form (e.g., Tm is defined by a recursive-dynamic CGE). Accordingly, it
might be rather tedious to differentiate Fm applying the implicit function theorem and solv-
ing the corresponding first order conditions (FOCs) numerically for the optimal policy. In
general, the optimization problem might still be solved by applying simulation optimization
techniques (Amaran et al., 2015). However, applying these techniques might become tedious
if a large and complex CGE with a large set of policies is used.

In this regard we suggest to apply metamodeling (see ?? for a comprehensive introduc-
tion) to derive an explicit function zm = fm(ωm, γ) approximating the implicit function Fm.
In contrast to other simulation optimization techniques, this approximation implies that
the FOCs can be explicitly formulated and hence easily solved applying standard numerical
solution algorithms. Hence, combining the numerical approximation of the integrand with
metamodeling, we derive a numerically tractable optimization problem for the policy choice
problem under model uncertainty:
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max
γ

E(S(z)) = ∑
m

Pr(m) 1
L

L∑
l=1

S(zm,l)

s.t
zm,l = fm(ωm,l, γ)
R(z, η, γ, ωm,l) ≡ 0

(8)

2.2 Real World Policy Choices

Thus far, we have looked at policy choice as a complex but purely technical task assuming a
benevolent social planner undertakes the final choice. In reality, however, individual society
members evaluate outcomes differently and need to agree on a common policy. Therefore,
the policy choice is a collective choice, where heterogeneous policy preferences of individual
society members are aggregated to a joint political decision based on specific constitutional
decision-making rules.

Comprehensive policy analysis includes both the analysis of the technical transformation
of policies into relevant outcomes, as well as the political process in which an actual policy
is collectively selected. In representative democracies, preference aggregation is subdivided
into two steps. First, heterogeneous voter preferences are transformed into the corresponding
preferences of a subset of political representatives via democratic elections. Second, the
heterogeneous preferences of political representatives are aggregated into a final political
decision via legislative voting procedures. Based on their policy beliefs, political actors
derive their individual policy preferences.

2.2.1 Legislative Bargaining

At a methodological level collective policy choices result from legislative bargaining, where
a set of political agents g ∈ G select a policy γ according to given constitutional rules ξ.
Each legislator has a spatial policy preference, Ug(γ, γ̂g), where γ̂ denotes legislators’ ideal
point, the policy she prefers to all other policies. A legislative bargaining model Ξ transforms
given policy preferences of legislators, uG, and given constitutional rules φ, into a legislative
decision γ∗:

γ∗ = Ξ(uG, φ). (9)

Policy preferences of legislators are derived from political support maximization:

Ug(γ) = E(Sg(z(γ))) = ∑
m

P̃ rg(m) 1
L

L∑
l=1

Sg(fm(ωm,l, γ)) (10)
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P̃ rg(m) denotes the subjective policy beliefs of a legislator g and Sg(z) denotes the
individual support function. In democratic systems, agents’ polictical support functions
result from electoral competition including lobbying activites (see for example Grossman
and Helpman (1996))1

In this regard Braack et al. (2023) suggest an innovative non-cooperative legislative bar-
gaining game and proof a mean voter theorem that implies that the equilibrium bargaining
outcome correpsonds to a lottery of legislators’ proposals with following expected outcome:

E(γ∗) =
∑

g

Cgγ̃g (12)

Cg = ∑
h

Qhαhg denotes the political control of legislator g and is determined in the equi-
librium of the game as a function of the propability that legislator h’s proposal will be the
final outcome of the game, Qh, and relative weight of legislator g’s idealpoint determin-
ing legislator h’s proposal, xh = ∑

g
αhgγg.xh denotes the proposal of h and γg denotes g’s

idealpoint (for further details see (Braack et al., 2023)).

2.2.2 Evaluation Measures

Policy analysis includes the identification of an optimal policy, γopt, as well as the evaluation
of empirically observed policy outcomes, γ∗. For the latter, an appropriate evaluation mea-
sure is required. An obvious candidate for an appropriate evaluation measure would be the
expected welfare E(S(z)). In particular, one could compare the expected welfare derived
under an observed policy, γo, with the expected welfare derived under the optimal policy.
However, to derive a consistent measure of political performance which is also straightfor-
ward to interpret, we suggest the concept of a political loss function. In particular, we define
B(γ) as the economic welfare loss of a policy measured in money metric, e.g. the Hicksian
equivalent variation implied by a policy.

We define a political loss function, L(γo), related with a specific policy, γo:
1Following Grossman and Helpman (1996) or Henning et al. (2018)) political support function can be

derived a weighted social welfare function:

Sg(z, γ) =
∑

v

ϕg
v (δg

vUv(γ, γ̂v) + (1 − δg
v)Sv(z)) + (1 −

∑
v

ϕg
v)

∑
i

ϕg
i Ui(γ, γ̃i) (11)

v is an index denoting different social voter groups, and i is an index denoting different lobbying groups.
ϕg

v, δg
v are weighting parameters determined by the voting behavior, while ϕg

i is the relative political weight
of a lobbying group i depending on the relative access to political agents g.

9



L(γo) = max
γ

dB

s.t
E(S(zm,l)) ≥ E(S(zo

m,l))
zm,l = fm(γ, ωm,l) and zo

m,l = fm(γo, ωm,l)
R(z, η, γ, ωm,l) ≡ 0
B(γ) − B(γo) ≥ dB

(13)

dB correspond to the maximal economic welfare gain that could be realized if an optimal
policy is implemented to reach at least the expected welfare E(S(zo

m,l)) achieved by the
policy γo inducing the economic welfare B(γo). Obviously, the maximal gain will be zero
if γo corresponds to the overall optimal policy. The political loss can also be normalized
expressing the relative loss compared to a benchmark economic welfare, B̄, i.e., dB

B̄
. However,

evaluating legislative bargaining outcomes implies that one assess the expected loss:

E(L) =
∑

g

QgL(x∗
g), x∗

g =
∑

h

αghγh

Overall, political economy of real world policy choices includes two aspects of inefficiency.
First, inefficient policy choices correspond to biased political incentives of elected politicians
to represent society interests. Technically, incentive bias implies that agents’ political sup-
port functions, Sg(), do not correspond to society’s social welfare, S(). 2 Secondly, inefficient
policy choices result from biased policy beliefs, i.e. prior probabilties Prg(m) do not pre-
fectly reflect available political knowledge. Let Pr(m), m ∈ M denote the priors based
on all available scientifc knowledge. Then, we can calculate two counterfactual policy out-
comes, γknow and γsoc. The former corresponds to the equilibrium outcome of the legislative
bargaining assuming all legislators individual support functions equal exactly society’s sp-
cial wefare function, i.e. Sg(z) = S(z), ∀g. The second counterfactual correpsonds to the
legislative bargaining equilibrium assuming policy beliefs of all legislators correpsond exactly
to available scientific knowledge, i.e. Prg(m) = Pr(m), ∀g.

Let Lknow = E(L(γknow)) denote the expected loss for the policy outcome γknow , while
Lsoc = E(L(γsoc)) denotes the expected loss for the legislative equilibrium outcome γsoc.
Then we can disentangle the total political performance gap, defined as Ltot = E(L(γ∗)),
i.e. the expected policy loss resulting from the legislative bargaining outcome derived for
the real world political system under consideration, into a knowledge gap, Lknow, i.e. the

2Biased incentives of elected politicians correspond to biased political weights, and result from asymmetric
lobbying activities (Grossman and Helpman, 1994) or biased voter behavior (Bardhan and Mookherjee, 2002).
More recently, Persson and Tabellini (2000) highlight the role of formal constitutional rules as determinants
of politicians’ incentives to misrepresent society’s interests and choose inefficient policies.
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policy loss resulting from biased policy beliefs and an incentive gap, ; Lsoc, i.e. the policy
loss resulting from biased political support functions .

2.2.3 Political feasibility and second-best policies

Furthermore, it is interesting to assess political feasibilty of first best policy choices derived
from a social welfare maximization as well as to identify second best policies, i.e. policies
which are politically feasible and approximate social welfare derived from first best policies.

Within the CGPE approach political feasibility of a policy can be measured via the
following feasibility index, FS(γ):

FS(γ) = Prob(γ, (Q∗, x∗))

Prob(γ, (Q∗, x∗) corresponds to the probability that a winning coalition will form that
would accept the exogneous policy proposal, γ, given that the continuation value of the
legislative bargaing game just corresponds to the equlibrium outcome, i.e. the lottery (Q∗, x∗)
(see Braack et al. (2023)).

Hence, second best policies can be derived from the following maximization problem:

γ∗∗ = arg max
γ

[E(S(zm,l))FS(γ)]

s.t
FS(γ) = Prob(γ, (Q∗, x∗))
zm,l = fm(γ, ωm,l)
R(z, η, γ, ωm,l) ≡ 0

(14)

Formally, political economy approaches should take both aspects into account. However,
existing approaches rather focused on biased political incentives, while biased political beliefs
have not yet been talen into account 3. An exemption is the computational general political
economy equilibrium approach (CGPE) suggested by Henning et al. (2018)).

In this paper we focus on both aspects applying a CGPE-modeling approach to analyze
policy gaps realized in the EU-system regarding the Green Deal implementation in EU
agriculture. In particular, we disentangled total performance gaps into incentive-induced
and knowledge-based gaps. Furthermore, we derive second-best policies.

3Interestingly, some authors have recently highlighted the role of biased voter beliefs as the primary
determinant of inefficient policy choices (Beilhartz and Gersbach, 2004; Bischoff and Siemers, 2011; Caplan,
2007). In particular, the work by Caplan (2007) has been highly recognized in public choice literature, as he
has collected an impressive amount of evidence showing persistently biased voter beliefs.
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3 Empirical application of a CGPE approach to the
Green Deal implementation in EU agriculture

3.1 The Green Deal and EU-agriculture

The Green Deal is Europe’s new growth strategy to become the first climate-neutral continent
by 2050. The overall goal is to transform the European economy to become modern, resource-
efficient and competitive. An effective implementation of the European Green Deal appears
to be heavily disputed between societal groups within and across EU-member states. A good
case in point is the Farm To Fork Strategy, suggested by the EU-commission in May 2020, to
achieve the goals of the Green Deal in agriculture. The Farm To Fork Strategy, together with
the Biodiversity Strategy, initially focuses on the implementation of the goals of the Green
Deal in agriculture, which are defined as the following technical production restrictions and
target values (European Commission, 2020):

- Reduction of mineral fertilizer use by 20% [fertilizer]

- Reduction of pesticide use by 50% [pesticide]

- Reduction of the Nitrogen-balance surplus by 50% [nsurplus]

- Share of high diversity landscape features/set-aside of at least 10% [national/set-aside]

- Share of organic farming of at least 25% [organic]

Although scientific studies commonly agree that increasing ecosystem services poten-
tially creates a win-win situation, where all European social groups including farmers and
consumers could benefit, political debates are nowadays highly conflictual and emotional.
While all social groups seem to agree in fundamental goals, e.g. to achieve a sustainable
agricultural production guaranteeing a healthy nutrition at reasonable prices for all people
in the EU and contributing to the reduction of hunger in the world, they have different
opinions on how to best achieve these commonly shared goals politically. Obviously, politi-
cal conflicts result from different narratives on how specific policies impact the state of the
world.

Several studies have assessed and quantified the ecologic and economic effects of the
Green Deal and the Farm To Fork Strategy (see Beckman et al. (2020); Barreiro-Hurle et al.
(2021); Bremmer et al. (2021); Henning et al. (2021); Jongeneel et al. (2021)). The studies
differ methodologically: both Barreiro-Hurle et al. (2021) and Henning et al. (2021) use the
partial equilibrium model CAPRI, Beckman et al. (2020) use the general equilibrium model
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GTAP while Bremmer et al. (2021) use the partial equilibrium model AGMEMOD and case
studies while Jongeneel et al. (2021) beside others perform a literature analysis and case
studies. In short, the findings are similar in that the Green Deal leads to a reduction of
agricultural output while farm income increases and consumer welfare decreases.

Yet, as the Farm To Fork Strategy is no concrete policy, the question remains whether
this proposed strategy will eventually be implemented. Moreover, as it is not public how
the policies of the F2F Strategy were decided upon and appear to be at best guessed, there
might be alternative policy sets which achieve the goals of the Green Deal more efficiently.

Therefore, the objective of this paper is to explore the possibility of apply the meta-
modeling approach on the CAPRI model to derive optimal political positions with respect
to the Farm To Fork Strategy which are both efficient and effective in achieving the Green
Deal goals. Further, the optimal policies are derived for each member state to reproduce
the European Union decision making process. In addition to the policy measures of the
Farm To Fork Strategy, a price for CO2eq emissions is included in the optimization model to
determine what impacts expanding the CO2 price, currently established in i.a. the energy
and industry sector, by agriculture would imply.

3.2 Methodology and data

To apply our CGPE-approach to analyze the F2F-strategy implenting the Green Deal in
EU-agriculture we proceed as follows:

• First, we define a set of relevant policy instruments, Γ = [0, 1]k, where k denotes
the number of relevant policy measures and γk ∈ (0, 1) denotes the policy for the
kth measure. In partilcuar, we consider the five policy measuers of the F2F-strategy
as suggested by the EU Commission as relevant policies. Furthermore, we conider the
pricing of GHG emissions as an addtional sixth policy instrument. To normalize policy
measures to the (0,1) interval we proceed as follows. Let γ0 denote the levels suggested
for each policy in the F2F-strategy. The we define γmin

k = 0 as the minimum level and
γmax

k = 1.5γ0 as the maximum level for each policy. Hence, we transform policies into
the (0,1) interval via:

γk = (γk − γmin
k )

(γmax
k − γmin

k )

• We define the set of legislators, N . Nowadays the co-decision became the main legisla-
tive procedure applied for the CAP. Technically, the co-decision procedure potentially
involves up to three readings of proposed legislation by the European Parliament (EP)
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and the Council of Ministry (CM). It is initiated by a policy proposal of the European
Commission (EC). The EC proposal is submitted to the EP and the CM 4. First, the
EP can in its first reading approve the EC proposal or replace it with an amended
version. Then, the CM either approves the EP proposal or initiates a second stage of
decision making by making amendments. In the latter case the new CM proposal is
either approved by the EP in a second reading or again amended. If in the later case
the CM does not accept the new EP proposal, the Conciliation Committee (CC) rep-
resents the final stage of decision-making. The Conciliation Committee comprises of
all national members of the CM (currently 27) and a delegation of the EP of the same
size; it is co-chaired by an EP Vice-President and the national Minister of the member
state holding the Council Presidency without fixed negotiation protocol. Furthermore,
representatives of the EC are members of the CC. However, the latter have only an
informal supporting role. If the CM and EP agree on a compromise it is submitted
to the EP and CM for acceptance in a third reading in which CM and EP use their
typical qualified and simple majority rules, respectively. Assuming that all involved
players have no time preferences for agreeing on a legislature implies that codecision
outcome can be identified with the policy which CM and EP expect to agree on in
the CC. Thus, analysis of the Codecision procedure focus on the analysis of legislative
bargaining in the CC. In particular, final bargaining outcome has to be accepted by
a winning coalition corresponding to a majority in the EP and a qualified majority in
the CM. Accordingly, we consider all 27 national council members, i.e. the national
Ministries of Agriculture, the Directory Agriculture of the EC as well as all relevant
EP-groups as indiviudal legislators involved in the legislative bargaining on the CAP
under the co-decision procedure.

• Definition of political support functions, Sg(z) and social welfare function, S(z) . Based
on the Green Deal we consider the ecosystem services (1) reduction of GHG-emissions
(ZGHG), (2) reduction of nitrogen pollution (ZN) as well as (3) biodiversity (ZBIO) as
relevant policy goals. Furthermore, we consider the total economic welfare, ZEcon, i.e.
the sum of the economic welfare of consumers, agriculural producers and agribuisness,
as an additional relevant policy goal. Political support functions correspond to linear
functions of growth rates in goal achievements: Sg(z) = ϕgw, where ϕg = (ϕg

k), k ∈
{ghg, n, bio, econ} denotes the vector of relative weights of a policy goal. w = {Wk}, k ∈
{ghg, n, bio, econ} denotes vector of growth rates in the goal achievement realized for
policy goals.

4For further details see The co-decision Guide, available from the European Parliament (http://..)
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• To model policy impact on policy goals we apply the CAPRI model described in detail
in the next section. In particluar, we describe applied metamodeling techniques to
derive correpsonding policy impact functions fm(γ) for the CAPRI-model.

• To model legislative bargaining we apply the innovative non-cooperative legislative
bargaining model of Braack et al. (2023). The model will be decribed in more detail
in the subsection below. In particular, we will also describe how we estimated policy
beliefs, f̂m(γ) and derived legislators’ individual spatial policy preferences.

3.3 CAPRI model

Since the CAPRI model is used for metamodeling, its essentials are described in the following.
The Common Agricultural Policy Regionalised Impact (CAPRI) model is a regional partial
equilibrium model focused on the agricultural sector including environmental and land-use
effects induced by farm production. CAPRI combines detailed models of the agricultural
supply in the EU regions with a global trading model to include trade flows and price effects.
The model provides highly detailed results on NUTS2 level for a large number of production
activities. In addition, CAPRI also provides detailed results of the environmental effects,
e.g., CO2 emissions, nitrogen balance and an index to measure the level of biodiversity.
Moreover, the impacts on consumer, producer and total welfare are captured. CAPRI has
been used intensively in the past twenty years to analyze the impacts of policies and other
exogenous shocks on agriculture, environment and trade5. In addition, it has lately been
used to determine the impacts of the Farm To Fork Strategy on economy and ecology, see
for example Henning et al. (2021); Barreiro-Hurle et al. (2021).

3.4 Metamodeling CAPRI

Metamodeling is widely used in research fields in engineering and natural sciences (Simpson
et al., 1997; Barthelemy and Haftka, 1993; Sobieszczanski-Sobieski and Haftka, 1997; Razavi
et al., 2012; Gong et al., 2015) and has in recent years also been applied in economics (Ruben
and van Ruijven, 2001; Villa-Vialaneix et al., 2012; Yildizoglu et al., 2012). In general,
the metamodeling technique generates a simpler model of the simulation model. As this
surrogate model is smaller and hence computationally faster but still includes the main
features of the original model, it may be used in further analyses. Moreover, metamodels
are in an analytical form and can therefore easily be used for optimization.

To explain the metamodeling technique intuitively, let (x, y) represent the dataset6 that
5See www.capri-model.org
6The dataset is also called the training sample.
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contains n pairs of (xi, yi) where xi = (x1
i , . . . , xk

i ) are the exogenous parameters and yi are
the endogenous responses. Thus, the simulation model is referred to as:

F SIM(yi, xi) ≡ 0 i = 1, ..., n. (15)

Furthermore, with xi and yi, we can fit a metamodel which can be formulated as:

ŷi = fmeta(xi) i = 1, ..., n, (16)

where fmeta represents the metamodel that we utilize to approximate the relationships of
the underlying simulation model and ŷi is the predicted values of the outputs using xi.

In the following we briefly describe how metamodels can be derived from complex sci-
entific models. Basically, this derivation entails three steps: selection of metamodel types,
Design of Experiments (DoE), and model validation (Kleijnen and Sargent, 2000).

We perform metamodeling based on the CAPRI model described in section 3.3.

3.4.1 Selection of metamodel type

Metamodels are classified into parametric and non-parametric models (Rango et al., 2013).
Parametric models, such as polynomial models (Forrester et al., 2008; Myers et al., 2016),
have explicit structure and specification. Examples of non-parametric models include of
Kriging models (Cressie, 1993; Yildizoglu et al., 2012; Kleijnen, 2015), support vector re-
gression models (Vapnik, 2013), random forest regression models (Breiman, 2001), artificial
neural networks (Smith, 1993), and multivariate adaptive regression splines (Friedman et al.,
1991).

In this paper, we focus on the use of polynomial models in our policy optimization
framework, where we use a second-order polynomial model of the following form:

Z = β0 +
k∑

h=1
βhγh +

k∑
h=1

k∑
g≥k

βh,gγhγg + ϵ

where γ1, ..., γk are the k independent policy variables, Z is the dependent variable and ϵ is
the error term. As we are interested in the change of targets, the dependent variable Z is the
percentage change of a certain model output compared to the baseline scenario (no policies).
The coefficients β are commonly estimated using a least squares linear regression (Chen
et al., 2006). The advantage of polynomial models is that they are easy to understand and
manipulate, and the computational effort is low (Ziesmer et al., 2022).
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3.4.2 Design of Experiments

To utilize metamodels, we need to estimate the corresponding coefficients. We generate the
simulation sample by DoE, which is a statistical method of drawing samples in computer
experiments (Dey et al., 2017) and perform the estimation by entering the simulation sample
into the simulation model. DoE could be set-up in two ways: the classical experimental
design and the space-filling experimental design (see Figure 1). The former places the sample
points at the boundaries and the centre of the parameter space to minimize the influence of
the random errors from the stochastic simulation models. However, Sacks et al. (1989) have
argued that this is not the case for deterministic simulation models where systematic errors
prevail. Therefore, the space-filling experimental designs should be employed to replace the
classical ones. Among popular space-filling designs, Latin Hypercube design enjoys great
popularity due to its ability to generate uniformly distributed sample points with ideal
coverage of the parameter space as well as the flexibility with the number of the sample
points (Sacks et al., 1989).
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Figure 1: Classical and Space-filling Design.(adapted from Simpson et al. (2001))

3.4.3 Model Validation

Validation refers to assessing whether the prediction performances of the metamodels hold
an acceptable level of quality (Kleijnen, 2015; Villa-Vialaneix et al., 2012; Dey et al., 2017).
Normally, two samples are needed to assess the quality of a derived metamodel: the train-
ing sample and the test sample. The training sample is used to fit the parameters of the
metamodel, whereas the test sample is used to validate the trained metamodel, and the test
sample must include data points that are not part of the training sample. It is important
that the metamodels have good predictions while maintaining generality. For this reason,

17



a test sample is essential because it helps us evaluate if the metamodels can be generalized
and whether the simulation model can be replaced with them.

R2 = 1 −
∑n

i=1(yi−ŷi)2∑n

i=1(yi−ȳ)2

RMSE =
√

1
n

∑n
i=1(yi − ŷi)2,

(17)

where yi are the model responses in the test sample and ŷi the predicted values of the
metamodel on the test sample and ȳ is the mean of all yi in the test sample. The Root
Mean Squared Error (RMSE) is a frequently used measure of a model’s predictive accuracy
and R2 represents the correlation determination. In addition, to compare the prediction
performances for dependent variables that have different scales, we introduce the Average
Error Ratio (AER), which is calculated by taking the absolute value of RMSE divided by
the corresponding mean:

AER =
∣∣∣∣∣RMSE

ȳ

∣∣∣∣∣ . (18)

The metric gives us an idea of how large the prediction errors are in comparison to the
true simulated values on average, i.e., the lower the AER values, the better the prediction
performances. As we want to use the metamodels replacing the CGE in our policy opti-
mization framework it is particularly important that metamodels have a global prediction
accuracy, e.g. predict quite well relevant policy outcomes over a compact subset of policies.

3.5 Modelling legislative bargaining

In this section we derive a political bargaining approach to model the collective choice of
F2F-policies under the EU co-decsion procedure. In particular, we apply an innovative non-
cooperative legislative bargaining model suggested by Braack et al. (2023). For notational
convenience let x ∈ X denote the policy, while Ug(x) correspond the spatial utility function
representing the policy preferences of legislator g ∈ N . Corresponding to the legislative
bargaining model of Braack et al. (2023) we define a legislative bargaining. Let X ⊂ Rm

denote a non-empty, compact, convex set of F2F policy alternatives, with m ∈ N. Let
N = {1, ..., n} denote the set of legislators involved in legislative bargaining on the CAP
under the co-decision procedure. Each legislator g ∈ N has preferences described by a von
Neumann-Morgenstern utility function Ug : X → R. (Braack et al., 2023) assume that Ug is
continuously differentiable and concave. Legislators have to collectively select an alternative
x ∈ X, where the collective decision is made according to an exogenously given voting rule
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7. The timing of interaction of our legislative bargaining is defined as follows:

a. At each period t = 1, 2, . . . legislator g ∈ N is recognized with probability qg, where
q = (q1, q2, . . . , qn) ∈ ∆, the unit simplex in Rn.

b. When recognized, legislator i selects a policy xi ∈ X and formulate a proposal and
submits it to legislature.

c. When a proposal has been submitted to the legislature, all legislators h ∈ N simulta-
neously vote under a given voting rule to either accept or reject the proposal;

d. If the proposal xg is accepted, the game ends.

e. Otherwise, there are two alternatives.

e1: With probability q0 ∈ [0, 1] the status quo x0 ∈ X is selected and the game ends.

e2: The game continues with probability 1− q0, i.e., the process moves to period t+1
and is repeated (step a.).

The probability that legislator g is chosen to make his proposal is denoted by qg ∈ (0, 1]. We
have the relation ∑n

g=1 qg = 1. Furthermore, the conditional probability that the game ends
with the selection of the status quo after each round in which a proposal has been rejected
is given by q0 ∈ [0, 1].

Braack et al. (2023) study the infinite horizon game, with no discounting. Following
Baron and Ferejohn (1989) as well as Banks and Duggan (2000), the solution concept used
is stationary equilibrium. Strategies under this concept are stationary, and thus each player
uses history-independent strategies at all proposal-making stages. Avoiding unneeded gener-
ality, a formal definition is only provided for stationary strategies. A pure stationary strategy
for g ∈ N consist of a proposal xg ∈ X offered anytime g is recognized and a voting rule.

So far our set-up of Braack et al. (2023) basically follows Banks and Duggan (2000).
However, in contrast to most existing bargaining models including the legislative bargaining
model of Banks and Duggan (2000) as well as Baron and Ferejohn (1989) Braack et al.
(2023) do not assume that legislators who have been selected to formulate a proposal can
exactly predict if other legislators will accept or reject her suggested proposal. In contrast,
they follow a common observation in political practice that legislators are often unable to
predict future behavior with perfect certainty, but voting behavior of legislators appears
rather probabilistic (Burden and Frisby, 2004; Burden, 2007; Carey, 2008). Hence, overall

7We follow the standard approach used in the literature on legislative bargaining, decision theory and
social choice theory and interpret X as a multidimensional policy space, where each dimension corresponds
to a specific policy issue. Accordingly, legislators have spatial preferences.
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acceptance of submitted proposals becomes also stochastic at the approval stage c. Accord-
ingly, in our game a stationary pure strategy for a legislator g ∈ N consists of a proposal
xg ∈ X suggested anytime g is recognized and a measurable decision rule or equivalently
an acceptance set. Let πgh : R → [0, 1] denote individual probabilistic decision rules. Let
σg = (xg, πg) denote a stationary strategy of legislator g, while σ = (σ1, .., σg, ..., σn) denotes
a profile of stationary strategies.

Informally, a profile σ constitutes a stationary equilibrium if, for every legislator g ∈ N ,
the proposal strategy xg is optimal given the probabilistic acceptance rules (π1, ..., πn) of the
other legislators, and individual probabilistic acceptance rule πg(xg, x), is optimal given that
σ describes what would happen if the current proposal were rejected.

Braack et al. (2023) could prove the existence of global stationary subgame Nash equi-
libria under very general conditions. Moreover, they could prove a Mean Voter Theorem,
i.e. assuming separable spatial preferences, the equilibrium outcome of the legislative bar-
gaining game corresponds to a lottery of legislators’ proposals, (x, Q), where each individual
proposal corresponds to the weighted mean of legislators’ ideal points (y). Accordingly,
the expected decision outcome of legislative bargaining corresponds to the weighted mean:
E(x) = ∑

g∈N
ωgyi, while in equilibrium probabilistic acceptance rules correspond to the fol-

lowing logistic function:

πgh(u) := πh(u) = 1
1 + eαh(Vh−u) g ̸= h.

πgg(u) := 1 ∀g ∈ N

Vh denotes the continuation value of the game for legislator h. αh is a scaling parameter
which plays a crucial rule in determining the shape and steepness of the probability distri-
bution over a range of possible utilities, thus influencing the likelihood of different choices
8.

Further, Braack et al. (2023) could prove differnt special cases of their mean voter the-
orem. In particluar, assuming a sufficiently low voting response (α) expected equilibrium
decision outcomes correspond to a lottery over legislator’s ideal points, where individual prob-
abilities (Q) that the bargaining outcome corresponds to legislator’ idealpoint correspond to
an affine transformation of their corresponding Banzhaf decision-power value (Banzhaf, 1965)
derived for the co-decision procedure.Interestingly, in contrast to existing game-theoretical
analysis based on our non-cooperative bargaining theory the commission has some decsion-
making power, i.e. in equilibiurm results a non-zero probability that the outcome will be the

8As Braack et al. (2023) show the level of scaling parameters has also an important impact on existence
of Nash equilibrium and equilibrium outcomes.
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idealpoint of the commission (Napel, 2006).
In this paper we will apply the special case of the mean voter theorem derived for low

voting response to calculate decision making outcomes for the CAP. Hence, the expected
outcome correpsonds to the weighted mean of legislators’ idealpoints, where the weights just
equal to the Banzhaf values of indvidual legislators derived for the co-decsion procedure.
Furthermore, the latter corresponds to the probability that the final bargaining outcome
equals to legislators’ idealpoint ?.

3.6 Estimating policy beliefs

To estimate policy beliefs, β̂g of individual legislators g ∈ N we proceed in two steps. First,
we identified a set of political expert, E, where e ∈ E denotes the index of a specific expert
e = 1, ..., ne. Political experts are relevant stakeholder and governmental organizations op-
erating in the policy domain of CAP consideration. In undertaken expert surveys (Henning,
2022) political experts are asked to assess optimal future developments of relevant policy
goals, zo

e , i.e. experts estimates the gain in goal achievement, we, for each relevant policy
goal, which their organization desires to achieve realistically within the next T years, i.e.
ze = (1 + we)zt0 . Moreover, experts are asked to indicate how they would choose relevant
F2F-policy instrument, γ ∈ Γ , to most efficiently achieve their desired policy goals, ze. In
particular, γe denotes the F2F-policy set-up preferred by expert e. Under these assumption
expert judgements (zo, γe) are informative regarding the metamodels, z = f(γ, β).

Following Ziesmer et al. (2022) we apply a Bayesian estimation framework to estimate
metamodels based on expert data, where we used the metamodels estimated via CAPRI-
simulations as priors (β̄e):

β∗
e = arg min

βe

(βe − β̄e)′Σ−1(βe − β̄e) + ϵ′Σ−1
ϵ ϵ

ϵ = zo − ze

ze = f(βe, γ)
0 ≡ R(ze, ηe, γ, βe)

(19)

To identify different metamodels expert policy positions are clustered to identify spe-
cific macro policy position. For each identified policy cluster we conducted separately the
Bayesian estimation 19.

In a second step we used data on legislators policy preferences and desired policy achieve-
ments. Data has been collected in policy network survey (Henning, 2009). In particular, we
asked all legislators to assess the relative importance of different policy goals, e.g. the vector
ϕg = (ϕg

ghg, ϕg
n, ϕg

bio, ϕg
econ). Moreover, we asked legislators to reveal their specific achievement
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levels they want to realistically realize within the next 10 years reagridng the different policy
goals, where wg = {Wgk} denotes the vector of policy growth rates legislator g wants to
achieve compared to a base year level z0: Wgk = (Zk−Z0

k)
Z0

k
.

Further, we define identified parameter sets, βc, for the different expert clusters as dif-
ferent structural metamodels of the set M, i.e. we set M = {1, .., c, ..mc} βm = βc and use
collected data from legislators (wg, γg) to estimate individual probabilities that a specific
metamodel is the true data generating process regading the impact of F2F-measures.

In particluar, following the logic of Bayesian model averaging the aposteriori probability
derived from the data Dg of an individual legislator g can be derived as the integrated
likelihood pr(m | Dg) ?. The latter can be approximated using the BIC measure (Schwarz,
1978; Raftery, 1995; Handcock and Raftery, 2007) :

pr(m | Dg) = e−BICg
m pr(m)∑

m′∈M
e−BICg

m′ pr(m′)

, where BICg
m is the BIC value derived for model m for the following likelihood function:

Pr(µg) Pr(ϵg)
s.t.

zg = (1 + wg)z0

zg = f(γg, βm) + ϵg

∇Sg∇f + µg ≤ 0 ⊥ γg ≥ γmin

∇Sg∇f + µg ≥ 0 ⊥ γg ≤ γmax

(20)

3.7 Derivation of spatial policy prferences

As the metamodeling technique results in an analytical form, optimization techniques may
be used to derive optimal policy sets. To incorporate both economic and ecologic aspects into
the optimization, the objective function was defined as the weighted sum of environmental
and economic outcomes:

maxΓ
∑
j∈J

wjYj(γ)

where
• Γ set of policies
• J set of economic and ecologic indicators: CO2 emissions, Nitrogen surplus, biodiver-

sity and total welfare
• wj weight of outcome Yj

• Yj percentage change of outcome j to baseline
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Weights are based on consumers’ Willingness-To-Pay to reflect the relative importance
of goals and set as follows: 70% total welfare, 30% ecosystem services, of which 80% CO2
reduction, 10% biodiversity increase and 10% nitrogen reduction.

3.8 Implementation of the framework

In order to apply our framework, six main steps are necessary, which are summarized in
Algorithm 1. We implemented the individual steps in a mix of R (R Core Team, 2022)
and General Algebraic Modeling System (GAMS) (GAMS Development Corporation, 2022).
Solving the different optimization models in GAMS is mostly single-threaded, therefore we
structured our code to allow the usage of multiple CPU cores and high-performance comput-
ing resources. This is possible due to the independence of the individual simulations in step
two, for example. Please also note, that one needs to generate two samples: The first for
the derivation of the metamodels (steps one to three), and the second for the actual policy
analysis (steps four to six).

Algorithm 1 Steps
1) DoE: Sample generation for metamodel derivation
2) Computing simulations
3) Estimating and validating metamodels
4) DoE: Sample generation for policy analysis
5) Identify optimal policies applying Bayesian model averaging and model selection tech-
niques ⇒ γ∗

l

6) Solving legislative bargaining model and various scenarios and calculating political
performance gaps, L(γ∗

l )

4 Results

4.1 Validation of metamodeling

At first, validation results for selected model outcomes on EU27 level are shown in table 1.
The results are similar on member states level. As RMSE and AER are low and R2 high for
the central model outputs, the models may be considered highly valid.

To get a first impression of the results, figure 2 shows how the policies affect selected
model outputs separately. Note that all policies are measured in percentage except for the
CO2 price which is measured in Euro/t CO2eq. Also note that while the x-axis has a range
from 0 to 80%, a realistic policy could be substantially lower. The black dots highlight the
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Table 1: Validation results, EU27

Variable RMSE Mean AER R2

Consumer welfare 0.0001 -0.0027 0.0395 0.9850
Producer welfare 0.0295 0.2450 0.1205 0.9839
Total Welfare 0.0001 -0.0020 0.0584 0.9824
Agric. global warming potential 0.0157 -0.2952 0.0532 0.9541
N surplus total 0.0173 -0.3177 0.0543 0.9460
Biodiversity Index 0.0040 0.1131 0.0353 0.9710

Figure 2: Separate impacts of F2F policies on selected goals

policy values specified in the proposed Farm To Fork Strategy for reference purpose. It
is shown how the main outcomes (CO2 emissions, nitrogen surplus, biodiversity and total
welfare) change compared to the baseline (no policy) in response to an increase in the policy

24



values if only this single policy would be introduced.
As shown in the upper left plot of figure 2, for all Farm To Fork Strategy policies but

nurplus, an implementation of the F2F Strategy results in a decrease of CO2 emissions by
less than 10%. Only the reduction of nitrogen surplus (nsurplus) results in a decrease of
more than 20%. What is even more, as the dotted lines indicate, even a further increase in
the policies fertilizer, national, organics and pesticides results in a lower reduction of CO2
emissions than nsurplus. Besides the Farm To Fork Strategy measures, the introduction of
a CO2 price also clearly decreases CO2 emissions.

As one would expect, biodiversity is strongly affected by increasing the set-aside area as
shown in the upper right plot. Yet, as realistic policy values are much lower, other policies
also impact biodiversity, e.g. nsurplus. In the lower left plot, the impacts on the nitrogen
surplus is shown. Clearly, introducing a policy, which reduces the nitrogen surplus, actually
reduces the nitrogen surplus effectively. Other policies such as organic farming are less
successful. Finally, the lower right plot shows the impact on total welfare. The change in
total welfare is below 0.002% for most realistic policies. Even a CO2 price of 500 Euro/t
decreases the total welfare hardly at all.

4.2 Policy Choices and induced outcomes

In table 1 the policy choices derived as the outcome of the legislative bargaining model for
three different policy scenarios:

sc1 social_true: Assuming legisators policy support function correspond to EU-society
social welfare function and all legislators hold policy beliefs corresponding to the meta-
models derived from CAPI model.

sc2 social_belief : Assuming legisators policy support function correspond to EU-society
social welfare function, but legislators hold their individual policy beliefs which differ
from metamodels derived from CAPI model.

sc3 support_true: Deriving legisators individual policy support function from their stated
policy preferences, while it is assumed that all legislators hold policy beliefs corre-
sponding to the metamodels derived from CAPI model.

sc4 support_belief : Deriving legisators individual policy support function from their
stated policy preferences, and assuming legislators hold their individual policy beliefs
which differ from metamodels derived from CAPI model.
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Scenario sc1 comes close to the ideal political process. However, national legislators
are still facing their specific national policy impacts encapsulated in the nation specific
metamodels regarding the policy goals: economic welfare, biodiversity and N-balance, while
GHG-emission is considered as a global environmental good applying the same metamodel
for all EU-meber states.

In tabel A1 in the appendix the ideal positions for all legislators are reported for the
different policy scenarios. As can be seen if one assumes that all legislators have the perfect
knowledge e.g. apply the science-based policy impacts and maximize social welfare of total
EU population, legislators almost have the same ideal points, wich also corresponds to the
optimal policy derived from social welfare maximization. As can be seen from table 1 the
optimal policy focus on the measures with a rather high CO2-Pricing of 275 Euro per t
CO2.eq, a maximal set-aside of 15%, a maximal reduction of pesticides and nitrogen balance
by 75% , while neither ecological farming nor reduction of mineral fertilizer is executed under
an optimal F2F-strategy. Interstingly, assuming all legislators have perfect knwoledge and
are social-welfare maximizers implies that policy preferences are rather homogeneous and
legislative bargaining outcomes correspond to the optimal policy. Only reagrding set-aside
national member states disagree, where basically to coalition form, one prefering maximal
set-aside of 15% and a second prefering no set-aside (see ??).

Figure 3: Table 1: Optimal and real World Policy Choices
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Interestingly, none of the member states would prefer to implement ecological farming
or regulation of mineral fertilizer use. Given the fact that current political discussions put
a high emphasis especially on these two measures thsi result appears surprising. However,
given the fact that based on CAPRI-modle simulation it results that especially ecological
farming is a rather ineffective and inefficent measures which neither has a significant positive
impact on reduction of GHG-emissions nor on the reduction of nitrogen pollution, this result
appears as a logical consequence of technological facts (see also figure 1).

Interestingly, relevant legislators have biased policy beliefs regarding the impact of ecolog-
ical farming as well as mineral fertilizer regulation when compared to other F2F-measures.
In particuar, biased beliefs seem to be mainly determined by the two narrative ecologi-
cal regulation and market driven innovation. The former focus on the measures ecological
farming, regulation of chemical inputs, i.e. mineral fertilizer and pesticides, and set-aside,
while Co2-pricing plays no major role in this narratives. Vice-versa the narrative market-
driven bio-technological innovation does not focus on specific measures, but rather suggests
a rather low intensity of all F2F-measures, while both narratives have in common that Co2-
pricing plays no promiment role. Accordingly, legislative bargaining outcomes correspond to
a compromise between these two narratives, where ecological farming, set-aside and mineral
fertilizer is more determined towards the ecological farming narrative, while especially the
nitrogen balance would only be moderatly regulated at a level below 20%.

Comparing relevant outcomes induced by the optimal and the real-world policy choices
reveals first of all that the Green Deal could be a win-win situation for both farmers and
consumers. As can be seen from table 4 under an optimal implementation strategy eco-
system services would be significantly increase, i.e. GHG-emissions would be reduced by
almost -70% from roughly 2.4 t/ha today to less than 1 t/ha in 2030. Furthermore, nitrogen
pollution would be reduced by almost 80% from currently 68 kg/ha to less than 15kg/ha,
while biodiversity will be increased by 22%. Interestingly, implementing the Green Deal by
the optimal policy strategy would only imply moderate adaption costs amounting to less
than -0.15% of total per-capita income or 46 Euro per capita, where the cost are completely
beared by the consumers realizing a reduction of per capita income amounting 105 Euro per
capita, while farmers will even realize significantly higher profits by over 150%.

Summarizing total costs and benefits via evaluating ecosystem services with correspond-
ing willingness-to-pay measures (WTP9) an overall net-benefit of 350 Euro per capita. Farm-
ers would even realize a net-profit gain of 6650 per capita.

9Based on existing survey estimates in the literature we assumed WTPs of 11 Euro per kg/ha nitrogen
pollution, 288 Euro per t CO2.eq/ha emission and 663 Euro per ha for achieving a maximal biodiversity
index for the total UAA of the EU.
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Figure 4: Table 2: Policy Outcomes and Performance Gaps

However, based on biased beliefs and political incentives real world legislative baragining
implies far less efficient and effective outcomes. As can be seen from table 2 and 3 real world
outcomes determined biased incentives and biased policy beliefs result in far less increase
in ecosystem services. In particular, predicting real world bargaining outcomes with our
legislative bargaining model implies a rather moderate decrease of GHG-emission of only
20%, while notrogen pollution is only reduced by less than 29% and biodiversity is increased
by only 12%. In monetary terms total benefits from increased ecosystem services amount
only 140 Euro per capita, while net-benits even reduce to only 114 Euro per capita. Farm
profits even vanish under real world politics when compared to optimal F2F-policies. The
latter reuslts from the fact real world politics puts much less restrictions on sustainable land
use implying far less agricultural production reduction, which induce far less price increases
which just compensate productions reductions leaving the average profit almost constant.

4.3 Assessing policy gaps

As described in the theoretical section real world policy fails for at least two reasons, biased
political incentives or biased political beliefs. Following our CGPE-approach we assess both
failures disentangeling total political performance gaps into knowledge and incentive gaps.
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Figure 5: Table 3: Policy Outcomes and Performance Gaps

The former results comparing policy outcome derived under the counterfactual assumption
that legislators drive their policy preferences from individual political support maximization,
but know the true impacts of different policies. Hence, we derived individual policy prefer-
ences and simulated policy choices and induces policy outcomes with our CGPE-approach
for the counterfactual scenario sc3 "support_true" and sc2 "social_belief" , respectively. In
particular, we calculated net-benefits for this counterfactual scenarios and compared these
to the optimal scenario. The realized difference for sc3 measures the knowledge gaps, i.e. the
overall society welfare loss resulting from the fact that legislators have biased policy beliefs,
while the realized difference for scenario sc2 indicates incentive gaps.

As can be seen from table 5 we identified significant incentive and knowledge gaps amount-
ing to 57% and 61% , respectively, while the total performance gap amounts 68%. This
underlines the inefficiency of current real world political processes within the EU-system.

4.4 Political feasibility and Second-best policies

Beyond the economic efficiency of real world politics it is further interesting to asses the
political feasibility of first best policies and to identify second-best policies, i.e. policies with
mimic the economic efficiency of first best politics and simultaneously are politically feasible
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in the real world political system.

Figure 6: Table 4: Political Feasibility

In table 6 we report the political feasibility of the optimal F2F-policy. As can be seen
from table 6 political feasibilityis rather low wiht a Feasibility index (FS-index) of 0.0018, i.e.
the probability that the optimal policy choice would be accepted by a majority coalition in
the EU-system amounts only 0.18% of the average acceptance probability of the equilibrium
proposals of all legislators. Interestingly, political feasibility of first best policy would signif-
icantly increase assuming legsilators would not have biased policy beliefs, i.e. the FS-index
increases to over 1 assuming non biased beliefs (see table). However, interestingly assuming
legislators would have no incentive baises would not increase political feasibility of first best
policies.

Since changing political beliefs, i.e. policy learning is not easy to achieve it might be
interesting to identify second-best policies. Following our methodology we calculated second-
best policies for each scenario. The resulting second best policies are reported in table (5).
As can be seen comparing second best with first best as well as with equilibrium policies
reveals that second-best policies are compromises between real world policy and science-bases
policy choices. Especially, the restriction of chemical inputs which is rather low for the real
world politics could be significantly increased to the first best level reducing nitrogen balance
and pesticides inputs by 75%. Further, organic farming could be significantly reduced from
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Figure 7: Table 5: Second-best Policies

almost 25% to be expected under real world politics to only 12%. However, only the Co2
Price could only be increased to 26 Euro pro t Co2.eq, which is at least double the price
resulting under real world politics. However, compared to the optimal price of 287 Euro this
is still rather low. Nevertheless identified second-best policies almost mimic the efficiency
of first best policies, i.e. a total performance gap of only 8% results for second best policy.
Total net-benefit under second best policies would amount 320 Euro per capita compared
to 350 Euro under a first best policy. However, main losses would result from less effective
reduction of GHG-emissions which would be reduced by only 50% compared to 63% under
first best policies.

5 Conclusion

The objective of this paper is to explore the possibility of applying the metamodeling tech-
nique on the CAPRI model with the goal of deriving alternative, optimal policies for the
Farm To Fork Strategy to improve the implementation of the European Green Deal in agri-
culture. For that purpose, ideal policies for each member state of the European Union were
derived using a metamodeling approach. This method was chosen as the naive approach
of testing a large set of possible policy specifications and choosing the most desirable one
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Figure 8: Table 5: Policy Outcomes under second-best Policies

out of hundred of thousands fails du to time and resource constraints. The metamodeling
technique is widely used in engineering and natural sciences for optimization.

The results show that the approach of applying the metamodeling technique on the
CAPRI model to derive optimal policies improving the Green Deal is promising. First results
show that a compromise on member state level could be achieved relatively easily as the
optimal policy specifications are similar among member states. Additionally, it was shown
that the derived optimal policies perform better than the proposed Farm To Fork Strategy
in terms of economic and ecological goals. These findings are important, but there remain
issues to consider. In general, future research could address model uncertainty regarding
the CAPRI model as partial equilibrium models typically face the problem of specifying
parameters facing unsupported assumptions and limited data. Yet, model uncertainty is
widely neglected in policy analysis (Manski, 2018; Marinacci, 2015).

Furthermore, as the optimization is a weighted sum, the choice of weights also play a key
role. Further research is therefore needed to determine, for example, member-state specific
willingness-to-pay for environmental goods as those differ among EU member states.

In addition, future research could also include a proxy for world food security, e.g. agri-
cultural commodity prices, to capture the global impacts of the European agricultural pro-
duction.

32



References

Satyajith Amaran, Nikolaos V. Sahinidis, Bikram Sharda, and Scott J. Bury. Simulation
optimization: a review of algorithms and applications. Annals of Operations Research,
240(1):351–380, sep 2015. doi: 10.1007/s10479-015-2019-x.

C. Arndt and K. R. Pearson. How to Carry Out Systematic Sensitivity Analysis via Gaussian
Quadrature and GEMPACK. GTAP Technical Paper 3, 1998.

Jeffrey S. Banks and John Duggan. A bargaining model of collective choice. American
Political Science Review, 94(01):73–88, mar 2000. doi: 10.2307/2586381.

John F. III. Banzhaf. Weighted voting doesn’t work: A mathematical analysis. Rutgers Law
Review, 19(2):317–343, 1965.

Pranab Bardhan and Dilip Mookherjee. Relative capture of local and central governments:
An essay in the political economy of decentralization. Working Paper C99-109, Center of
International and Development Economics Research CIDER, 2002.

David Baron and John Ferejohn. Bargaining in Legislatures. American Political Science
Review, 83:1181–1206, 1989.

Jesus Barreiro-Hurle, Mariia Bogonos, Mihaly Himics, Jordan Hristov, Ignacio Pérez-
Dominguez, Amar Sahoo, Guna Salputra, Franz Weiss, Edoardo Baldoni, and Christian
Elleby. Modelling environmental and climate ambition in the agricultural sector with the
capri model. JRC Working Papers JRC121368, Joint Research Centre (Seville site), 2021.
URL https://EconPapers.repec.org/RePEc:ipt:iptwpa:jrc121368.

J-FM Barthelemy and Raphael T Haftka. Approximation concepts for optimum structural
design - a review. Structural optimization, 5(3):129–144, 1993.

Jayson Beckman, Maros Ivanic, Jeremy L. Jelliffe, Felix G. Baquedano, and Sara G. Scott.
Economic and Food Security Impacts of Agricultural Input Reduction Under the European
Union Green Deal’s Farm to Fork and Biodiversity Strategies. Technical report, U.S.
Department of Agriculture, Economic Research Service, 2020.

H-J. Beilhartz and H. Gersbach. General equilibirium effects and voting into a crisis. CEPR
Discussion Paper 4454, 2004.

Ivo Bischoff and Lars-H.R. Siemers. Biased beliefs and retrospective voting: Why democ-
racies choose mediocre policies. Public Choice, 156:163–180, 2011. doi: 10.1007/
s11127-011-9889-5.

33

https://EconPapers.repec.org/RePEc:ipt:iptwpa:jrc121368


Malte Braack, Christian Henning, and Johannes Ziesmer. Pure strategy nash equilibria for
bargaining models of collective choice. International Journal of Game Theory, 2023. doi:
10.1007/s00182-023-00882-z.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

J. Bremmer, A.R. Martinez Gonzales, R.A. Jongeneel, H.F. Huiting, and R. Stokkers. Im-
pact Assessment Study on EC 2030 Green Deal Targets for Sustainable Food Production:
Effects of Farm to Fork and Biodiversity Strategy 2030 at farm, national and EU level.
Technical report, Wageningen Economic Research, 2021.

Barry C. Burden. Personal Roots of Representation. Princeton University Press, 2007. ISBN
9780691134598.

Barry C Burden and Tammy M Frisby. Preferences, partisanship, and whip activity in the
us house of representatives. Legislative Studies Quarterly, 29(4):569–590, 2004.

Bryan Caplan. The Myth of the Rational Voter - Why Democracies Choose Bad Politics.
Princeton University Press, Princeton, 2007.

John M. Carey. Legislative Voting and Accountability. Cambridge University Press, dec 2008.
doi: 10.1017/cbo9780511810077.

Victoria CP Chen, Kwok-Leung Tsui, Russell R Barton, and Martin Meckesheimer. A review
on design, modeling and applications of computer experiments. IIE transactions, 38(4):
273–291, 2006.

Noel A. C. Cressie. Statistics for Spatial Data. John Wiley & Sons, Inc., sep 1993. doi:
10.1002/9781119115151.

S Dey, T Mukhopadhyay, and S Adhikari. Metamodel based high-fidelity stochastic analysis
of composite laminates: A concise review with critical comparative assessment. Composite
Structures, 171:227–250, 2017.

European Commission. Farm to Fork Strategy. For a Fair, Healthy and Environmentally-
friendly Food System, 2020.

Alexander Forrester, Andras Sobester, and Andy Keane. Engineering design via surrogate
modelling: a practical guide. John Wiley & Sons, 2008.

Jerome H Friedman et al. Multivariate adaptive regression splines. The annals of statistics,
19(1):1–67, 1991.

34



GAMS Development Corporation. General Algebraic Modeling System (GAMS) Release
38.3. Washington, DC, USA, April 2022. URL http://www.gams.com/.

Wei Gong, Qingyun Duan, Jianduo Li, Chen Wang, Zhenhua Di, Yongjiu Dai, Aizhong Ye,
and Chiyuan Miao. Multi-objective parameter optimization of common land model using
adaptive surrogate modeling. Hydrology and Earth System Sciences, 19(5):2409–2425,
2015.

Gene M. Grossman and Elhanan Helpman. Protection for Sale. The American Economic
Review, 84(4):833–850, 1994.

Gene M. Grossman and Elhanan Helpman. Electoral competition and special interest poli-
tics. Review of Economic Studies, 63(2):265–286, 1996.

Seymour Haber. Numerical evaluation of multiple integrals. SIAM Review, 12(4):481–526,
1970. ISSN 00361445. URL http://www.jstor.org/stable/2028488.

Mark S. Handcock and Adrian E. Raftery. Model-based clustering for social networks. Jour-
nal of the Royal Statistical Society A, 170(2):301–354, 2007.

Christian Henning. Landwirtschaftspolitik in der klima- und ernährungskrise: Brauchen wir
ein umdenken beim EU Green Deal. Vortrag beim Paralmentarischen Frhstück, Berlin,
April 2022.

Christian Henning, Johannes Hedtrich, Ligane Massamba Sène, and Eva Krampe. Whither
participation? evaluating participatory policy processes using the CGPE approach:
The case of CAADP in Malawi. In Advances in African Economic, Social and Po-
litical Development, pages 271–307. Springer International Publishing, oct 2017. doi:
10.1007/978-3-319-60714-6_11.

Christian Henning, Ousmane Badiane, and Eva Krampe, editors. Development Policies
and Policy Processes in Africa. Springer International Publishing, 2018. doi: 10.1007/
978-3-319-60714-6.

Christian Henning, Peter Witzke, Lea Panknin, and Michael Grunenberg. Ökonomische und
ökologische Auswirkungen des Green Deals in der Agrarwirtschaft. Forschungsbericht,
Kiel August 2021, https://www.bio-pop.agrarpol.unikiel.de/de/f2f-studie, 2021.

Christian H. C. A. Henning. Networks of Power in the CAP System of the EU-15 and EU-27.
Journal of Public Policy, 29(Special Issue 02):153–177, 2009.

35

http://www.gams.com/
http://www.jstor.org/stable/2028488


Roel Jongeneel, Huib Silvis, Ana Gonzalez Martinez, and Jakob Jager. The Green Deal: An
Assessment of Impacts of the Farm to Fork and Biodiversity Strategies on the EU Live-
stock Sector. Number 2021-130 in Report / Wageningen Economic Research. Wageningen
Economic Research, October 2021. doi: 10.18174/555649.

Jack PC Kleijnen. Design and analysis of simulation experiments. In International Workshop
on Simulation, pages 3–22. Springer, 2015.

Jack PC Kleijnen and Robert G Sargent. A methodology for fitting and validating meta-
models in simulation. European Journal of Operational Research, 120(1):14–29, 2000.

Hans Löfgren, Rebecca Lee Harris, and Sherman Robinson. A Standard Computable General
Equilibrium (CGE) Model in GAMS, volume Microcomputers in Policy Research 5. Inter-
national Food Policy Research Institute, Washington, D.C, 2002. ISBN 9780896297203.

Charles F. Manski. Communicating uncertainty in policy analysis. Proceedings of the Na-
tional Academy of Sciences, 116(16):7634–7641, nov 2018. doi: 10.1073/pnas.1722389115.

Massimo Marinacci. MODEL UNCERTAINTY. Journal of the European Economic Associ-
ation, 13(6):1022–1100, nov 2015. doi: 10.1111/jeea.12164.

Raymond H Myers, Douglas C Montgomery, and Christine M Anderson-Cook. Response
surface methodology: process and product optimization using designed experiments. John
Wiley & Sons, 2016.

Stefan Napel. The inter-institutional distribution of power in eu codecision. Social Choice
and Welfare, 26(1):1–26, 2006.

Torsten Persson and Guido Tabellini. Political Economics - Explaining Economic Policy.
MIT Press, Cambridge, 2000.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2022. URL https://www.R-project.org/.

Adrian E. Raftery. Bayesian model selection in social research. Sociological Methodology, 25:
111–163, 1995.

Job Rango, Thorsten Schnorbus, Henry Kwee, Ralf Beck, Bert Kinoo, Simon Arthozoul,
and Miao Zhang. Comparison of different approaches for global modeling of combustion
engines. Design of Experiments (DoE) in engine development, pages 70–91, 2013.

36

https://www.R-project.org/


Saman Razavi, Bryan A Tolson, and Donald H Burn. Review of surrogate modeling in water
resources. Water Resources Research, 48(7), 2012.

Ruerd Ruben and Arjan van Ruijven. Technical coefficients for bio-economic farm house-
hold models: a meta-modelling approach with applications for southern mali. Ecological
Economics, 36(3):427–441, mar 2001. doi: 10.1016/s0921-8009(00)00240-8.

Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn. Design and analysis
of computer experiments. Statistical science, pages 409–423, 1989.

Gideon Schwarz. Estimating the dimension of a model. Annals of Statistics, 78:461–464,
1978.

Timothy W Simpson, Jesse Peplinski, Patrick N Koch, and Janet K Allen. On the use of
statistics in design and the implications for deterministic computer experiments. Design
Theory and Methodology-DTM’97, pages 14–17, 1997.

Timothy W Simpson, Dennis KJ Lin, and Wei Chen. Sampling strategies for computer
experiments: design and analysis. International Journal of Reliability and Applications, 2
(3):209–240, 2001.

Murray Smith. Neural networks for statistical modeling. Thomson Learning, 1993.

J. Sobieszczanski-Sobieski and R. T. Haftka. Multidisciplinary aerospace design optimiza-
tion: survey of recent developments. Structural Optimization, 14(1):1–23, aug 1997. doi:
10.1007/bf01197554.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 2013.

Nathalie Villa-Vialaneix, Marco Follador, Marco Ratto, and Adrian Leip. A comparison of
eight metamodeling techniques for the simulation of n2o fluxes and n leaching from corn
crops. Environmental Modelling & Software, 34:51–66, 2012.

Nelson B Villoria and Paul V Preckel. Gaussian quadratures vs. monte carlo experiments for
systematic sensitivity analysis of computable general equilibrium model results. Economics
Bulletin, 37(1):480 – 487, 2017.

Murat Yildizoglu, Isabelle Salle, et al. Efficient sampling and metamodeling for computa-
tional economic models. Technical report, Groupe de Recherche en Economie Théorique
et Appliquée, 2012.

37



Johannes Ziesmer, Ding Jin, Sneha Thube, and Christian H.C.A. Henning. A dynamic
baseline calibration procedure for CGE models. Computational Economics, 61:1331–1368,
March 2022. doi: 10.1007/s10614-022-10248-4.

38


