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Abstract. In this article, we introduce the command bsrwalkdrift, which is
primarily intended to perform a bootstrap unit-root test under the null hypothesis
of random walk with drift. The method implemented in this command is consid-
erably more precise than the corresponding case of the conventional augmented
Dickey–Fuller test, which can be inaccurate when the true value of the drift term is
small relative to the standard deviation of the innovations. The command also has
an option to account for deterministic linear trend and another option to perform
bootstrap unit-root tests under the null hypothesis of random walk without drift.
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1 Introduction

One particular case of the augmented Dickey–Fuller (ADF) test is when the null hy-
pothesis is that the data-generation process (DGP) corresponds to a random walk with
a nonzero drift. For this case, Hamilton (1994, 495–497) proves that the asymptotic
distribution for the test statistic is standard normal. So he suggested that the standard
ordinary least-squares (OLS) t and F statistics can be compared with the standard t and
F distribution when performing the test on finite samples (see Hamilton [1994, 497]).
This method is implemented in the dfuller command by specifying the option drift.1

Although the t distribution can be a good approximation for large enough samples,
it is rather inaccurate for small or even medium sample sizes, especially when the true
value of the drift term is small relative to the standard deviation of the innovations.
For example, our simulations with the dfuller, drift command, with a drift term of
0.1, a standard deviation of 1, a sample size of 100 observations, and 2,000 simulation
replicates, produced a mean rejection rate of 0.360. That rate looks too far from the
nominal rejection probability of 0.05. When we increased the drift term to 0.25 and the
sample size to 200, the mean rejection rate was 0.132, which still does not seem near
enough to 0.05. This issue was previously investigated by Hylleberg and Mizon (1989).

To overcome the problem above, we wrote the bsrwalkdrift command, which uses
a bootstrapping technique based on the method proposed by Park (2003). He considers
the ADF unit-root tests for autoregressive unit-root models. According to Park (2003),

1. We emphasize that the drift option of the dfuller command exactly implements the test as defined
in Hamilton (1994, 497). The method is asymptotically correct but has poor size performance in
finite samples.
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testing with bootstrap critical values is expected to correct for the discrepancy between
the finite sample and nominal rejection rates. He performed simulations that showed
rejection probabilities close to their nominal values. Although his method was originally
defined under the null hypothesis of random walk without drift, he also states, “It can
be clearly seen that our methodology may also be used to analyze many other unit root
tests as well.” In this sense, we use a straightforward adaptation for the null hypothesis
of a random walk with drift.

Although we primarily wrote bsrwalkdrift to correct for the issue described above,
we also included an option to account for deterministic linear trend and another option
to test the hypothesis of random walk without drift. They allow for testing strategies
that require analyzing more than one case, and they are expected to have better finite
sampling properties under particular situations that can affect the conventional ADF

tests (for example, DGP with nonnormal innovations).

The remainder of the article is organized as follows. Section 2 describes the method
implemented in the command. Section 3 presents the syntax for bsrwalkdrift and
includes an example to illustrate the use of the command. Section 4 presents the
simulation results to evaluate the performance of the bsrwalkdrift command compared
with the dfuller, drift command. Section 5 concludes.

2 The method

The method to compute the bootstrap critical value for the unit-root test is based on
Park (2003). We test the null hypothesis

H0 : δ = 0

in the model

∆yt = α+ δyt−1 +

p∑
i=1

βi∆yt−i + εt (1)

where εt is an independent and identically distributed sequence such that E(εt) = 0 and
E(|εt|r) <∞ for r > 1.

We begin by fitting the regression

∆yt = α+

p∑
i=1

βi∆yt−i + εt (2)

on a series defined as (y−p, . . . , y0, y1, . . . , yT ). According to Park (2003), the resampling
should be performed from the restricted model (2) instead of the unrestricted model
(1). For more details on this, see Basawa et al. (1991).

Then, we compute the estimated residuals (ε̂t), draw bootstrap samples, and obtain
demeaned residuals (

ε̂t −
1

n

n∑
i=1

ε̂i

)
t = 1, . . . , n



M. Dorta and G. Sanchez 41

denoting them by (ε̃t). Notice that without demeaning, the mean of the bootstrap
sample would not be zero.

For each bootstrap sample (ε̃t), we generate (u∗t ) recursively from (ε̃t) using

u∗t = α̂+

p∑
i=1

β̂iu
∗
t−i + ε̃t (3)

starting from (u−p+1, . . . , u0). Next, we generate the bootstrap samples (y∗t ) from y0
through

y∗t = y0 +

t∑
i=1

u∗t−i (4)

The initializations for (3) and (4) are obtained by fixing (y−p, . . . , y0) and using
ut = ∆yt to calculate (u−p+1, . . . , u0). According to Park (2003), the initializations are
important to make his theory applicable; however, they are irrelevant for the models
with constant and deterministic trend.

For each bootstrap sample (y∗t ), we fit regressions

∆y∗t = α∗ + δ∗y∗t−1 +

p∑
i=1

β∗
i ∆y

∗
t−i + vt

and collect the t statistics for δ∗. The set of those values constitutes a bootstrap approx-
imation to the null distribution of the t statistic. Therefore, given a significance level
of λ, the bootstrap critical value for the test is the corresponding λ×100th percentile.

Finally, we fit the regression

∆yt = µ+ δyt−1 +

p∑
i=1

βi∆yt−i + εt

on the original sample and compute the t statistic associated with δ, which is to be
compared with the bootstrap critical value described above. If the t statistic is less
than the bootstrap critical value, we reject the hypothesis that there is a unit root. In
addition, we compute the p-value as the proportion of the number of values, from the
bootstrap approximation to the null distribution, that is less than the t statistic.

2.1 Model with deterministic linear trend

Trending time series could be stationary around a deterministic trend, or the trending
behavior could be stochastic. For trending series, the first step of the analysis should
be testing for unit root, accounting for a possible deterministic trend. If the series is
actually stationary around a deterministic trend, unit-root testing using models without
trend is expected to have no power (Campbell and Perron 1991).
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Park (2003) dedicated a section of his article to models with deterministic trends.
He proposed to first detrend the series and then apply his bootstrapping algorithm to
the detrended series. In the case of linear trend, the detrended series may be obtained
by fitting the OLS regression

yt = β̂0 + β̂1t+ ydt

and using the residuals ydt as the detrended series. In this case, the alternative hypothesis
is that the original series is stationary around a deterministic linear trend.

Park (2003) provided analytical proof that testing on a detrended series and the ADF

test with trend are asymptotically equivalent not only in the first order but also in the
second order.

3 The command bsrwalkdrift

3.1 The command

Syntax

The command syntax is

bsrwalkdrift varname
[
if
] [

in
] [

, lags(#) bsreps(#) siglevel(#)

seed(#) nodrift detrend selecic(stat) maxlag(#) plot nodots
]

The data must be tsset before using the command.

Options

lags(#) specifies the number of lagged differences. The default is lags(1).

bsreps(#) specifies the number of bootstrap replicates. The default is bsreps(500).

siglevel(#) specifies the significance level for the test. The default is
siglevel(0.05).

seed(#) specifies the random-number seed.

nodrift specifies that the DGP is a random walk without drift for the null hypothesis.2

detrend detrends the series assuming a linear trend and performs the test on the de-
trended series. If this option is specified, the command automatically activates the
nodrift option.

selecic(stat) specifies that the lag order be selected by minimizing information crite-
ria. maxlag(#) is required if selecic(stat) is specified. selecic(aic) specifies
the Akaike information criterion (AIC). selecic(bic) specifies the Bayesian infor-

2. When the nodrift option is specified, the method is the particular case where α, α̂, and α∗ are all
set to zero.
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mation criterion (BIC). selecic(stat) fits a sequence of regressions using (2) for
p = 0, 1, 2, . . . , P on a common estimation sample, which is the sample for p = P .
The AIC or BIC is computed for each regression, and the selected lag order corre-
sponds to the minimum value. P is set by maxlag(#).

maxlag(#) sets the maximum lag order to #. This option is required if selecic(stat)
is specified. # must be greater than 1 and less than a third of the sample size.

plot creates a kernel density plot of the bootstrap null distribution.

nodots suppresses replication dots.

Stored results

bsrwalkdrift stores the following in r():

Scalars
r(N) number of observations
r(lags) number of lags
r(Zt) test statistic
r(siglevel) significance level
r(critval bs) bootstrap critical value
r(pval) p-value
r(aic) AIC statistic, if selecic(aic) is specified
r(bic) BIC statistic, if selecic(bic) is specified
r(bsreps) number of bootstrap replicates

3.2 Example

We analyze a quarterly series for real gross private domestic investment in the United
States for the period from 1980q1 to 2020q1.3 In figure 1, we plot the natural logarithm
of real gross private domestic investment (variable ln rgpdinv). As can be seen, the
series has a clear upward trend. It does not seem clear, however, whether the trend is
deterministic or stochastic. To clarify the doubt, our testing strategy begins by per-
forming the bootstrap unit-root test on the detrended series by specifying the detrend
option. If we reject the null hypothesis of random walk, it would be evidence that the
series is stationary around a deterministic linear trend. If instead we fail to reject the
null hypothesis, the trend would likely be stochastic; more specifically, the series would
be a random walk with drift. This is precisely the default case for the bsrwalkdrift

command, and so we can use it to confirm that.

3. The data were obtained from the Federal Reserve Bank of St. Louis (Federal Reserve Economic
Data) using Stata’s import fred command.
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Figure 1. Natural logarithm of real gross private domestic investment

We begin by using bsrwalkdrift with the detrend option to test that ln rgpdinv

is a random-walk process against the alternative that the series is stationary around
a linear trend. We tell the command to select the lag order using the AIC. To do so,
we specify the options selecic(aic) and maxlag(8). We also specify 5,000 bootstrap
replicates, keep the default 0.05 significance level, and specify some other options as
well.
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. use rgpdinv

. tsset qdate
time variable: qdate, 1980q1 to 2020q1

delta: 1 quarter

. bsrwalkdrift ln_rgpdinv, selecic(aic) maxlag(8) detrend plot nodots
> bsreps(5000) seed(1413)

Test performed on detrended series assuming a linear trend, which
is asymptotically equivalent to the ADF test with linear trend.

Lag-order selection using common
estimations samples

Lag N AIC

0 152 -616.0392
1 152 -637.903
2 152 -640.0416
3 152 -639.2999
4 152 -640.1445
5 152 -638.5531
6 152 -638.5844
7 152 -636.6319
8 152 -634.8304

Selected lag order = 4

OLS auxiliary regression on detrended series

D.ln_rgpdinv Coef. Std. Err. t P>|t| [95% Conf. Interval]

ln_rgpdinv
L1. -.0512055 .0217138 -2.36 0.020 -.09411 -.008301
LD. .2827119 .0771007 3.67 0.000 .1303681 .4350556

L2D. .097219 .0785152 1.24 0.218 -.0579195 .2523576
L3D. .1962017 .0772655 2.54 0.012 .0435324 .348871
L4D. -.1681958 .0742893 -2.26 0.025 -.3149844 -.0214072

_cons -.0008574 .0024417 -0.35 0.726 -.0056818 .0039671

Number of observations = 156

Performing bootstrap (5000 replicates) ...

Results of the bootstrap unit root test
=======================================
H_0: Random Walk without drift
H_1: Stationary series around a linear trend
Number of lags = 4
Number of bootstrap replicates = 5000
Significance level = .05
Test statistic = -2.3582 -- Bootstrap Critical value = -3.0084
P-value = 0.2228

bsrwalkdrift issues an explanatory note associated with the detrend option (see
the output). After that, the command reports a table with the AIC up to lag 8 followed
by the selected lag order, which is lag 4 in this case. Then, it follows the OLS auxil-
iary regression for the detrended series. After that, the command reports the results
of the bootstrap testing method. The most important results are the test statistic,
which is taken from the OLS auxiliary regression; the bootstrap critical value; and the
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p-value based on the bootstrap null distribution. Because the value of the test statistic
(−2.3582) is larger than the bootstrap critical value (−3.0084), the null hypothesis can-
not be rejected. The p-value (0.2228) leads to the same conclusion, which will always be
the case if compared with the specified significance level. Hence, we can rule out that
the series is stationary around a linear trend. Because the plot option was specified, the
command creates a kernel density plot of the bootstrap null distribution, with vertical
dotted lines representing the bootstrap critical value and the test statistic (see figure 2).
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Figure 2. Kernel density plot of the bootstrap null distribution for the detrended series

So far, the evidence is against stationarity around a linear trend and in favor of
stochastic trend. Thus, we now use the default case of bsrwalkdrift (random walk
with drift); and so, we just remove the detrend option and maintain the other options
previously specified.

. bsrwalkdrift ln_rgpdinv, selecic(aic) maxlag(8) plot nodots bsreps(5000)
> seed(1413)
Lag-order selection using common
estimations samples

Lag N AIC

0 152 -616.0295
1 152 -634.9757
2 152 -635.4621
3 152 -633.7591
4 152 -636.5777
5 152 -635.7435
6 152 -634.7038
7 152 -633.196
8 152 -631.9053

Selected lag order = 4
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OLS auxiliary regression

D.ln_rgpdinv Coef. Std. Err. t P>|t| [95% Conf. Interval]

ln_rgpdinv
L1. -.0046374 .0060268 -0.77 0.443 -.0165458 .0072711
LD. .2730164 .0782828 3.49 0.001 .118337 .4276959

L2D. .0714819 .0790616 0.90 0.367 -.0847364 .2277001
L3D. .171264 .0777387 2.20 0.029 .0176597 .3248682
L4D. -.204087 .0737032 -2.77 0.006 -.3497176 -.0584564

_cons .0399913 .0454015 0.88 0.380 -.0497177 .1297004

Number of observations = 156

Performing bootstrap (5000 replicates) ...

Results of the bootstrap unit root test
=======================================
H_0: Random Walk with drift
H_1: Stationary series
Number of lags = 4
Number of bootstrap replicates = 5000
Significance level = .05
Test statistic = -0.7695 -- Bootstrap Critical value = -2.3527
P-value = 0.4816

The selected lag order was again lag 4. The test statistic (−0.7695) is larger than the
bootstrap critical value (−2.3527), which must be consistent with the p-value (0.4816);
therefore, the null hypothesis of random walk with drift cannot be rejected. This re-
sult with the detrended case indicates that the series is actually a random walk with
drift. Figure 3 is the plot of the corresponding kernel density for the bootstrap null
distribution.
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Figure 3. Kernel density plot of the bootstrap null distribution
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4 Simulations

We evaluated some finite-sample properties of bsrwalkdrift by performing Monte
Carlo simulations.

The model is
yt = α+ yt−1 + β1∆yt−1 + β2∆yt−2 + et

where

et ∼ N(0, 1)

β1 = 0.5

β2 = −0.2

α = 0.05, 0.1, 0.25, 0.5, and 0.75

nobs = 25, 50, 100, 200, and 500

For each combination of α and nobs (sample size), we generated the data for y with
the model above, and we used

. bsrwalkdrift y, lag(2) bsreps(200) siglevel(0.05)
> dfuller y, drift lag(2)

for 2,000 simulation replicates, where bsrwalkdrift uses 200 bootstrap replicates for
each simulation replicate. The rejection results were stored for all the replicates, and
then we estimated the mean rejection rates for a 0.05 significance level.

Below, we used the tabdisp command to create a table with the simulation results.
rejrate is the mean rejection rate for dfuller, drift, and bsrejrate is the mean
rejection rate of bsrwalkdrift. llbsrrate and ulbsrrate are the lower and upper
limits, respectively, of the 95% confidence intervals for bsrejrate.

The output shows that rejrate tends to be farther from the nominal rate (0.05)
because both the value of alpha (the drift term) and the number of observations are
smaller. On the other hand, bsrejrate is always nicely near the nominal rate. Also,
notice that in all the cases, the confidence intervals cover the nominal rate.
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. tabdisp nobs, by(alpha) cellvar(rejrate bsrejrate llbsrrate ulbsrrate)

alpha and
nobs rejrate bsrejrate llbsrrate ulbsrrate

0.05
25 0.373 0.054 0.044 0.064
50 0.414 0.047 0.037 0.056

100 0.430 0.054 0.044 0.063
200 0.402 0.051 0.041 0.060
500 0.357 0.058 0.048 0.069

0.10
25 0.380 0.045 0.036 0.054
50 0.357 0.049 0.039 0.058

100 0.360 0.058 0.048 0.069
200 0.325 0.052 0.043 0.062
500 0.226 0.058 0.048 0.069

0.25
25 0.283 0.047 0.037 0.056
50 0.250 0.052 0.043 0.062

100 0.192 0.056 0.046 0.067
200 0.132 0.054 0.045 0.064
500 0.090 0.047 0.038 0.057

0.50
25 0.179 0.049 0.040 0.058
50 0.120 0.047 0.038 0.057

100 0.102 0.053 0.043 0.063
200 0.082 0.052 0.043 0.062
500 0.064 0.050 0.040 0.060

0.75
25 0.120 0.052 0.042 0.061
50 0.090 0.044 0.035 0.053

100 0.078 0.049 0.039 0.058
200 0.062 0.046 0.037 0.055
500 0.068 0.054 0.044 0.064

5 Conclusion

The mean rejection rates from our simulations showed that bsrwalkdrift provides a
correction for the ADF test that is particularly relevant with small or medium sample
sizes and a small or medium drift term. Therefore, this command would be a rec-
ommendable alternative to perform unit-root testing for the null hypothesis that the
process is a random walk with a drift. Finally, the command has an option to test
for random walk appropriate for trending series, and there is another option to test
for random walk without drift, which would be appropriate for series with no apparent
trend.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-1

. net install st0626 (to install program files, if available)

. net get st0626 (to install ancillary files, if available)
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