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Abstract. With the development of large and long panel databases, the theory
surrounding panel causality evolves quickly, and empirical researchers might find
it difficult to run the most recent techniques developed in the literature. In this
article, we present the community-contributed command xtgcause, which imple-
ments a procedure proposed by Dumitrescu and Hurlin (2012, Economic Modelling
29: 1450–1460) for detecting Granger causality in panel datasets. Thus, it con-
stitutes an effort to help practitioners understand and apply the test. xtgcause

offers the possibility of selecting the number of lags to include in the model by
minimizing the Akaike information criterion, Bayesian information criterion, or
Hannan–Quinn information criterion, and it offers the possibility to implement a
bootstrap procedure to compute p-values and critical values.
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1 Introduction

Panel datasets composed of many individuals and many time periods are becoming
widely available. A particularly salient case is the growing availability of cross-country
data over time. As a consequence, the focus of panel-data econometrics is shifting from
micropanels, with large N and small T , to macropanels, with large N and large T . In
this setting, classical issues of time-series econometrics, such as (non)stationarity and
(non)causality, also arise. In this article, we present the community-contributed com-
mand xtgcause, which implements a procedure developed by Dumitrescu and Hurlin
(2012) (the DH test) to test for Granger causality in panel datasets.

Considering the fast evolution of the literature, practitioners may find it difficult to
implement the latest econometric tests. Therefore, in this article, we summarize the test
built by Dumitrescu and Hurlin (2012) and present xtgcause using examples based on
simulated and real data. The objective of our contribution is to support the empirical
literature using panel causality techniques. One recurrent concern is the selection of the
number of lags to be included in the estimations; we have implemented an extension of
the test based on Akaike information criteria (AIC), Bayesian information criteria (BIC,
and Hannan–Quinn information criteria (HQIC) to facilitate this task. Finally, to deal
with the empirical issue of cross-sectional dependence, we have implemented an option
to compute p-values and critical values based on a bootstrap procedure.
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2 The Dumitrescu–Hurlin test

In a seminal article, Granger (1969) developed a methodology for analyzing the causal
relationships between time series. Suppose xt and yt are two stationary series. The
model

yt = α+
K∑

k=1

γkyt−k +
K∑

k=1

βkxt−k + εt with t = 1, . . . , T (1)

can then be used to test whether x causes y. Essentially, if past values of x are significant
predictors of the current value of y even when past values of y have been included in
the model, then x exerts a causal influence on y. Using (1), one might easily investigate
this causality based on an F test with the following null hypothesis:

H0 : β1 = · · · = βK = 0

If H0 is rejected, one can conclude that causality from x to y exists. The x and y
variables can be interchanged to test for causality in the other direction, and it is
possible to observe bidirectional causality (also called feedback).

Dumitrescu and Hurlin (2012) provide an extension designed to detect causality in
panel data. The underlying regression is

yi,t = αi+

K∑
k=1

γikyi,t−k+
K∑

k=1

βikxi,t−k+εi,t with i = 1, . . . , N and t = 1, . . . , T (2)

where xi,t and yi,t are the observations of two stationary variables for individual i in
period t. Coefficients are allowed to differ across individuals (note the i subscripts
attached to coefficients) but are assumed to be time invariant. The lag order K is
assumed to be identical for all individuals, and the panel must be balanced.

As in Granger (1969), the procedure to determine the existence of causality is to test
for significant effects of past values of x on the present value of y. The null hypothesis
is therefore defined as

H0 : βi1 = · · · = βiK = 0 ∀ i = 1, . . . , N (3)

which corresponds to the absence of causality for all individuals in the panel.

The DH test assumes there can be causality for some individuals but not necessarily
for all. Thus, the alternative hypothesis is

H1 :βi1 = · · · = βiK = 0 ∀ i = 1, . . . , N1

βi1 �= 0 or . . . or βiK �= 0 ∀ i = N1 + 1, . . . , N

where N1 ∈ [0, N − 1] is unknown. If N1 = 0, there is causality for all individuals in
the panel. N1 must be strictly smaller than N ; otherwise, there is no causality for all
individuals, and H1 reduces to H0.

Against this backdrop, Dumitrescu and Hurlin (2012) propose the following proce-
dure: run the N individual regressions implicitly enclosed in (2), perform F tests of the



974 Testing for Granger causality in panel data

K linear hypotheses βi1 = · · · = βiK = 0 to retrieve the individual Wald statistic Wi,
and finally compute the average Wald statistic W :1

W =
1

N

N∑
i=1

Wi

We emphasize that the test is designed to detect causality at the panel level, and
rejecting H0 does not exclude noncausality for some individuals. Using Monte Carlo
simulations, Dumitrescu and Hurlin (2012) show that W is asymptotically well behaved
and can genuinely be used to investigate panel causality.

Under the assumption that the Wald statistics Wi are independently and identically
distributed across individuals, it can be shown that the standardized statistic Z when
T →∞ first and then N →∞ (sometimes interpreted as “T should be large relative to
N”) follows a standard normal distribution:

Z =

√
N

2K
× (W −K

) d−−−−−→
T,N→∞

N (0, 1) (4)

Also, for a fixed T dimension with T > 5+3K, the approximated standardized statistic
Z̃ follows a standard normal distribution:

Z̃ =

√
N

2K
× T − 3K − 5

T − 2K − 3
×
(
T − 3K − 3

T − 3K − 1
×W −K

)
d−−−−→

N→∞
N (0, 1) (5)

The testing procedure of the null hypothesis in (3) is finally based on Z and Z̃. If these
are larger than the standard critical values, then one should reject H0 and conclude
that Granger causality exists. For large N and T panel datasets, Z can be reasonably
considered. For large N but relatively small T datasets, Z̃ should be favored. Us-
ing Monte Carlo simulations, Dumitrescu and Hurlin (2012) have shown that the test
exhibits good finite sample properties, even when both T and N are small.

The lag order (K) selection is an empirical issue for which Dumitrescu and Hurlin
(2012) provide no guidance. One way to tackle this issue is to select the number of
lags based on an information criterion (AIC/BIC/HQIC). In this process, all estimations
have to be conducted on a common sample to be nested and therefore comparable.2

Practically, this implies that the first Kmax
3 time periods must be omitted during the

entire lag-selection process.

Another empirical issue to consider in panel data is cross-sectional dependence. To
this end, a block bootstrap procedure is proposed in section 6.2 of Dumitrescu and

1. See Dumitrescu and Hurlin (2012, 1453) for the mathematical definition of Wi. Note, however,
that T in their formulas must be understood as the number of observations remaining in the
estimations, that is, the number of periods minus the number of lags included. To be consistent
with our notation, we therefore replaced Dumitrescu and Hurlin’s (2012) T by T−K in the following
formulas of the present article.

2. We thank Gareth Thomas (IHS Markit EViews) for bringing this point to our attention.
3. Kmax stands for the maximum possible number of lags to be considered in the entire procedure.
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Hurlin (2012) to compute bootstrapped critical values for Z and Z̃ instead of asymptotic
critical values. The procedure has the following steps:4

1. Fit (2) and obtain Z and Z̃ as defined in (4) and (5).

2. Fit the model under H0 : yi,t = α0
i +

∑K
k=1 γ

0
ikyi,t−k+εi,t, and collect the residuals

in matrix ε̂(T−K)×N .

3. Build a matrix ε�(T−K)×N by resampling (overlapping blocks of) rows (that is, time

periods) of matrix ε̂. Block bootstrap is useful when there is autocorrelation.

4. Generate a random draw (y�
1, . . . ,y

�
K)
′
, with y�

t =
(
y�1,t, y

�
2,t, · · · , y�N,t

)
, by ran-

domly selecting a block of K consecutive time periods with replacement (see Stine
[1987] and Berkowitz and Kilian [2000]).

5. Construct the resampled series y�i,t = α̂0
i +

∑K
k=1 β̂

0
iky

�
i,t−k+ε�i,t conditional on the

random draw for the first K periods.

6. Fit the model y�i,t = αb
i +

∑K
k=1 γ

b
iky

�
i,t−k +

∑K
k=1 β

b
ikxi,t−k + εi,t and compute Z

b

and Z̃b.

7. Run B replications of steps 3 to 6.

8. Compute p-values and critical values for Z and Z̃ based on the distributions of

Z
b
and Z̃b, b = 1, . . . , B.

3 The xtgcause command

3.1 Syntax

The syntax of xtgcause is

xtgcause depvar indepvar
[
if
] [

in
] [

, lags(# | aic [
#
] | bic [

#
] | hqic [

#
]
)

regress bootstrap breps(#) blevel(#) blength(#) seed(#) nodots
]

3.2 Options

lags(# | aic [
#
] | bic [

#
] | hqic [

#
]
) specifies the lag structure to use for the re-

gressions performed in computing the test statistic. The default is lags(1).

4. The procedure we present here differs slightly from that proposed by Dumitrescu and Hurlin (2012)
in the numbering of the steps but, more importantly, in the definition of the initial conditions (our
step 4), which is not addressed by Dumitrescu and Hurlin (2012), and in the construction of the
resampled series (our step 5). We are indebted to David Ardia (University of Neuchâtel) for his
valuable advice on the bootstrap procedure.
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Specifying lags(#) requests that # lags of the series be used in the regressions.
The maximum authorized number of lags is such that T > 5 + 3×#.

Specifying lags(aic | bic | hqic [
#
]
) requests that the number of lags of the se-

ries be chosen such that the average AIC/BIC/HQIC for the set of regressions is
minimized. Regressions with 1 to # lags will be conducted, restricting the number
of observations to T −# for all estimations to make the models nested and therefore
comparable. Displayed statistics come from the set of regressions for which the aver-
age AIC/BIC/HQIC is minimized (reestimated using the total number of observations
available). If # is not specified in lags(aic | bic | hqic [

#
]
), then it is set to the

maximum number of lags authorized.

regress can be used to display the results of the N individual regressions on which the
test is based. This option is useful to have a look at the coefficients of individual
regressions. When the number of individuals in the panel is large, this option will
result in a very long output.

bootstrap requests p-values and critical values be computed using a bootstrap proce-
dure as proposed in Dumitrescu and Hurlin (2012, sec. 6.2). The bootstrap proce-
dure is useful when there is cross-sectional dependence.

breps(#) indicates the number of bootstrap replications to perform. The default
is breps(1000).

blevel(#) indicates the significance level (in %) for computing the bootstrapped
critical values. The default is blevel(95).

blength(#) indicates the size of the block length to be used in the bootstrap. By de-
fault, each time period is sampled independently with replacement blength(1).
blength() allows the user to implement the bootstrap by dividing the sample
into overlapping blocks of # time periods and sampling the blocks independently
with the replacement. Using blocks of more than one time period is useful if au-
tocorrelation is suspected.

seed(#) can be used to set the random-number seed. By default, the seed is not
set.

nodots suppresses replication dots. By default, a dot is printed for each replication
to provide an indication of the evolution of the bootstrap.

breps(), blevel(), blength(), seed(), and nodots are bootstrap suboptions.
They can be used only if bootstrap is also specified.
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3.3 Stored results

xtgcause stores the following in r():

Scalars
r(wbar) average Wald statistic r(zbart) Z-bar tilde statistic
r(lags) number of lags used for the test r(zbart pv) p-value of the Z-bar tilde
r(zbar) Z-bar statistic statistic
r(zbar pv) p-value of the Z-bar statistic

Matrices
r(Wi) individual Wald statistics r(PVi) p-values of the individual Wald

statistics

xtgcause with the bootstrap option also stores the following additional results in
r():

Scalars
r(zbarb cv) critical value for the Z-bar r(blevel) significance level for bootstrap

statistic critical values
r(zbartb cv) critical value for the r(blength) size of the block length

Z-bar tilde statistic
r(breps) number of bootstrap

replications

Matrices
r(ZBARb) Z-bar statistics from the r(ZBARTb) Z-bar tilde statistics from the

bootstrap procedure bootstrap procedure

4 Examples

Before presenting some examples, we recall that the test implemented in xtgcause as-
sumes that the variables are stationary. We will not go through this first step here,
but it is the user’s responsibility to verify that the data satisfy this condition. To
this end, the user might consider xtunitroot, which provides various panel stationar-
ity tests with alternative null hypotheses (in particular, Breitung [2000]; Hadri [2000];
Harris and Tzavalis [1999]; Im, Pesaran, and Shin [2003]; Levin, Lin, and Chu [2002]).
The user may also want to perform second-generation panel unit-root tests such as the
one proposed by Pesaran (2007) to control for cross-sectional dependence.

4.1 Example based on simulated data

To illustrate xtgcause, we first use simulated data provided by Dumitrescu and Hurlin
(2012) at http://www.execandshare.org/execandshare/htdocs/data/MetaSite/upload/
companionSite51/data/ in the file data-demo.csv.5 Then, we import the original Excel
dataset directly from the website. In the original CSV file, the dataset is organized as a
matrix, with all observations for each individual in a single cell. Within this cell, the 10
values of variable x are separated by tabs, a comma separates the last value of x and
the first value of y, and the 10 values of variable y are then separated by tabs. Hence,
the following lines of code allow shaping the data to be understood as a panel by Stata.

5. Data and MATLAB code are also available at http://www.runmycode.org/companion/view/42 in
a ZIP file.
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. import delimited using "http://www.execandshare.org/execandshare/htdocs/data/
> MetaSite/upload/companionSite51/data/data-demo.csv", delimiter(",")
> colrange(1:2) varnames(1)
(2 vars, 20 obs)

. quietly: split x, parse(`=char(9)´) destring

. quietly: split y, parse(`=char(9)´) destring

. drop x y

. generate t = _n

. reshape long x y, i(t) j(id)
(note: j = 1 2 3 4 5 6 7 8 9 10)

Data wide -> long

Number of obs. 20 -> 200
Number of variables 21 -> 4
j variable (10 values) -> id
xij variables:

x1 x2 ... x10 -> x
y1 y2 ... y10 -> y

. xtset id t
panel variable: id (strongly balanced)
time variable: t, 1 to 20

delta: 1 unit

. list id t x y in 1/5

id t x y

1. 1 1 .55149203 .81872837
2. 1 2 .64373514 -.42077179
3. 1 3 -.58843258 -.40312278
4. 1 4 -.55873336 .14674849
5. 1 5 -.32486386 .42924677

. list id t x y in 21/25

id t x y

21. 2 1 -1.4703536 1.2586422
22. 2 2 1.3356281 -.71173904
23. 2 3 -.21564623 -.73264199
24. 2 4 .08435614 -.67841901
25. 2 5 1.5766581 -.2562083

Some sections of the above code are quite involved and require explanations. We
started by importing the data as if values were separated by commas, which is only
partly true. This created two string variables, named x and y, each containing 10 values
(separated by tabs) in each observation. We then invoked split, using char(9) (which
indeed corresponds to a tab) as the parse string. We used the prefix quietly to avoid
a long output indicating that 2 sets of 10 variables (x1, . . . , x10, and y1, . . . , y10) were
created. These variables were immediately converted from string to numeric thanks
to split’s destring option. To have a well-shaped panel that Stata can correctly
interpret, we combined these 2 sets of 10 variables into only 2 variables using reshape.
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A few observations (the first five for individuals 1 and 2) are displayed to show how the
data are finally organized.

After we format and xtset the data, we can now run xtgcause. The simplest
possible test to investigate whether x causes y would be

. xtgcause y x

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Lag order: 1
W-bar = 1.2909
Z-bar = 0.6504 (p-value = 0.5155)
Z-bar tilde = 0.2590 (p-value = 0.7956)
--------------------------------------------------------------
H0: x does not Granger-cause y.
H1: x does Granger-cause y for at least one panelvar (id).

Because we did not specify any lag order, xtgcause introduced a single lag by default.
In this case, the outcome of the test does not reject the null hypothesis. The output
reports the values obtained for W (W-bar), Z (Z-bar), and Z̃ (Z-bar tilde). For the
latter two statistics, p-values are provided based on the standard normal distribution.

One could additionally display the individual Wald statistics and their corresponding
values by displaying the stored matrices r(Wi) and r(PVi) (which we first combine into
a single matrix for the sake of space):

. matrix Wi_PVi = r(Wi), r(PVi)

. matrix list Wi_PVi

Wi_PVi[10,2]
Wi PVi

id1 .56655945 .46256089
id2 .11648998 .73731411
id3 .09081952 .76701924
id4 8.1263612 .01156476
id5 .18687517 .67129995
id6 .80060395 .38417583
id7 .53075859 .47681675
id8 .00158371 .96874825
id9 .43635413 .5182858

id10 2.0521113 .17124367
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Using the lags() option, we run a similar test introducing two lags of the variables
x and y:

. xtgcause y x, lags(2)

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Lag order: 2
W-bar = 1.7302
Z-bar = -0.4266 (p-value = 0.6696)
Z-bar tilde = -0.7052 (p-value = 0.4807)
--------------------------------------------------------------
H0: x does not Granger-cause y.
H1: x does Granger-cause y for at least one panelvar (id).

The conclusion of the test is similar to before.

Alternatively, the test could also be conducted using a bootstrap procedure to com-
pute p-values and critical values:

. xtgcause y x, bootstrap lags(1) breps(100) seed(20171020)

----------------------------
Bootstrap replications (100)
----------------------------
.................................................. 50
.................................................. 100

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Lag order: 1
W-bar = 1.2909
Z-bar = 0.6504 (p-value* = 0.4700, 95% critical value = 1.7316)
Z-bar tilde = 0.2590 (p-value* = 0.7100, 95% critical value = 1.3967)
--------------------------------------------------------------
H0: x does not Granger-cause y.
H1: x does Granger-cause y for at least one panelvar (id).
*p-values computed using 100 bootstrap replications.

In this case, the bootstrapped p-values are relatively close to the asymptotic ones
displayed in the first test above.

4.2 Example based on real data

To provide an example based on real data, we searched for articles reporting Dumitrescu
and Hurlin’s (2012) tests and published in journals that make authors’ datasets avail-
able. We found several such articles (for example, Paramati, Ummalla, and Apergis
[2016]; Paramati, Apergis, and Ummalla [2017]; Salahuddin, Alam, and Ozturk [2016]).
In particular, Paramati, Ummalla, and Apergis (2016) investigate the effect of foreign
direct investment and stock market growth on clean energy use. In their table 8, they re-
port a series of pairwise panel causality tests between variables such as economic output,
CO2 emissions, or foreign direct investment. As indicated in their online supplementary
data (file Results.xlsx), they conduct the tests using EViews 8. We replicate some of
their results:
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. import excel using data-wdi.xlsx, clear first case(lower) cellrange(A1:I421)
> sheet(FirstDif-Data)

. xtset id year
panel variable: id (strongly balanced)
time variable: year, 1992 to 2012

delta: 1 unit

. xtgcause co2 output, lags(2)

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Lag order: 2
W-bar = 2.4223
Z-bar = 0.9442 (p-value = 0.3451)
Z-bar tilde = 0.1441 (p-value = 0.8855)
--------------------------------------------------------------
H0: output does not Granger-cause co2.
H1: output does Granger-cause co2 for at least one panelvar (id).

. xtgcause fdi output, lags(2)

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Lag order: 2
W-bar = 4.6432
Z-bar = 5.9103 (p-value = 0.0000)
Z-bar tilde = 3.7416 (p-value = 0.0002)
--------------------------------------------------------------
H0: output does not Granger-cause fdi.
H1: output does Granger-cause fdi for at least one panelvar (id).

The above code imports the dataset constructed by Paramati, Ummalla, and Aper-
gis (2016) (file Data-WDI.xlsx, sheet FirstDif-Data) as a first step. We then use
xtgcause to test for the causality from output to co2 and from output to fdi, which
correspond to some tests reported in their table 8. We use two lags in both cases
to match the numbers indicated by Paramati, Ummalla, and Apergis (2016) in their
accompanying appendix file. Compared with their output, it turns out that the denom-
ination “Zbar-Stat” used in EViews corresponds to the Z-bar tilde statistic (while
the Z-bar statistic is not provided in EViews).

Optionally, xtgcause allows the user to request the lag order to be chosen so that
the AIC, BIC, or HQIC be minimized. Given that Dumitrescu and Hurlin (2012) offer
no guidance regarding the choice of the lag order, this feature might be appealing to
practitioners. We can, for example, test the causality from output to fdi specifying
the option lags(bic):

. xtgcause fdi output, lags(bic)

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Optimal number of lags (BIC): 1 (lags tested: 1 to 5).
W-bar = 1.3027
Z-bar = 0.9572 (p-value = 0.3385)
Z-bar tilde = 0.4260 (p-value = 0.6701)
--------------------------------------------------------------
H0: output does not Granger-cause fdi.
H1: output does Granger-cause fdi for at least one panelvar (id).
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In practice, xtgcause runs all sets of regressions with a lag order from 1 to the
highest possible number (that is, such that T > 5 + 3K or optionally specified by the
user below this limit), maintaining a common sample. Said otherwise, if at most five
lags are to be considered, the first five observations of the panel will never be considered
in the estimations, even if it would be possible to do so with fewer than five lags. This
ensures nested models, which can then be appropriately compared using AIC, BIC, or
HQIC. After this series of estimations, xtgcause selects the optimal outcome (that is,
such that the average AIC/BIC/HQIC of the N individual estimations is the lowest)
and reruns all estimations with the optimal number of lags and using all observations
available. Statistics based on the latter are reported as output.

In the above example, the optimal lag order using BIC appears to be 1, which is
different from the lag order selected by Paramati, Ummalla, and Apergis (2016) for this
test.6 This difference is not without consequences, because the conclusion of the test
is then reversed. More precisely, the null hypothesis is not rejected with the optimally
selected single lag, but Paramati, Ummalla, and Apergis (2016) use two lags and there-
fore reject the null hypothesis. Considering that empirical research in economics is used
to formulate policy recommendations, such inaccurate conclusions may potentially be
harmful. We therefore consider xtgcause’s option allowing the user to select the number
of lags based on AIC/BIC/HQIC as an important improvement. It will allow researchers
to rely on these widely accepted criteria and make the selection in a transparent way.

Finally, xtgcause makes it possible to compute the p-values and critical values
associated with the Z-bar and Z-bar tilde via a bootstrap procedure. Computing
bootstrapped critical values (rather than asymptotic ones) may be useful when there
is cross-sectional dependence. Based on the Paramati, Ummalla, and Apergis (2016)
data, we test the causality from output to fdi by adding the bootstrap option (we
also use seed for replicability reasons and nodots for the sake of space):

. xtgcause fdi output, lags(bic) bootstrap seed(20171020) nodots

-----------------------------
Bootstrap replications (1000)
-----------------------------

Dumitrescu & Hurlin (2012) Granger non-causality test results:
--------------------------------------------------------------
Optimal number of lags (BIC): 1 (lags tested: 1 to 5).
W-bar = 1.3027
Z-bar = 0.9572 (p-value* = 0.4530, 95% critical value = 3.0746)
Z-bar tilde = 0.4260 (p-value* = 0.7080, 95% critical value = 2.1234)
--------------------------------------------------------------
H0: output does not Granger-cause fdi.
H1: output does Granger-cause fdi for at least one panelvar (id).
*p-values computed using 1000 bootstrap replications.

Here xtgcause first computes the Z-bar and Z-bar tilde statistics using the op-
timal number of lags as in previous series of estimations; then, it computes the boot-

6. The number of lags would be three using HQIC and four using AIC. Therefore, while
Paramati, Ummalla, and Apergis (2016) state in their table 8 that “the appropriate lag length
is chosen based on SIC”, we do not find the same number with any of the information criterion
considered.
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strapped p-values and critical values. By default, 1,000 bootstrap replications are per-
formed. We observe that the bootstrapped p-value for the Z-bar increases substantially
compared with the asymptotic p-value obtained before (from 0.34 to 0.45), while that
for the Z-bar tilde remains closer. This should be interpreted as a signal that the
estimations suffer from small sample biases, so asymptotic p-values are underestimated.
Bootstrapped p-values indicate that the null hypothesis is far from being rejected, which
strengthens the concerns about Paramati, Ummalla, and Apergis’s (2016) conclusions
based on the asymptotic p-values and obtained with two lags.

5 Conclusion

In this article, we presented the community-contributed command xtgcause, which au-
tomates a procedure introduced by Dumitrescu and Hurlin (2012) to detect Granger
causality in panel datasets. In this branch of econometrics, the empirical literature ap-
pears to be lagging, with the latest theoretical developments not always being available
in statistical packages. One important contribution of our command is to allow the
user to select the number of lags based on the AIC, the BIC, or the HQIC. This choice
may impact the conclusion of the test, but some researchers may have overlooked it.
Thus, several empirical articles might have reached erroneous conclusions. xtgcause

also allows the user to calculate bootstrapped critical values, which is a useful option
when there is cross-sectional dependence. With this command and this article, we hope
to bring some useful clarifications and help practitioners conduct sound research.
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