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Abstract. Empirical econometric research often requires implementation of
nonlinear models whose regressors include one or more endogenous variables—
regressors that are correlated with the unobserved random component of the
model. In such cases, conventional regression methods that ignore endogeneity
will likely produce biased results that are not causally interpretable. Terza, Basu,
and Rathouz (2008, Journal of Health Economics 27: 531–543) discuss a relatively
simple estimation method (two-stage residual inclusion) that avoids endogeneity
bias, is applicable in many nonlinear regression contexts, and can easily be im-
plemented in Stata. In this article, I offer a step-by-step protocol to implement
the two-stage residual inclusion method in Stata. I illustrate this protocol in the
context of a real-data example. I also discuss other examples and pertinent Stata
code.
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1 Introduction

My objective is to develop a simple but consistent estimation protocol in Stata for the
parameters of a generic nonlinear regression model with dependent variable Y , which
has a vector of independent variables that includes Xu, an unobservable regressor; Xo,
a vector of observable regressors that are not correlated with Xu; and Xe, an observ-
able regressor that is correlated with Xu—that is, Xe is endogenous.1 The endogeneity
of Xe (that is, the correlation between Xe and Xu) confounds the identification and
estimation of the possible causal effect of Xe (or any of the other regressors in the
model for that matter) on Y . If, for instance, the presence of Xu is ignored, and a
conventional regression method is applied, then the corresponding estimate of the effect
of Xe will likely be biased, because it will reflect influence that should instead have
been attributed to the unobservables. The general modeling and estimation framework
discussed by Terza, Basu, and Rathouz (2008) is designed to control for endogeneity,
thereby eliminating consequent bias. Their generic model consists of a regression equa-
tion with a dependent variable that is the outcome of interest (the outcome equation)
and an auxiliary equation that formalizes the correlation between Xe and Xu. The
outcome and auxiliary (O&A) equations can each be defined based on either a mini-

1. Xe and Xu may be made up of more than one regressor. We portray them as being single regressors
here to simplify exposition.
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mally parametric (MP) or a fully parametric (FP) regression structure. Formally, one
can specify the outcome component of the model as either

Y = μ(Xe, Xo, Xu;β) + e (MP specification) (1)

or
f(Y |Xe, Xo, Xu;β) (FP specification) (2)

where μ(Xe, Xo, Xu;β) denotes the conditional mean of Y given Xe, Xo, and Xu; β is
a vector of parameters; and f(Y |Xe, Xo, Xu;β) is the conditional probability density
function of Y given Xe, Xo, and Xu. Similarly, for the auxiliary component of the
model, one can posit either

Xe = r(W ;α) +Xu (MP specification) (3)

or
g(Xe|W ;α) (FP specification) (4)

where α is a vector of parameters, r(W ;α) denotes the conditional mean of Xe given
W = [Xo W+], W+ is a vector identifying instrumental variables, and g(Xe|W ;α) is
the conditional probability density function of Xe given W . By definition, the elements
of W+ must satisfy the following three conditions: 1) they are correlated with neither
Xu nor e; 2) they can be legitimately excluded from the outcome regression (1); and
3) they are strongly correlated with Xe. Equation (3) [or (4)] formalizes the correlation
between Xu and Xe. The correlation between Xu and Y is formalized in the outcome
regression (1) [or (2)]. The general two-stage residual inclusion (2SRI) protocol is the
following:

First Stage: Apply the appropriate nonlinear least squares (NLS) [maximum like-
lihood (ML)] estimator to (3) [or (4)] to consistently estimate α.2 The residuals from
this regression are

X̂u = Xe − r(W ; α̂) (5)

where α̂ denotes the first-stage consistent estimate of α. Note that the FP specification
in (4) will always imply the existence of a regression specification akin to (3), from
which residuals, as defined in (5), can be obtained. To complete the first stage of 2SRI,
save the residuals defined in (5).

Second Stage: To consistently estimate β, apply the appropriate NLS [ML] estima-

tor to (1) [or (2)], with Xu replaced by X̂u.
3

Note that one can use any combination of MP or FP specifications for the first
and second stages of the 2SRI model. Correspondingly, any combination of NLS or ML

can be implemented for first- and second-stage estimation. In the majority of applied

2. The first-stage ML estimator is the maximizer of
∑n

i=1 ln{g(Xei|Wi;α)} with respect to α, where
Xei and Wi denote the observed values of Xe and W for the ith observation in the sample and
i = 1, . . . , n.

3. The second-stage ML estimator is the maximizer of
∑n

i=1 ln{f(Yi|Xei, Xoi, X̂ui;β)} with respect
to β, where Yi and Xoi denote the observed values of Y and Xo for the ith observation in the
sample and where X̂ui is the first-stage residual for the ith observation in the sample.
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settings, the 2SRI estimates of α and β are easy to obtain via packaged Stata commands.
The asymptotically correct standard errors (ACSE), for use in estimation of confidence
intervals and t statistics for testing hypotheses about the elements of β, can be calculated
with additional Mata commands.

Before moving on to an example, note that the above model specification and corre-
sponding estimator do not necessarily constitute a control function method (CFM) as de-
fined by Blundell and Powell (2003).4 The assumption that I maintain above is that the
O&A regressions are correctly specified by the researcher. As Terza, Basu, and Rathouz
(2008) show, under this assumption, the 2SRI estimator consistently estimates the model
parameters.5 To qualify as a CFM with accompanying consistency and robustness prop-
erties, the above 2SRI approach must satisfy other conditions. For a detailed discussion
of such conditions, see Wooldridge (2014, 2015). To maintain the focus of this article
(imparting practical aspects of 2SRI implementation in Stata), we abstract from such
issues in the following sections. For simplicity of illustration and didactics, we maintain
that for a correctly specified model, 2SRI affords the applied researcher a consistent,
coherent but simple way to do empirical analyses for a very general class of nonlinear
data-generating processes.

Consider the regression model of Mullahy (1997), in which the objective is to draw
causal inferences regarding the effect of prenatal smoking (Xe–CIGSPREG) on infant
birthweight (Y –BIRTHWTLB) while controlling for infant birth order (PARITY), race
(WHITE), and sex (MALE). The regression model for the birthweight outcome that he
proposed can be written in the MP form6

Y = exp(Xeβe +Xoβo +Xuβu) + e (outcome regression) (6)

where Xu comprises unobservable variables that are potentially correlated with prenatal
smoking (for example, general “health mindedness” of the mother), e is the regression
error term, Xo = [PARITY WHITE MALE] is a row vector of regressors that are uncorre-
lated with Xu, and e and the β’s are the regression parameters. At issue here is the
fact that there exist unobservables (as captured by Xu) that are correlated with both
Y and Xe. In other words, Xe is endogenous. For illustrative purposes, we specify an
FP version of the auxiliary component of the model in which

g(Xe|W ;α∗) = {1− Φ(Wα1)}I(Xe=0)×{Φ(Wα1) lnϕ(Xe,Wα∗2, σ
2)
}{1−I(Xe=0)}

(7)

4. Under the assumptions of Blundell and Powell (2003) (mainly linearity), in their discussion of
CFM, the condition in expression (63) of Wooldridge (2014) is implied. Wooldridge also notes that,
although (63) is not precluded in the nonlinear 2SRI framework, it is also not implied. Therefore,
(63) must be imposed if 2SRI is to be interpreted as a CFM as in Blundell and Powell (2003).

5. Under the assumption that the model is correctly specified (and other general conditions), the
consistency of the 2SRI estimator follows from the fact that it is a member of the class of two-stage
M -estimators (see Newey and McFadden [1994, sec. 6]; White [1994, chap. 6]; Wooldridge [2010,
chap. 12]).

6. Mullahy (1997) does not explicitly specify the model in terms of the unobservable Xu. Nevertheless,
(6) is substantively identical to Mullahy’s (1997) model (see Terza [2006]).
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where α∗′ = [α′1 α∗′2 ], lnϕ(A, b, c) denotes the probability density function of the log-
normal random variable A with central tendency parameter b and dispersion parameter
c, W = [Xo W+], and W+ = [EDFATHER EDMOTHER FAMINCOME CIGTAX], with

EDFATHER = paternal schooling in years

EDMOTHER = maternal schooling in years

FAMINCOME = family income

and

CIGTAX = cigarette tax

The specification in (7) indicates that prenatal smoking follows a two-part model
with a probit formulation for the extensive margin (EM) and a lognormal intensive
margin (IM). This is, in fact, a reasonable specification because a) there is a substantial
proportion of nonsmokers in the population (and sample) of pregnant women; and b) the
decision to smoke or not probably differs systematically from the decision regarding how
much to smoke (among those who have decided to smoke at all). Based on (7), we can
write the auxiliary regression as

Xp = Φ(Wα1)exp(Wα2) +Xu (auxiliary regression) (8)

where α2 is the same as α∗2, with the constant term shifted by +(σ2/2), because
(7) implies that E[Xe|W ] = Φ(Wα1)exp{Wα∗2 + (σ2/2)}. From (8), we have that
r(W ;α) = Φ(Wα1)exp(Wα2) and

Xu = Xe − Φ(Wα1)exp(Wα2) (9)

where α′ = [α′1 α′2]. In the sequel, we will refer to the model in (6) through (9) as the
example. For the generic nonlinear model with endogeneity [(1) through (4)], we offer
a step-by-step protocol for using Stata and Mata to obtain the 2SRI estimate of β and
the corresponding ACSE.7 We use the example to illustrate each of the steps.

2 The step-by-step 2SRI protocol

In detailing this protocol, we assume that the data have been input and that the analysis
sample comprises n observations on the following variables: Y, Xe, Xo, and Wplus,
corresponding to Y , Xe, Xo, and W+ as generically defined above.

7. There are two other ways to calculate the standard errors: bootstrapping and the resam-
pling method proposed by Krinsky and Robb (1986, 1990). For detailed discussions and pro-
and-con evaluations of the bootstrapping and Krinsky and Robb (1986, 1990) methods, see
Dowd, Greene, and Norton (2014). Dowd, Greene, and Norton (2014) also discuss the ACSE ap-
proach, but the formulation they offer [in particular, (17)] is based on an assumption that is usually
invalid in econometric applications. See Terza (2016b) for details.
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Step a: Specify the O&A components of the 2SRI model.

Any of four O&A combinations is possible based on the choice of MP versus FP specifica-
tions for each of the two estimation stages. For the second-stage outcome component,
one can use μ(Xe, Xo, Xu;β) [MP specification in (1)] or f(Y |Xe, Xo, Xu;β) [FP speci-
fication in (2)]. To make their dependence on α and β explicit, and for convenience of
exposition, we rewrite the MP and FP versions of the outcome regression, respectively,
as

μ∗(Xe,W ;α,β) = μ[Xe, Xo, {Xe − r(W ;α)};β] (10)

and

f∗(Y |Xe,W ;α,β) = f [Y |Xe, Xo, {Xe − r(W ;α)};β]

For the first-stage auxiliary component, one can use r(W ;α) [MP specification in (3)]
or g(Xe|W ;α) [FP specification in (4)]. MP (FP) O&A 2SRI components can be estimated
via NLS (ML). In the example using (9), the following version of (10) is relevant,

μ∗(Xe,W ;α,β) = exp[Xeβp +Xoβo + {Xe − Φ(Wα1)exp(Wα2)}βu] (11)

where β′ = [βe β′o βu].

Step b: Derive the requisite analytic components for calculation of the ACSE.

As Terza (2016a) shows, the exact form of the ACSE depends on the estimation method
used in the second stage of 2SRI—NLS (for the MP specification) versus a maximum
likelihood estimator (MLE) (for the FP specification). When an MLE is used in the
second stage, the ACSE for the kth element of β is the square root of the kth diagonal
element of the matrix,

V
(
β̂
)
AV (α̂)A′V

(
β̂
)
+ V

(
β̂
)

(12)

where V (α̂) and V (β̂) are the estimates of the covariance matrices output by the relevant
Stata commands for the first and second stages of 2SRI, respectively, and

A =

n∑
i=1

∇β ln f̂
∗′
i ∇α ln f̂∗i (13)

with ∇clnf̂
∗
i defined as the gradient of f∗(Y |Xe,W ;α,β) with respect to c (c = α or

β) evaluated at Xei, Wi[Xoi W
+
i ], α̂, and β̂ (“i” denotes the ith observation in the

sample; i = 1, . . . , n). In this case, analytic expressions for ∇β lnf
∗ and ∇αlnf

∗ must
be derived.

Similarly, Terza (2016a) shows that when NLS is used in the second stage, the ACSE

for the kth element of β is the square root of the kth diagonal element of the matrix,

B−11 B2V (α̂)B′2B
−1
1 + V

(
β̂
)

(14)
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where V (α̂) and V (β̂) are the estimated variance–covariance matrices of the first- and
second-stage estimators of α and β, respectively, as output by Stata,

B1 =

n∑
i=1

∇βμ̂
∗′
i ∇βμ̂

∗
i (15)

and

B2 =

n∑
i=1

∇βμ̂
∗′
i ∇αμ̂

∗
i (16)

with ∇cμ̂
∗
i defined as the gradient of μ∗(Xe,W ;α,β) with respect to c (c = α or β)

evaluated at Xei, Wi = [Xoi W
+
i ], α̂, and β̂. This step requires that the user supply

analytic expressions for ∇βμ
∗ and ∇αμ

∗. In the example, it follows from (3) that

∇βμ
∗ = exp(Xβ)X

and
∇αμ

∗ = [∇α1
μ∗ ∇α2

μ∗]

where

∇α1
μ∗ = −βuexp(Xβ)exp(Wα2)ϕ(Wα1)W

∇α2
μ∗ = −βuexp(Xβ)exp(Wα2)Φ(Wα1)W

X = [Xe Xo Xu] and W = [Xo W+]

Therefore,
∇βμ̂

∗
i = exp(Xiβ̂)Xi

and
∇αμ̂

∗
i = [∇α1

μ̂∗i ∇α2
μ̂∗i ]

where

∇α1
μ∗ = −β̂uexp(Xiβ̂)exp(Wiα̂2)ϕ(Wiα̂1)Wi

∇α2
μ∗ = −β̂uexp(Xiβ̂)exp(Wiα̂2)Φ(Wiα̂1)Wi

Xi = [Xei Xoi X̂ui] and X̂ui = Xei − Φ(Wiα̂1)exp(Wiα̂2)

Generally (second-stage ML or NLS), based on standard asymptotic theory, the “t
statistic” is

β̂(k)− β(k)√
D̂(k)

(17)

for the kth element of β, and [β(k)] is asymptotically standard normally distributed,

where β̂(k) is the 2SRI estimator of β(k) and D̂(k) denotes the kth diagonal element of
(3) or (13). This t statistic can be used to test the hypothesis that β(k) = β(k)0 for
β(k)0—a given null value of β(k).
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Step c: Apply the appropriate Stata commands for r(W,α) [g(Xe|W;α)] when the
first stage is NLS [MLE] to obtain the first-stage estimate of α by regressing Xe on
Xo and Wplus.

In the example, the parameter vector for the first part (EM) of the auxiliary component
of the model (α1) can be estimated by applying the Stata probit command to the full
sample, with [1−I(Xe = 0)] as the dependent variable andW as the vector of regressors,
where I(C) denotes the indicator function that takes the value 1 if condition C holds
and 0 otherwise. The parameters of the second part (IM) of the auxiliary component
of the model (α2) can be consistently estimated by applying the Stata glm command
to the subsample of nonzero smokers, with Xe as the dependent variable and W as the
vector of regressors.

/*************************************************
** Generate the binary smoking variable. **
*************************************************/
gen ANYCIGS=CIGSPREG>0

/*************************************************
** 2SRI first-stage first-part probit estimates.**
*************************************************/
/*Step c*/
probit ANYCIGS PARITY WHITE MALE EDFATHER EDMOTHER ///

FAMINCOM CIGTAX88
.
.
.

/*************************************************
** 2SRI first-stage second-part probit NLS **
** estimates. **
*************************************************/
/*Step c*/
glm CIGSPREG PARITY WHITE MALE EDFATHER EDMOTHER ///

FAMINCOM CIGTAX88 if ANYCIGS==1, ///
family(gaussian) link(log) vce(robust)

Step d: Use the appropriate command or option to calculate and save the first-stage
regression residuals, say, as the additional variable Xuhat.

In the context of the example, we have

/*Step d*/
predict CIGPROB
.
.
.

/*Step d*/
predict CIGMEAN
.
.
.
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/*************************************************
** Generate the first-stage residuals. **
*************************************************/
/*Step d*/
gen Xuhat=CIGSPREG-CIGPROB*CIGMEAN

The first (second) predict is placed immediately after the probit (glm) command in
step c and produces the first-stage first (or second)-part probit (exponential regression)
predictions Φ(Wiα̂1) [exp(Wiα̂2)].

Step e: Use the appropriate Stata and Mata commands to save the vector of first-
stage coefficient estimates and its corresponding estimated covariance matrix (as
calculated and output by the relevant Stata commands used in step c) so that they
are accessible in Mata; call them, for example, alphahat and Valphahat, respectively.

In the context of the example, we have

/*************************************************
** Save the first-stage first-part probit **
** estimates and estimated covariance matrix. **
*************************************************/
/*Step e*/
mata: alpha1hat=st_matrix("e(b)")´
mata: Valpha1hat=st_matrix("e(V)")
.
.
.
/*************************************************
** Save the first-stage second-part NLS **
** estimates and estimated covariance matrix. **
*************************************************/
/*Step e*/
mata: alpha2hat=st_matrix("e(b)")´
mata: Valpha2hat=st_matrix("e(V)")

The first (second) pair of Mata commands is placed immediately after the predict
CIGPROB (predict CIGMEAN) command in step d. The st matrix(name) function turns
the Stata matrix name into a Mata matrix. In this context, the probit and glm com-
mands produce the vector of coefficient parameter estimates e(b) and estimated co-
variance matrix e(V) among their stored results. The st matrix() function transforms
them to Mata-usable format.

Step f: Apply the appropriate Stata commands for μ(Xe,Xo,Xu;β)
[f(Y|Xe,Xo,Xu;β)] when the 2SRI second stage is NLS [ML] to obtain the second-
stage estimate of β by regressing Y on Xe, Xo, and Xuhat.

In the context of the example, we have

/*Step f*/
glm BIRTHWTLB CIGSPREG PARITY WHITE MALE Xuhat, ///

family(gaussian) link(log) vce(robust)
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Step g: Use the Stata and Mata commands to save the vector of second-stage
coefficient estimates and its corresponding estimated covariance matrix (as calcu-
lated and output by the relevant Stata commands used in step f) so that they are
accessible in Mata; call them, for example, betahat and Vbetahat, respectively (you

might also have to single out β̂u).

In the context of the example, we have

/*Step g*/
mata: betahat=st_matrix("e(b)")´
mata: Vbetahat=st_matrix("e(V)")
mata: Bu=betahat[5]

The last statement uses matrix subscripting and the fact that β̂u is the fifth element
of the estimated coefficients of the exponential outcome regression.

Step h: Construct X and W matrices in Mata, where X is the matrix that has
columns that are Xe, Xo, and a constant term (a column vector of 1s); and W has
columns Xo, Wplus, and a constant term.8

In the context of the example, we have

/*Step h*/
putmata BIRTHWTLB CIGSPREG ANYCIGS PARITY WHITE ///

MALE EDFATHER EDMOTHER FAMINCOM CIGTAX88 Xuhat

/*Step h*/
mata: X=CIGSPREG, PARITY, WHITE, MALE, ///

Xuhat, J(rows(PARITY),1,1)
mata: W=PARITY, WHITE, MALE, EDFATHER, EDMOTHER, ///

FAMINCOM, CIGTAX88, J(rows(PARITY),1,1)

The putmata command converts designated variables in the relevant Stata dataset
to vectors in Mata-usable format.

Step i: Use alphahat, betahat, X, W, and the analytic results obtained in step b to
construct the two gradient matrices needed to calculate the correct standard errors
for betahat, say, gradbeta and gradalpha. Note that gradbeta will have n rows
and K columns, where K is the column dimension of X, and gradalpha will have n
rows and S columns, where S is the column dimension of W. The exact forms of
these gradient matrices will depend on whether ML or NLS was implemented in the
second stage of the 2SRI estimator. If ML was used, then the ith rows of gradbeta
and gradalpha will be ∇βlnf̂

∗
i and ∇αlnf̂

∗
i , respectively, as defined in (12). If the

2SRI second stage is NLS, then the ith rows of gradbeta and gradalpha will be
∇βμ̂

∗
i and ∇αμ̂

∗
i , respectively, as defined in (14) and (16).

8. Be sure that the ordering of the columns of X and W (including the constant term) conforms to
the ordering of the estimated coefficients in betahat and alphahat.
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In the context of the example, we have

/*Step i*/
mata: gradbeta=exp(X*betahat):*X
mata: gradalpha1=
-Bu:*exp(X*betahat):*normalden(W*alpha1hat):*exp(W*alpha2hat):*W
mata: gradalpha2=
-Bu:*exp(X*betahat):*normal(W*alpha1hat):*exp(W*alpha2hat):*W
mata: gradalpha=gradalpha1,gradalpha2

Step j: Calculate A [B1 and B2] as defined in (12) [(14) and (16)].

If the 2SRI second stage is ML, then calculate the A matrix as9

A = gradbeta´* gradbeta

based on (12). Because the 2SRI second stage in the example is NLS, we calculate the
B1 and B2 matrices as

/*Step j*/
mata: B1=gradbeta´*gradbeta
mata: B2=gradbeta´*gradalpha

based on (14) and (16), respectively.

Step k: Calculate the asymptotic covariance matrix of β̂.

If the 2SRI second stage is ML, then calculate the estimated asymptotic covariance matrix
of betahat as

AVARBeta = Vbetahat * A * Valphahat * A´ Vbetahat´ + Vbetahat

based on (3). Because the 2SRI second stage in the example is NLS, we calculate the
estimated asymptotic covariance matrix of betahat as

/*Step k*/
mata: Valphahat=blockdiag(Valpha1hat,Valpha2hat)
mata: Dhat=invsym(B1)*B2*Valphahat*B2´*invsym(B1)+Vbetahat

based on (13). Note that we first had to stack up the full estimated covariance matrix
of α̂ = [α̂′1 α̂′2] from the first- and second-part outputs for the first-stage 2SRI estimate
of α.

9. Here we use the following summation or matrix equality: Let Zi and Qi be the K and S dimensional
row vectors, respectively (I = 1, . . . , n), and let Z and Q be the n × K and n × S matrices with
ith rows that are Zi and Qi, respectively; then

n∑
i=1

Z′
iQi = Z′Q
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Step l: Calculate the vector of asymptotic standard errors for β̂.

Regardless of the estimator used in the 2SRI second stage, use

mata: ACSE=sqrt(diagonal(AVARBeta))

Step m: Calculate the vector of asymptotic t statistics to be used to test the
conventional null hypothesis regarding the elements of β (namely, Ho: βk= 0, where
βk denotes the kth element of β).

Regardless of the estimator used in the 2SRI second stage, use

/*Step m*/
mata: Betatstats=Betahat:/ACSE.

The kth element of Betatstats corresponds with (17). The full Stata code for this
protocol as it pertains to the example is given in the appendix.

I applied the above 2SRI estimation protocol to the same dataset analyzed by Mullahy
(1997). The estimation results for α and β are reported in tables 1 and 2, respectively.
The correct asymptotic t statistics for the 2SRI estimate of β, reported in column 3 of
table 2, were calculated using (13). In table 2, we also display Mullahy’s generalized
method of moments (GMM) estimates and, as a baseline, report the conventional NLS

estimates that ignore potential endogeneity. As an indicator of the strength of the
instrumental variables (that is, the elements of W+), we conducted a Wald test of
their joint significance. The value of the chi-squared test statistic is 49.33, so the null
hypothesis that their coefficients are jointly zero is roundly rejected at any reasonable
level of significance. The second-stage 2SRI estimates shown in table 2 (column 2) are
virtually identical to Mullahy’s GMM estimates (column 5), but the former, unlike the
latter, provide a direct test of the endogeneity of the prenatal smoking variable via
the asymptotic t statistic (5th element of β̂) for the coefficient of Xu[β̂u = β̂(5)] with
H0 : βu = β(5) = 0. According to the results of this test, the exogeneity null hypothesis
is rejected at nearly the 1% significance level. To get a sense of the bias from neglecting
to account for the two-stage nature of the estimator in the calculation of the asymptotic
standard errors, in table 2 (last column), we also display the “packaged” second-stage
glm t statistics as reported in the Stata output. The mean absolute bias across these
uncorrected asymptotic t statistics for the four control variables and Xu is nearly 9%.
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Table 1. 2SRI first-stage estimates

Variable Estimate Asymptotic p-value
t statistic

First-stage estimate of α1

PARITY 0.02 0.39 0.696
WHITE 0.25 2.16 0.031
MALE −0.16 −1.88 0.060

EDFATHER −0.02 −2.38 0.017
EDMOTHER −0.12 −5.54 0.000
FAMINCOM −0.01 −2.87 0.004
CIGTAX 0.01 2.25 0.024
Constant 0.56 1.93 0.054

First-stage estimate of α2

PARITY 0.10 1.34 0.182
WHITE 0.00 0.00 0.998
MALE 0.21 2.13 0.033

EDFATHER −0.02 −1.43 0.153
EDMOTHER −0.03 −0.87 0.386
FAMINCOM 0.00 0.28 0.778
CIGTAX 0.00 −0.39 0.697
Constant 2.82 6.00 0.000

n = 1388
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3 Other oft-encountered O&A combinations

Nonlinearity in regression modeling is typically implied by limitations on the support of
the dependent variable. For instance, the linear specification is clearly unappealing for
models with binary or fractional support. Another commonly encountered dependent
variable type that prompts nonlinear modeling is one whose support is the nonnegative
half of the real line (including zero). In the previous section, in the context of the
example, we discussed a particular version of this case, in which there is i) a nontrivial
proportion of zeros in the population (sample); and ii) a reason to believe that the EM

(zero or not) should be modeled differently from the IM (value of the dependent variable
conditional on it being nonzero). In a simpler (nested) version of this model, there is
no need to distinguish between the EM and IM in modeling. In the example, if there
were no reason to believe that the decision regarding whether or not to smoke during
pregnancy (IM) is systematically different from one’s choice of how much to smoke (EM),
then we would replace (7) with

Xe = exp(Wα) +Xu

and implement NLS for 2SRI first-stage estimation of α. We leave it to the reader to
supply the details of the above step-by-step 2SRI protocol for this case. In the remainder
of this section, we discuss binary and fractional O&A specifications.

Consider the details of the step-by-step protocol when Xe is binary and Y is frac-
tional. From the following discussion of this case, the reader should be able to infer
the details of the protocol for the remaining three possible O&A specifications involving
these two variable types.

Step a: In this case, the first- and second-stage estimators are ML and NLS, respectively.
The conditional pdf for ML in the first stage is

g(Xe|W ;α) = Φ(Wα)Xe{1− Φ(Wα)}1−Xe (18)

where Φ(·) denotes the standard normal cumulative distribution function.10 Note that
(15) implies that r(W,α) = Φ(Wα). The functional form for the outcome regression in
(1) and (10) is

μ∗(Xe,W ;α,β) = μ(Xe, Xo, {Xe − r(W ;α)};β)
= Φ(Xβ) = Φ[Xeβp +Xoβo + {Xe − Φ(Wα)}βu]

Step b:

∇βμ
∗ = ϕ(Xβ)X

and
∇αμ

∗ = −βuϕ(Xβ)ϕ(Wα)W

10. Φ(·) can be replaced here by any convenient (packaged) cumulative distribution function.
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Step c:

/*step c*/
probit Xe Xo Wplus

Step d:

/*step d*/
predict phiWalpha, p
gen Xuhat=Y-phiWalpha

Step e:

/*step e*/
mata: alphahat=st_matrix("e(b)")´
mata: Valphahat=st_matrix("e(V)")

Step f:

/*step f*/
glm Y Xe Xo Xuhat,family(gaussian) link(probit) vce(robust)

Step g:

/*step g*/
mata: betahat=st_matrix("e(b)")´
mata: Vbetahat=st_matrix("e(V)")
mata: Bu=betahat[3]

Step h:

/*step h*/
putmata Y Xe Xo Wplus Xuhat
mata: X=Xe, Xo, Xuhat, J(rows(Xo),1,1)
mata: W=Xo, Wplus, J(rows(Xo),1,1)

Step i:

/*step i*/
mata: gradbeta=normalden(X*betahat):*X
mata: gradalpha=-Bu:*normalden(X*betahat):*/*

*/normalden(W*alphahat):*W

Step j:

/*step j*/
mata: B1 = gradbeta´*gradbeta
mata: B2 = gradbeta´*gradalpha

Step k:

/*step k*/
mata: AVARBeta=invsym(B1)*B2*Valphahat*B2´invsym(B1)/*

*/+ Vbetahat
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Step l:

/*step l*/
mata: ACSE = sqrt(diagonal(AVARBeta))

Step m:

/*step m*/
mata: ACtstats=betahat:/ACSE

4 Summary and discussion

I reviewed the 2SRI method for nonlinear models with endogenous regressors and offered
a step-by-step protocol for its implementation in Stata. I illustrated its application with
real data for when both Xe and Y are nonnegative. In empirical practice, cases in which
Xe, Y , or both are binary or fractional often arise. I detailed Stata and Mata imple-
mentation of the protocol for the version of the model in which Xe is binary and Y is
fractional. I hope that these examples will serve to demonstrate the ease with which
the protocol can be extended to models involving other variable-type configurations
not explicitly covered here. In particular, the class of nonnegative dependent variables
encompasses important subtypes; for example, count variables and continuous variables
with support that does not include 0. For instance, one might seek to fit a model with
an endogenous count regressor and an outcome whose distribution is skewed with 0 ex-
cluded. In this case, g(Xe|W ;α) might be specified as Poisson and f(Y |Xe,W,Xu;α,β)
as generalized Gamma. In Stata, the first-stage MLE of α would be obtained using
the poisson command. The streg command with the distribution(ggamma) option
would be used to obtain the second-stage MLE of β. The ACSEs for the elements of β
would be obtained using our proposed protocol.
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Appendix: Stata and Mata do-files and log files for the
example

Stata and Mata code

. /*************************************************
> ** Read in the data. **
> *************************************************/
. use mullahy-birthweight-data-lbs-not-oz

.

. /*************************************************
> ** Generate the binary smoking variable. **
> *************************************************/
. generate ANYCIGS=CIGSPREG>0

.

. /*************************************************
> ** 2SRI first-stage first-part probit estimates.**
> *************************************************/
. /*Step c*/
. probit ANYCIGS PARITY WHITE MALE EDFATHER EDMOTHER
> FAMINCOM CIGTAX88

Iteration 0: log likelihood = -593.2711
Iteration 1: log likelihood = -539.2207
Iteration 2: log likelihood = -537.93241
Iteration 3: log likelihood = -537.9313
Iteration 4: log likelihood = -537.9313

Probit regression Number of obs = 1,388
LR chi2(7) = 110.68
Prob > chi2 = 0.0000

Log likelihood = -537.9313 Pseudo R2 = 0.0933

ANYCIGS Coef. Std. Err. z P>|z| [95% Conf. Interval]

PARITY .0183594 .0470494 0.39 0.696 -.0738558 .1105746
WHITE .2484636 .1148504 2.16 0.031 .023361 .4735663
MALE -.1628769 .0864755 -1.88 0.060 -.3323658 .006612

EDFATHER -.0239095 .0100267 -2.38 0.017 -.0435614 -.0042576
EDMOTHER -.1199751 .0216733 -5.54 0.000 -.162454 -.0774962
FAMINCOM -.0092103 .0032144 -2.87 0.004 -.0155104 -.0029101
CIGTAX88 .0127688 .0056673 2.25 0.024 .0016611 .0238766

_cons .5600838 .2908317 1.93 0.054 -.0099359 1.130104

.

. /*************************************************
> ** Save the 2SRI first-stage first-part probit **
> ** predicted values for use in calculating **
> ** the first stage residuals. **
> *************************************************/
. /*Step d*/
. predict CIGPROB
(option pr assumed; Pr(ANYCIGS))

.

. /*************************************************
> ** Save the first-stage first-part probit **
> ** estimates and estimated covariance matrix. **
> *************************************************/
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. /*Step e*/

. mata: alpha1hat=st_matrix("e(b)")´

. mata: Valpha1hat=st_matrix("e(V)")

.

. /*************************************************
> ** 2SRI first-stage second-part probit NLS **
> ** estimates. **
> *************************************************/
. /*Step c*/
. glm CIGSPREG PARITY WHITE MALE EDFATHER EDMOTHER
> FAMINCOM CIGTAX88 if ANYCIGS==1,
> family(gaussian) link(log) vce(robust)

Iteration 0: log pseudolikelihood = -768.10967
Iteration 1: log pseudolikelihood = -751.55365
Iteration 2: log pseudolikelihood = -750.05496
Iteration 3: log pseudolikelihood = -750.05493

Generalized linear models No. of obs = 212
Optimization : ML Residual df = 204

Scale parameter = 71.99373
Deviance = 14686.72175 (1/df) Deviance = 71.99373
Pearson = 14686.72175 (1/df) Pearson = 71.99373

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = ln(u) [Log]

AIC = 7.151462
Log pseudolikelihood = -750.0549266 BIC = 13593.98

Robust
CIGSPREG Coef. Std. Err. z P>|z| [95% Conf. Interval]

PARITY .1004253 .0752068 1.34 0.182 -.0469773 .2478279
WHITE .0002311 .11928 0.00 0.998 -.2335533 .2340156
MALE .2066734 .0968097 2.13 0.033 .0169298 .396417

EDFATHER -.0157006 .0109983 -1.43 0.153 -.0372569 .0058557
EDMOTHER -.027413 .031649 -0.87 0.386 -.0894439 .034618
FAMINCOM .0011098 .0039345 0.28 0.778 -.0066017 .0088212
CIGTAX88 -.0028822 .0074149 -0.39 0.697 -.0174151 .0116507

_cons 2.821627 .4702037 6.00 0.000 1.900044 3.743209

.

. /*************************************************
> ** Save the 2SRI first-stage second-part NLS **
> ** (glm) predicted values for use in calculating**
> ** the first-stage residuals. **
> *************************************************/
. /*Step d*/
. predict CIGMEAN
(option mu assumed; predicted mean CIGSPREG)

.

. /*************************************************
> ** Generate the first-stage residuals. **
> *************************************************/
. /*Step d*/
. generate Xuhat=CIGSPREG-CIGPROB*CIGMEAN

.
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. /*************************************************
> ** Save the first-stage second-part NLS **
> ** estimates and estimated covariance matrix. **
> *************************************************/
. /*Step e*/
. mata: alpha2hat=st_matrix("e(b)")´

. mata: Valpha2hat=st_matrix("e(V)")

.

. /*************************************************
> ** Descriptive statistics. **
> *************************************************/
. summ

Variable Obs Mean Std. Dev. Min Max

BIRTHWT 1,388 118.6996 20.35396 23 271
CIGSPREG 1,388 2.087176 5.972688 0 50

PARITY 1,388 1.632565 .8940273 1 6
WHITE 1,388 .7845821 .4112601 0 1
MALE 1,388 .5208934 .4997433 0 1

EDFATHER 1,388 11.32421 5.251299 0 18
EDMOTHER 1,388 12.92651 2.401109 0 18
FAMINCOM 1,388 29.02666 18.73928 .5 65
CIGTAX88 1,388 19.55295 7.795598 2 38
BIRTHWTLB 1,388 7.418723 1.272123 1.4375 16.9375

ANYCIGS 1,388 .1527378 .3598642 0 1
CIGPROB 1,388 .1520482 .1038465 .0049521 .7636681
CIGMEAN 1,388 12.86834 2.512522 7.946904 28.78438

Xuhat 1,388 .0063805 5.818791 -15.09198 46.96746

.
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. /*************************************************
> ** 2SRI second-stage NLS estimates. **
> *************************************************/
. /*Step f*/
. glm BIRTHWTLB CIGSPREG PARITY WHITE MALE Xuhat,
> family(gaussian) link(log) vce(robust)

Iteration 0: log pseudolikelihood = -2271.1401
Iteration 1: log pseudolikelihood = -2263.4591
Iteration 2: log pseudolikelihood = -2263.4109
Iteration 3: log pseudolikelihood = -2263.4109

Generalized linear models No. of obs = 1,388
Optimization : ML Residual df = 1,382

Scale parameter = 1.533962
Deviance = 2119.935722 (1/df) Deviance = 1.533962
Pearson = 2119.935722 (1/df) Pearson = 1.533962

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = ln(u) [Log]

AIC = 3.270045
Log pseudolikelihood = -2263.410887 BIC = -7879.69

Robust
BIRTHWTLB Coef. Std. Err. z P>|z| [95% Conf. Interval]

CIGSPREG -.0119672 .0027167 -4.41 0.000 -.0172918 -.0066427
PARITY .0183912 .0050259 3.66 0.000 .0085405 .0282419
WHITE .0542038 .0117566 4.61 0.000 .0311614 .0772463
MALE .0259255 .0089519 2.90 0.004 .0083802 .0434708
Xuhat .0077064 .0026665 2.89 0.004 .00248 .0129327
_cons 1.942015 .0149736 129.70 0.000 1.912667 1.971363

.

. /*************************************************
> ** Save second-stage estimates and covariance **
> ** matrix. Single out the coefficient estimate **
> ** for Xu. **
> *************************************************/
. /*Step g*/
. mata: betahat=st_matrix("e(b)")´

. mata: Vbetahat=st_matrix("e(V)")

. mata: Bu=betahat[5]

.

. /*************************************************
> ** Send the requisite variables to Mata as **
> ** vectors. **
> *************************************************/
. /*Step h*/
. putmata BIRTHWTLB CIGSPREG ANYCIGS PARITY WHITE
> MALE EDFATHER EDMOTHER FAMINCOM CIGTAX88 Xuhat
(11 vectors posted)

.
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. /*************************************************
> ** Use these vectors to concatenate the needed **
> ** matrices. **
> *************************************************/
. /*Step h*/
. mata: X=CIGSPREG, PARITY, WHITE, MALE,
> Xuhat, J(rows(PARITY),1,1)

. mata: W=PARITY, WHITE, MALE, EDFATHER, EDMOTHER,
> FAMINCOM, CIGTAX88, J(rows(PARITY),1,1)

.

. /*************************************************
> ** Set up the two gradient matrices for the ACSE**
> *************************************************/
. /*Step i*/
. mata: gradbeta=exp(X*betahat):*X

. mata: gradalpha1=-Bu:*exp(X*betahat):*normalden(W*alpha1hat):*exp(W*alpha2hat):*W

. mata: gradalpha2=-Bu:*exp(X*betahat):*normal(W*alpha1hat):*exp(W*alpha2hat):*W

. mata: gradalpha=gradalpha1,gradalpha2

.

. /*************************************************
> ** Set up the B1 and B2 matrices for the ACSE. **
> *************************************************/
. /*Step j*/
. mata: B1=gradbeta´*gradbeta

. mata: B2=gradbeta´*gradalpha

.

. /*************************************************
> ** Set up the full estimated asymptotic **
> ** covariance matrix for alpha (first-stage **
> ** two-part model covariance matrix estimator as**
> ** output by Stata). **
> *************************************************/
. /*Step k*/
. mata: Valphahat=blockdiag(Valpha1hat,Valpha2hat)

.

. /*************************************************
> ** Construct the covariance matrix of the **
> ** second-stage Beta estimates. **
> *************************************************/
. /*Step k*/
. mata: Dhat=invsym(B1)*B2*Valphahat*B2´*invsym(B1)+Vbetahat

.

. /*************************************************
> ** Extract the vector of asymptotically correct **
> ** standard errors for betahat. **
> *************************************************/
. /*Step l*/
. mata: ACSE=sqrt(diagonal(Dhat))

.
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. /*************************************************
> ** Calculate the corresponding vector of **
> ** asymptotically correct t-stats. **
> *************************************************/
. /*Step m*/
. mata: ACtstats=betahat:/ACSE

.

. /*************************************************
> ** Compute the corresponding vector of p-values.
> *************************************************/
. mata: ACpvalues=2:*(1:-normal(abs(ACtstats)))

.

. /*************************************************
> ** Display results. **
> *************************************************/
. mata: header="Variable","Estimate","ACSE","AC t-stat","pvalue"

. mata: varnames="CIGSPREG", "PARITY", "WHITE", "MALE", "Xuhat","Constant"

. mata: results=betahat,ACSE,ACtstats,ACpvalues

. mata: resview=strofreal(results)

. mata: "2SRI Results with ACSE"
2SRI Results with ACSE

. mata: header \ (varnames´,resview)
1 2 3 4 5

1 Variable Estimate ACSE AC t-stat pvalue
2 CIGSPREG -.0119672 .002939 -4.071839 .0000466
3 PARITY .0183912 .0054684 3.363166 .0007705
4 WHITE .0542038 .0121787 4.450694 8.56e-06
5 MALE .0259255 .009266 2.797918 .0051433
6 Xuhat .0077064 .0028991 2.658169 .0078566
7 Constant 1.942015 .0155771 124.6715 0


