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Optimal forest rotation and invasive species control when damages are 
heterogeneous  

Clayton Michaud, Shadi Atallah 

This paper examines the economics of forest management in the presence of a 
timber-impairing invasive shrub, including the optimal forest rotation age, optimal 
invasion management strategy, and resulting economic outcomes for a single rotation of a 
plantation forest.  

The case of invasive shrubs, as compared to invasive species such as diseases, 
insects, or other pests, is a unique ecological case for two critical reasons. First, trees are 
only susceptible to the impacts of invasive shrubs until a certain age (when their height 
exceeds that of their shrub competitor). Additionally, invaded juvenile trees experience 
delayed maturity, with the length of this delay being inversely proportional to the age of 
which they were invaded. This is in contrast to the way we typically think about the 
impacts of invasive species on timber production, where plots become increasingly 
invaded/infested as the invasion’s footprint increases over time (up to the time of harvest) 
with affected trees losing some or all of their economic value (such as in Macpherson et 
al. 2016).  

These key ecological differences produce dramatically different economic results. 
In the latter case, the increasing degradation of timber reduces the marginal benefit of 
waiting to harvest, resulting in an optimal rotation age that is below that of the case of no 
invasion, with these harvests often being referred to as “salvage” harvests (Sims, 2011). 
However, in the case of invasive shrubs, juvenile trees typically reach insusceptibility 
prior to merchantability, such that the economic damages caused by the invasion have 
already been fully realized by the earliest economical harvest date, eliminating the need 
for an earlier salvage harvest to prevent further degradation. At the same time, the 
heterogeneous levels of growth delay experienced across the plot as the invasion spreads 
results in more akin to a mixed-aged plot that is, on average, “younger” than it would 
otherwise be. Modeling timber production in this context requires an age-structured 
timber production function whose derivative over time differs from the original 
production function. 

Despite the increasing prevalence of invasive shrubs in the deciduous forests of 
eastern North America (Maynard-Bean & Kaye, 2019), to the best of the authors’ 
knowledge, there exists no economic model of impaired timber production that 
adequately accounts for the type of heterogeneous impairment caused by invasive shrubs. 
To address this gap, we present a generalizable framework that combines a Faustmann 
rotation model, an age-structured impaired timber production function, and an ecological 
model of invasion dynamics. We show how this model can be used to solve for the 
optimal forest rotation age in combination with the optimal invasion management 
strategy, and find that the presence of invasive shrubs results in an optimal rotation age 
that is longer, rather than shorter, than the case of no invasion.  We go on to analyze how 
our optimal solutions change with two sets of parameters, one set that governs the 
impacts of impairment on forest regeneration (via both delayed growth and reduced 
juvenile survival), and another set that describes the population dynamics of the invasion 
(initial invasion level, local growth rate, and inbound dispersal rate). We show how the 
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optimal invasion management strategy can be mapped as a function of the site-specific 
invasion growth dynamics, for a known set of impairment parameters.  

As an application we consider the case of glossy buckthorn, a non-native and 
invasive shrub in North America that uses its shade tolerance to colonize forest 
understory and inhibits or delays forest regeneration. Using estimates of the effect of the 
invasive shrub glossy buckthorn on forest regeneration (Fagan & Peart, 2014; Lee, 
Eisenhaure & Gaudreau, 2016), we go on to find that, if glossy buckthorn is not 
controlled, it has the potential to reduce the net present value of timber revenue by over 
70%, with roughly 67% resulting from decreased forest density due to juvenile mortality, 
and the remainder resulting from the discounting of delayed timber revenue resulting 
from an extended rotation.  

Our modeling framework has the benefit of allowing one to decompose the 
economic damages resulting from invasion into three distinct categories, namely those 
resulting from the initial invasion level, those resulting from subsequent local seed 
dispersal, and those resulting from off-site (external) seed dispersal. Thus, while our 
analysis focuses primarily on private decision-making, our model could be expanded for 
use in an optimal policy design setting by allowing policy-makers to compare both the 
internal and external benefits of invasive shrub management. 
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I. INTRODUCTION 

The impact of invasive plant species is estimated to cost the US $15 billion per 

year (Anderson, 2018). At the same time, the impact of invasive shrubs on forest 

regeneration, and thus timber production, is a unique case among invasive species. 

Unlike the case of invasive insects, diseases, or other pests, the ecological evidence 

suggests that trees are only susceptible to the negative impacts of invasive shrubs while 

their height falls below that of their shrub competitors, with the effect that once trees 

have reached their merchantable height, they are no longer susceptible to these negative 

impacts. This is in contrast to an invasive insect or disease in which trees continue to be 

negatively impacted until they are harvested. Invasive shrubs are also unique in how they 

impair timber production. Unlike other forest invasives that act akin to infections that 

consume their host, invasive shrubs impair forest regeneration by competing for 

resources, specifically sunlight, by shading shorter juvenile trees. The result is that 

invaded juveniles have a lower survival rate and take longer to reach maturity than their 

uninvaded peers, with this delay increasing the earlier a juvenile tree was invaded 

(Frappier, Eckert, & Lee, 2003; Fagan & Peart, 2014; Lee, Eisenhaure & Gaudreau, 

2016). 

These key differences produce two distinct types of impaired forests. In the 

traditional invasive species case, timber is being continuously degraded until it is 

harvested, increasing the marginal cost of waiting to harvest. In contrast, by the time the 

shrub-invaded plot is old enough to be economically harvested, the impacts of 

impairment have been fully realized and there is no additional degradation. Additionally, 

because not all trees become invaded at the same time, the result is a forest plot 
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comprised of heterogeneously impaired trees, specifically a subset of trees impaired at 

the time of planting who face the maximum level of growth impairment, a subset of trees 

that were never impaired (those who reached their height threshold without becoming 

invaded), and a continuous sequence of subsets of trees that became impaired in each 

period following planting but prior to reaching insusceptibility and thus suffer some 

intermediary level of growth impairment. The resulting plot thus becomes analogous to a 

mixed-aged forest comprised of trees that are, on average, “younger” than the plot itself.  

These key differences produce dramatic differences from an economic 

perspective. Whereas invasive diseases or insects increase the marginal cost of waiting to 

harvest, invasive shrubs have the opposing effect of increasing the marginal benefit of 

waiting to harvest due to the fact that some trees are now “less far along” the timber 

production function, resulting in a larger second derivative with respect to time. These 

crucial differences have dramatic implications in terms of both a forester’s optimal forest 

management and optimal invasion management decisions. For example, previous 

research on the effect of invasive disease on optimal rotation age has found that the 

optimal response to such an invasion is to decrease the rotation length in order to salvage 

the remaining timber before it is further degraded, often referred to as a “salvage 

harvest.” In other words, the disease increases the marginal cost of waiting an additional 

period to harvest, thus reducing the age at which the marginal cost and benefit align. In 

contrast, economic intuition suggests that the presence of an invasive shrub increases the 

optimal rotation length, a hypothesis we confirm in this paper. Likewise, because any 

determination of the optimal invasion management strategy implicitly relies on 

calculating the optimal rotation age with and without invasion control, meaning that the 
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optimal invasion management strategy is likely to differ between shrub and non-shrub 

invasive species, even in cases where the population dynamics are relatively consistent.  

Despite the increasing prevalence of invasive shrubs in the deciduous forests of 

eastern North America (Maynard-Bean & Kaye, 2019), to the best of the authors’ 

knowledge, there exists no generalizable model of impaired timber production that 

adequately accounts for the type of heterogeneous impairment caused by invasive shrubs. 

To address this gap, this paper provides a general framework for modeling the effects of 

an invasive shrub that impairs the growth of trees below a certain height on the 

management decisions of a timber producer. Among other results, this paper develops 

and examines solutions for the two key problems facing timber producers responding to 

the threat of invasive shrubs, namely i) how do invasion dynamics affect the optimal 

forest rotation age, and ii) given a set of options for managing invasion prior to (re-

)planting, what is the optimal invasion management strategy? 

This modeling framework combines a Faustmann single-rotation model, an age-

structured impaired timber production function, and an ecological model of invasion 

dynamics to create an expanded Faustmann model in which the traditional timber 

production function is transformed as a function of the ecological characteristics of the 

invasive shrub (initial presence, growth, impact), but where the initial invasion level 

and/or invasion spread can be endogenously reduced by choosing from a discrete set of 

invasion management options (growth prevention and/or removal, inaction). The forest 

manager thus considers how each invasion management option will affect the impaired 

timber production function, what the optimal rotation age will be given that production 

function, what the resulting economic outcome (net-present value of the timber given 
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said rotation age minus invasion management costs) will be, and chooses the most 

advantageous option.  

While we are hardly the first to model the impact of invasives on optimal 

forest/invasion management, to the best of our knowledge we are the first to answer these 

two inter-related questions in the specific context of invasive shrubs, whose impact on 

forest regeneration is unique from those of other invasive pests or disease. In addition to 

simultaneously solving the optimal invasion and forest management strategy, we examine 

how the optimal solution changes as a function of the impacts of impairment on forest 

regeneration (via both delayed growth and reduced juvenile survival), and the population 

dynamics of the invasion (initial invasion level, local growth rate, and inbound dispersal 

rate).  

As an application, we consider the case of glossy buckthorn (Frangula alnus 

Mill.) in Sitka spruce (Picea sitchensis) forests. Glossy buckthorn is a non-native and 

invasive shrub in North America that uses its shade tolerance to colonize forest 

understory and inhibits or delays forest regeneration (Fagan & Peart, 2014; Lee, 

Eisenhaure & Gaudreau, 2016). 

The paper is outlined as follows. Section II reviews the related existing literature 

in economics and ecology and outlines this paper’s contribution. Section III presents the 

model, including both the biological and economic components. Section IV outlines the 

numerical framework used to generate our results. Section V presents the results of our 

analysis, with Section VI providing a discussion and conclusion. 

Noteworthy findings are as follows:  
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• Unlike previous models (those focusing on invasive insects and pathogens rather than 

shrubs, e.g. Macpherson et al., 2016, Sims 2011), which find that invasion reduces the 

optimal rotation age, we find that for the case of invasive shrubs, invasion increases 

the optimal rotation age to compensate for stunted juvenile growth.  

• Using ecological data from two independent studies (Fagan & Peart, 2014; Lee, 

Eisenhaure & Gaudreau, 2016) on the impacts of the invasive shrub glossy buckthorn 

on forest regeneration in the American northeast and an annual discount rate of 0.03, 

we find that buckthorn has the potential to reduce the net present value (NPV) of a 

forest plot by 71.5%. This loss in NPV is the combined result of a 2/3 reduction in the 

volume of merchantable timber caused by increased juvenile mortality, with the 

additional roughly 3.8% loss resulting from a 5-year delay in becoming merchantable, 

leading to a 5-year increase in the optimal rotation age. 

• We show how our modeling procedure can be used to calculate the economic 

damages (lost timber revenue) resulting from the invasion in such a way as to allow 

one to decompose these damages into three distinct categories with separate policy 

implications: those caused by the invasion level at the time of planting, those caused 

by the spread of these initial invaders, and those caused by inbound invader dispersal 

from neighboring properties. This ability to compare the internal and external 

damages resulting from invasion and thus the internal and external benefits of 

invasion management suggests that our modeling procedure may also prove useful in 

an optimal policy design setting where determining the optimal invasion management 

subsidy, for example, requires a comparison of the internal and external benefits of 

invasion management.  
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• We use our model to optimize over a discrete bundle of integrated invasion 

management strategies – namely, ‘no control’, ‘prevention only’, ‘removal only’, and 

‘prevention and removal’ and show how the optimal invasion management strategy 

changes as a function of the initial invasion level, local growth rate, and inbound 

dispersal rate, for a given set of impairment parameters. 

In addition to serving as a template for further research, the modeling framework 

presented herein can serve as a valuable decision support tool for those seeking to best 

respond to the threat of invasive shrubs, while also providing novel insights into an 

ecologically unique form of forest disturbance. 

 

II. BACKGROUND 

In this section we describe the related literature on the economics of invasive 

species management and position the model developed in this paper with respect to 

existing models in forest economics and invasion ecology. 

 The economics of invasive species management is a branch of bioeconomics that 

seeks to determine the optimal allocation of resources in combating the negative impacts 

of invasive species.  

There are generally three distinct types of economic agents, or decision makers, 

found in this literature: policy makers, public land managers, and private land managers 

(with policy makers often relying on models of public and private land managers). In this 

paper we focus primarily on the decision making of a private land manager, specifically a 

timber producer whose objective is to maximize the net present value of their forest by 

minimizing the private damages caused by the presence of invasive shrubs within their 
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forest. As such we are explicitly ignoring both non-market damages (e.g. reduced 

provisioning of ecosystem services, biodiversity loss), and external damages experienced 

by others, though our model could include such values. 

Resources are generally allocated across a range of potential invasion 

management activities, for example invasion prevention, control, removal, and/or 

monitoring, as well as adjusting production decisions such as the forest rotation age. In 

this paper we consider two distinct but interdependent resource allocation problems. 

First, we model how a producer determines (or adjusts) the optimal time at which to 

harvest the forest (rotation age) given the presence of an invasive shrub that negatively 

impacts timber regeneration by delaying or inhibiting juvenile tree growth. Our producer 

also chooses among a discrete set of potential invasion management strategies which 

have the effect of removing a proportion of the invasion prior to planting and/or reducing 

the invasion’s rate of spread. We model these two choices as being simultaneously made 

immediately prior to planting. The model generates population dynamics under each 

possible option and determines the optimal rotation age and identifies the most cost-

effective strategy.  

This paper does not take up the issue of invasion detection and/or monitoring, 

assuming instead that the producer has perfect information regarding current and 

potential population dynamics, i.e., invasion levels in each period (including future 

periods) under each potential management option. The model also assumes that the 

inbound seed dispersal rate is constant across time and is independent of the location, 

actions, and conditions of neighboring properties. As such our bioeconomic model is 

deterministic and does not consider decision-making under risk or uncertainty. Our 
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modeling approach is also spatially implicit: we model the level of invasion in each 

period as the percent of the total area that is invaded and is equal to the quantity of the 

invasive shrubs within the forest divided by the forest’s carrying capacity for that shrub. 

We likewise take the percent of trees invaded as equal to this percent of area invaded 

under the assumption that trees are planted with even spacing. 

Our modeling approach is most unique in that it represents the invasion features, 

damages, and control that are characteristic of forest invasive shrubs, which are not 

readily accounted for in other invasive species bioeconomic models. While invasive 

pathogens (e.g. chestnut blight and sudden oak death) and pests (i.e., invertebrates such 

as emerald ash borer and mammals such as wild hogs) typically affect timber production 

by affecting trees directly (e.g. reducing the quality of timber or otherwise harming trees), 

invasive plants typically affect timber production indirectly by outcompeting tree 

seedlings and saplings for essential resources such as land and sunlight. The effect of this 

reduction in available space leads to increased seedling mortality, while the reduction in 

available sunlight results in established saplings experiencing reduced rates of growth 

prior to outgrowing their invasive competition (see Introduction for more details). Thus, 

unlike the case of invasive pests or pathogens, the impact of an invasive shrub on the 

output of a mature forest is not a function of current (or even lagged) invasion levels, but 

rather are a function of the percentage of trees that were invaded prior to escaping 

impairment, as well as the distribution of when these trees became invaded. From a 

discrete-time perspective, the result is an impairment-class structured timber production 

function comprised of various sized cohorts of trees, each of which face a unique level of 
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impairment, which we model via a modified age-structured timber production function 

that also accounts for increased juvenile mortality. 

Despite the increasing abundance of invasive plants, particularly in the forest of 

the American northeast (Maynard-Bean & Kaye, 2019), we do not know of other work on 

invasive species that accounts for the type of heterogeneous juvenile impairment caused 

by invasive shrubs into a bioeconomic optimization framework.  

The closest studies that look at the impact of invasion on the optimal harvest 

timing are Sims (2011) and Macpherson et al. (2018). Sims (2011) examines the optimal 

timing of salvage harvest in response to a stochastic infestation, using a real options 

approach to determine the level of infestation at which a salvage harvest to recoup timber 

losses is triggered. More in line with our rotation age analysis is that of Macpherson et al. 

(2018) who look at the effect of an invasive pathogen on the optimal forest rotation by 

combining a Faustmann rotation model with an epidemiological compartmental model of 

timber impairment. While their applications are quite different, both studies find that as 

the damages from bioinvasion increase, the optimal harvest time decreases. A key feature 

of both of these models is that damages increase over time as the bioinvasion spreads 

such that waiting an additional year increases the total damages. In contrast, we model 

invasion as only impairing the production of juvenile trees such that by the time the forest 

has become merchantable the damages from invasion have become fully realized.  

Many more studies have looked at the optimal control of bioinvasion. The general 

findings from this literature are:   

• Invasions that are expected to spread quickly generally warrant more control. 
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• Invasion removal may be optimal when invasion levels are low, with the 

optimal control switching to slowing the spread of invasion (and eventually 

abandonment) as the level of invasion increases. 

• Regarding the timing of control, in the face of a fast-spreading invasion, rapid 

invasion management is generally preferred to a “wait and see” approach, 

even when faced with invasion uncertainty (Sims and Finnoff 2013; Sims et 

al. 2016). 

• However, where invasion control is irreversible, ecological uncertainty is 

high,  and multiple landowners are affected by a spatial invasion externality, it 

might be socially optimal to ask the landowners first affected to adopt a wait-

and-see approach (Sims, Finnoff, and Shogren 2018).  

For a thorough review of the literature on the economics of bioinvasion 

management in forest contexts, we recommend Epanchin-Niell (2017). For additional 

reviews on the economics of invasive species policy and management, see Olson (2006), 

Gren (2008), and Finnoff et al. (2010). 

From an ecological perspective, we use two independent studies looking at the 

effect of the invasive shrub glossy buckthorn on forest regeneration to parameterize our 

model, namely Fagan & Peart (2014), and Lee, Eisenhaure & Gaudreau (2016). Glossy 

buckthorn often grows in dense patches that crowd out sunlight, which Lee et al. refer to 

as thickets. They report the average height at the thicket’s tallest point across multiple 

sub-plots and find that glossy buckthorn generally grows to a height of approximately 10 

ft, which we take to be the height at which a juvenile tree transitions to being 

insusceptible to additional impairment. Using their height growth data for trees grown in 
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the absence and presence of glossy buckthorn thickets, we estimate that the presence of 

glossy buckthorn at the time of planting increases the length of time required to reach this 

10 ft. threshold by 5 years. Fagan & Peart studied how the presence of glossy buckthorn 

affects tree survival/juvenile mortality, from which we are able to calculate that trees 

planted and grown in the presence of glossy buckthorn have one third the chance of 

survival of those planted and grown in its absence, or that the presence of glossy 

buckthorn can increase juvenile mortality by an additional 66.6%.  

 
 
 
III. GENERAL MODEL 

The Biological Model 

The Unimpaired Timber Production Function 

We model the volume of merchantable timber produced by an unimpaired, even-

aged plantation forest at age t as 

f(t)           [1] 

For completeness, we define the volume of merchantable timber as the combined volume 

of all trees at or above some merchantable height, where this merchantable height is 

assumed to be greater than or equal to the invasive shrub’s maximum height. We let the 

term T1 denote the age at which an unimpaired forest becomes merchantable, such that 

f(t) = 0 for all t < T1. 
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The Impaired Timber Production Function for a Single Impairment Class 

We model tree-level impairment from invasion as decreasing both the rate of 

juvenile tree6 growth (via a reduction in a tree’s ‘effective age’7) and the probability of 

juvenile survival (and thus total forest density), both as a function of whether and when 

impairment occurs.  

Letting a denote the age at which a tree’s immediate environment becomes 

invaded8, and extrapolating back to the plot level, we can model the production of an 

equivalent evenly impaired9 plot as 

g(t, a) = (1 – δ(a))f(t – τ(a))         [2] 

where τ(a) [Eq 3] represents a decrease in the rate of tree growth via a reduction in a 

tree’s effective age such that a tree’s effective age is equal to t – τ(a), while δ(a) [Eq 4] 

represents the percent reduction in the probability of juvenile survival10 and thus also 

represents the percent decrease in overall density of merchantable timber. 

In order to account for the fact that trees are only susceptible to impairment from 

invasion when their height is below that of their invasive competition, we let ā denote the 

age at which the height of an unimpaired tree reaches that of the invasive plant, rendering 

it no longer susceptible to impairment11. We can thus describe τ(a) and δ(a) as follows: 

τ(a) ≥ 0, dτ/da ≤ 0, τ(a ≥ ā) = 0     [3] 

δ(a) ≥ 0, dδ/da ≤ 0, δ(a ≥ ā) = 0       [4] 

                                   
6 For the purposes of this paper, we define ‘juvenile’ as referring to trees whose height falls below 
the expected height of the invasive shrub and are thus susceptible to impairment. 
7 Defined as the corresponding age of an equivalently sized, unimpaired tree. For example, a 
8 We assume that, once a tree has become invaded, it remains invaded until harvest. 
9 That is, all trees within the plot where invaded at the same age, a. 
10 Specifically, outliving impairment to become merchantable.  
11 Where invasive plant height is assumed to be a fixed constant. 
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This is to say that our impairment functions are constrained to be non-negative, 

and that they decrease as the age of impairment increases, reaching a value of zero once a 

tree has reached ā. For the sake of notational convenience, we let τ and  represent    

τ(α = 0) and δ(α = 0), or the maximum impairment levels. 

 

Modeling Infestation Growth Dynamics 

Let y(t) represent the total percentage of forest area invaded, which we will refer to 

simply as the invasion level, in period t, where y0 denotes this invasion level at the time 

of planting. Because y(t) represent the total percentage of forest area invaded, it takes the 

constraint 0 ≤ y(t) ≤ 0. When t is already specified and we wish to refer to the invasion 

level at some other point in time we follow the standard sub-script notation yi = y(t = i). 

For example, yā would denote percent area invaded at the time when unimpaired trees 

transitions from being a susceptible juveniles to being an insusceptible adults.  

We model the invasion’s spread as resulting from the product of invader seed 

deposits and the rate of seedling survival as 

ý(t) = dy/dt = σ0(t)z(t)           [5] 

In the equation above, z(t) denotes the quantity of invader seeds deposited in t and is a 

function of local seed production and inbound seed deposits from offsite. The expression 

σ0(t) denotes the probability of a invader seed germinating and surviving to adulthood 

and is assumed to be a function of t in at least as much as that it is bound by the 

constraint y(t) + dy(t)/dt ≤ 1.12 We impose the final constraint that ý(t) ≥ 0 to ensure that 

                                   
12 Given y ∈ [0,1], seedling survival must be equal to zero once y(t) = 1. 

δ
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once a tree has become invaded, it remains invaded until harvest, allowing us to model 

impairment as based solely on the age at which a tree becomes invaded. 

 

The Impairment-Class Structured Timber Production Function 

Combining our single impairment-class timber production function (Eq 2) and our 

marginal invasion growth function (Eq 5), we can now put forth our impairment-class-

structured timber production function, F(t, y0, ý), that allows for the potential of different 

cohorts of trees becoming invaded as different ages and thus facing heterogeneous levels 

of impairment. When a is continuous, this model of timber production under class-

structured juvenile impairment from a single invasive shrub takes the form  

F(t, y0, ý) = y0g(t, α = 0) + ∫[0, ā]  ý(t = u)g(t, α = u) du + (1 – y(ā))f(t)        [6 C] 

 =  y0(1 – δ(a = 0))f(t – τ(a = 0))                             

+ ∫[0, ā]  ý(t = u)(1 – δ(a = u))f(t – τ(a = u)) du      

+ (1 – yā)f(t)         

In the equation above, the first expression, y0g(t, α = 0), denotes the total volume of 

merchantable timber available in time t produced by trees that were impaired at the time 

of planting, i.e. α = 0, while the last expression, (1 – yā)f(t), denotes the total volume of 

merchantable timber available in time t produced by unimpaired trees, where 1 – yā 

represents the percent of trees that reached ā without becoming invaded. The middle 

integral term combines the total volume available in time t from all trees impaired at 0 < 

a  < ā by ‘continuously summing’ the percentage of trees impaired at each a, ý(t = a), 

multiplied by its corresponding impaired production function, g(t, α).  
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 This continuous model can be just as easily (and perhaps more intuitively) 

expressed in its discrete form as  

F(t, y0, ý) = y0g(t, α = 0) + Σ[i=1, ā – 1] (yi – yi–1)g(t, α = i) + (1 – yā–1)f(t)            [6 D] 

                   =     y0(1 – δ(a = 0))f(t – τ(a = 0))                               

        + Σ[i=1, ā – 1] (yi – yi–1)(1 – δ(a = i))f(t – τ(a = i))     

                          + (1 – yā–1)f(t)                

While the first part of this expression, y0g(t, α = 0),  remains unchanged, the second and 

last terms have both been modified. In our final term, f(t) is now multiplied by 1 - yā–1 

rather than 1 - yā. This change is to account for the fact that in a discrete-time setting, ā – 

1 represents the last period in which unimpaired trees are susceptible to impairment and 

thus 1 - yā–1 represents the percentage of trees that reach adulthood (insusceptibility) 

without becoming impaired. This same logic also applies to the middle expression. In 

addition to replacing the integral with a summation, the upper bound of summation is 

now ā – 1 instead of ā to account for the fact that those invaded at α = ā – 1 represent the 

last cohort of impaired trees. This summation expression can be expressed in its 

generalized expanded form as (y1 – y0) g(t, α = 1) + ... + (yā-1 – yā-2) g(t, a =  ā – 1), where 

the ellipses represent the timber produced by all trees impaired in the intermediate 

periods. 

 

Tree Age Class and Total Forest Composition 

In addition to belong to an impairment class, individual trees can also be 

described as belonging to one of three chronological age classes depending on its 

effective age, namely juvenile, pre-merchantable adult, and merchantable adult. A 
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juvenile tree is define as having an effective age below ā (i.e. t – τ(a) < ā); a pre-

merchantable adult is define as having an effective age at or above ā, but below T1 (i.e. ā 

≤ t – τ(a) < T1); a merchantable adult is define as having an effective age greater than or 

equal to T1 (i.e. t – τ(a) ≥ T1).13  

While the result of this age-class-structure on the total forest composition is to 

produce a mixed-age-class forest for certain values of t, once t reaches T1 + τ , the forest 

will have evolved into a single-age-class forest comprised entirely of merchantable 

adults. It is important to note that even when the forest is comprised of a single age class, 

it will still be comprised of trees belong to multiple impairment classes so long as y0 < 1 

and y(t) > 0 for some t ≤ ā. For a graphical illustration of how both the age class of an 

individual tree, as well as the total forest composition, evolve over time see Figure 1. 

 

 

 

 

                                   
13 For the case where T1 = ā, all adults are merchantable and there is no longer an intermediate 
pre-merchantable adult stage. 



 
 

19 

 

The Economic Model 

Present Value of Timber and Optimal Rotation Age 

In their analysis of the effect of disease on the optimal forest rotation, 

Macpherson et al. (2016, and henceforth referred to simply as ‘Macpherson’) develop a 

single rotation version of the Faustmann model for an even-aged forest where the net 

present value (NPV) of a forest plot includes the cost of planting, the benefits of 

harvesting, and a payment for future land rent (which is received every year after 

harvesting). To ensure that any differences between our results and theirs are the result of 

changes in the ecological framework and not the economic framework, we use this same 

model with only minor cosmetic changes. The rationale behind using a single rotation 

Faustmann model, rather than the more traditional infinite rotation Faustmann model is 

that once the timber production function has been modified to include the invasion level 

at the time of planting, y0, there is no longer a single optimal rotation age across all 

rotations due to the fact that different rotations are likely to have different values for y0 

such that the optimal rotation age will differ from rotation to rotation depending on the 

long-term spread of the invasion.  

In line with Macpherson, we assume that planting costs, timber revenue, and rent 

payments are constant and scale linearly with the size of the plot, H. Letting T denote the 

rotation length (harvest age), planting costs are equal to H×C0, timber revenue is equal to 

H×p×F(T, y0, ý), and sum of future land rents are equal to H∫[T, ∞] A dt. Here, C0, 

denotes the planting costs, p denotes the per-cubic-meter price of standing timber, and A 

denotes the annual rent payment received in each year after harvest, all three of which are 
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assumed constant and known. Letting π denote the forest manager’s annual exponential 

discount factor (applied to both revenue and rents), we can write the net present value at 

the time of planting for an H sized forest with rotation age T as 

NPV(T, y0, ý) = H[−C0 + pF(T, y0, ý)e-πT +∫[T, ∞] Ae-πt dt]  [7] 

In order to solve for the value of T that maximizes the NPV, which we denote as 

T*, we can take the first-order condition by differentiating Eq 7 with respect to T. By 

setting this first-order condition (FOC) equal to zero, we can express the FOC as a 

function of p, π, A, and F(T*, y0, ý) as 

dF/dT|T=T* = πF(T*, y0, ý) + A/p     [S1] 

According to this optimality condition, the optimal rotation age is independent of both C0 

and H. This is not surprising since planting costs are independent of T and NPV scales 

linearly with H. Henceforth, we therefore set H = 1 and C0 = 0.14 As described by 

Macpherson, this condition also implies that T* is determined by balancing the marginal 

gains from waiting to harvest (left-hand side) with the marginal cost of waiting (in terms 

of both discounted future revenue and foregone rent payments, right-hand side). We can 

also see that just as an increase in π will lead to a reduction in T* by increasing the 

marginal cost of waiting to harvest, it also tells us that as A increases, T* will (at least 

weakly) decrease as well, a finding that Macpherson points out is in line with previous 

studies (e.g. Amacher at al. 2009). 

                                   
14 Planting costs are not set to zero simply because they are a sunk cost that does not factor in the 
harvest decision, but also to be in line with Macpherson who take the net cost of planting to be 
zero on the basis that the gross cost of planting is the same as the government subsidy payment 
available for Woodland Creation in the form of an initial planting payment (see Macpherson et al. 
2016 for more details). 
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 Macpherson goes on to show that when the timber production function is defined 

as an increasing, concave function, then the second derivative of Eq 7 evaluated at T* is 

negative, telling us that there is a single solution for T* and that this value corresponds to 

the global maximum of the NPV function, i.e. we know that T* is indeed the rotation age 

that maximizes the NPV.  

Before moving on, we define the expression NPV*(y0, ý(t)) as denoting the plot’s 

maximum net present value given the invasion level at the time of planting, y0, and the 

rate of invasion spread over time, ý(t). 

 
Economic Damages from Invasion 

In order to calculate the economic damages resulting from the invasion, denoted 

as Dam(y0, ý), we let TU, NPVU represent the optimal rotation age and the resulting net 

present value in the absence of invasion; specifically, TU = T* when y0 = 0, ý(t) = 0, NPVU 

= NPV(TU, y0 = 0, ý(t) = 0). Our damage function than thus be expressed as 

Dam(y0, ý(t)) = NPVU – NPV*(y0, ý(t))             [8] 

which is the reduction in the plot’s NPV as a result of the invasion level at the time of 

planting, y0, and the rate of invasion spread over time, ý(t). This damage function can also 

be thought of as a producer’s willingness-to-pay (WTP) for the permanent eradication of 

the invasion within the plot at the time of planting. 

 

Optimal Integrated Invasion Management 

 In the economic model laid out above NPV was the result of the choice variable 

T*, where T* was a function y0 and ý(t) (along with the other parameters discussed), both 

of which were assumed to be exogenously determined. We now expand the model to 
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consider the case where y0 and ý are endogenously determined based on the producer’s 

integrated invasion management strategy. We define a producer’s integrated invasion 

management strategy as a combination of r and m, where r represents the pre-planting 

invasion removal rate (percent reduction in y0), while m represents a reduction in seedling 

survivability (percent reduction in ý(t), ceteris paribus) resulting from pre-planting 

invasion prevention/mitigation (e.g. ground cover).  

 Modeling the Effects of Invasion Management 

Staring with the effect of invasion removal, we express the invasion level at the 

time of planting given r, y0(r), as 

y0(r) = (1 – r)y, where y, r	∈ [0,1],             [9] 

where y represents the pre-removal invasion level and r represents the removal rate 

(proportional).  

We model the effect of m on ý(t) in much the same way. Recall that earlier we 

introduced Eq 5 as ý(t) = dy(t)/dt = σ0(t)z(t), where σ0(t) represented the probability of a 

deposited invader seed surviving to adulthood. Just as we let y denote the pre-removal 

invasion level above, we let the term σ(t) to represent the natural (pre-prevention) 

seedling survival rate and model the effect of invasion prevention as reducing this natural 

seedling survival rate by m×100% such that σ0(t) = (1 – m)σ(t). Substituting this new 

expression into Eq 5, we model the invader’s marginal growth rate as a function of 

mitigation, ý(t, m), as  

ý(t, m) = (1 – m)σ(t)z(t)         [5.1] 
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Willingness-to-Pay for Invasion Management 

We define a producer’s willingness-to-pay for a given management strategy (r, m) 

as being equal to the corresponding reduction in economic damages, i.e. the difference 

between the damages incurred when y0 = y, σ0(t) = σ(t) and when y0 = (1 – r)y,  σ0(t) = (1 

– m)σ(t). Substituting each of these two scenarios into their own damage equation (Eq 8) 

and subtracting the latter from the former, we can express a producer’s willingness to pay 

for (r, m) as 

WTP(r, m | ϕ) = Dam(y0 = y, ý(t) = σ(t)z(t))     

   – Dam(y0 = (1 – r)y, ý(t) = (1 – m)σ(t)z(t))       [10] 

where ϕ denotes y, σ(t), and z(t). 

Measuring Producer Welfare from Invasion Management 

We can now move on to calculating the potential producer surplus (PS) obtained 

from r and m, which for our purposes we define as the difference between what the 

producer is willing to pay for r and m, minus the actual cost.15 Given some management 

cost function c(r, m), we can express the corresponding potential producer surplus as 

PS(r, m | ϕ) = WTP(r, m | ϕ) − c(r, m).    [11C] 

 Optimal Invasion Management Strategy 

We now move on examine a producer’s optimal integrated invasion management 

strategy, which we define as the combination of r and m that maximizes PS. We begin by 

presenting the optimal solution for the case where r and m are continuous choice 

                                   
15 While this definition traditionally applies to the concept of consumer surplus, in this case the 
timber producer is also a consumer of invasion management. As we refer to the forester as a 
timber producer through the paper, we refer to the positive welfare achieved via invasion 
management as producer surplus rather than consumer surplus to avoid confusion. 
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variables, before moving on to the more realistic case where potential values of r and m 

are constrained to be members of a discrete choice set. 

When r and m are both continuous choice variables between 0 and 1, the optimal 

invasion management strategy can be expressed using optimization notation as 

(r*, m*) = argmax{r, m	∈ [0,1]} PS(r, m | ϕ).   [S2.1] 

In reality, however, r and m are unlikely to be continuous choice variables. 

Rather, producers typically face a finite set of potential management strategies they must 

optimize across, each with its own associated cost. Given a finite choice set {(r1, m1, c1), 

..., (rN, mN, cN)} with choice index n, we can express the potential producer surplus 

obtained from management strategy n as 

PS(n | ϕ) =  WTP(rn, mn | ϕ) − cn    [11D] 

In this discrete choice setting, the optimal solution becomes n*, which can be written 

using optimization notation as  

n* = argmax{n ∈ [N]} PS(n | ϕ) = WTP(rn, mn | ϕ) − cn.   [S2.2] 

 

A Conditional Formulation of the Optimal Invasion Management Strategy 

Thus far we have argued that our modeling procedure provides timber producers 

with a generalizable framework for determining the optimal response to the presence of 

an invasive shrub that impairs timber regeneration. We are well aware, however, that 

while our modeling procedure may be tractable to the academic/research community, for 

many real-world timber producers there are likely to exist significant barriers in 

achieving the calculation we have put forth, and that doing so will likely require the help 
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of an extension specialist. We therefore devote this concluding sub-section to a 

discussion of how our model might best be used from an extension perspective. 

In the proceeding pages we have outlined how to determine the optimal invasion 

management strategy from a discrete set of strategies as a function of the pre-

management invasion level, y, whose value depends on individual planting/harvesting 

schedules and is therefore likely to vary across producers, and a number of functions, the 

other parameters values of which are likely to be comparable for all producers in similar 

economic and ecological conditions (e.g. F(t, y0, ý), σ(y(t)), z(y(t), β), τ(a), and δ(a)). All 

this is to say that within a homogenous cohort of timber producers, the optimal choice 

among a fixed set of invasion management strategies for a single producer will depend 

primarily on that producer’s level of invasion as they prepare for planting, y. Thus, from 

an extension point of view, it might prove most useful to present a given population of 

producers with a decision-support tool in the form of a table that presents the 

corresponding optimal invasion management strategy across various ranges of y.16, 17, 18, 19 

In its generalized formulation, this simplified decision rule reduces to 

n* = n if y ∈ yn*      [S2.3] 

 

                                   
16 For example, implement Strategy 1 when y < 0.3, implement Strategy 2 when 0.3 ≤ y ≤ 0.7, and 
implement Strategy 3 when y > 0.7. 
17 With the extension specialist aiding the producer in calculating y when need be. 
18 For the sake of mathematical rigor, consider again the case of N discrete management options. 
If we let yn* represent the set of all values of y for which PSn(y) ≥ PSn’(y) for all n’ ≠ n, it must be 
the case that the union of all N sets of yn*  will contain all values of y on the open interval (0, 1) 
and therefore contain the optimal management strategy for every possible value of y. 
19 (In response to the previous footnote) Although this formulation allows for the possibility of 
one or more values of y at which the producer is indifferent between two (or more) strategies due 
to the necessity of the weak inequality PSn(y) ≥ PSn’(y), this should rarely be an issue in practice 
due to both the continuous nature of y and the fact that either strategy can be considered equally 
cost-effective. 
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IV. NUMERICAL FRAMEWORK 

 In this section of the paper we provide the explicit functional forms for the 

equations of our general model used to obtain our numerical results.  

The Unimpaired Timber Production Function  

 { 
   

f (t) =  
0 if t < T1 

[1.1]] 

V(1 − eb(t - T1)) + v1 if t ≥ T1  
     

In the expression above, T1 represents the age at which an unimpaired plot reaches 

a minimum merchantable height, while v1 represents the unimpaired volume produced at 

that height (before which the merchantable volume is equal to zero). V represents the 

maximum attainable volume beyond v1, while b is the volume-growth parameter of the 

unimpaired timber production function. It is also important to point out that v1 and b both 

also account for natural tree mortality in the absence of invasion. 

 

The Impairment Functions 

 Modeling Growth Delay 

 As discussed in the previous section, τ(α) denotes the reduction in a tree’s 

effective-age, given α. Thus, rather than reaching said merchantable height at age T1, as is 

the case in the absence of impairment, said tree instead reaches its merchantable height at 

age T1 + τ(α).  

 Letting τ represent the maximum potential delay, i.e. the delay experienced by 

trees impaired at age zero, we can model τ(α) as follows: 

τ(α) = τ (ā – α)/ā if a < ā; else 0        [3.1] 
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where (ā – α)/ā represents the proportion of τ  experienced by the tree such that a tree 

invaded at age ā/2 experiences half the delay of a tree invaded at age zero. Because g(t, 

a) = 0 for all t below T1 + τ(a), and T1 is assumed to be greater than or equal to ā, we 

need not worry about calculating a tree’s effective age prior to reaching merchantability, 

allowing τ(α) to be calculated independent of t.20 Because τ(α) represents a reduction in a 

tree’s effective-age, In addition, we constrain τ(α) to be non-negative. 

  

Modeling the Reduction in Juvenile Survival/Adult Density 

We now move out to modeling the reduction in tree survivability as a function of 

α, where δ(α) represents the additional juvenile mortality induced by impairment. Since 

the parameters of the unimpaired timber production function, f(t), already account for 

natural mortality in the absence of invasion, we let s represent the relative survival rate 

(per-period) of an impaired and unimpaired tree such that s = impaired survival rate / 

unimpaired survival rate, or the percentage of natural mortality survivors that will also 

survive juvenile impairment in a given period.  

Given that τ(α) represents an impaired tree’s delay in reaching insusceptibility and 

recalling that ā represents the age at which an unimpaired tree reaches insusceptibility, 

the total length of time that an impaired tree will be actively impaired for will be equal to 

                                   
20 This is to say that while it is not true that a tree’s effective age is equal to t − τ(a) prior to 
achieving insusceptibility, because a tree’s merchantable volume is constrained to be equal to 
zero prior to achieving insusceptibility, we need only concern ourselves with the growth delay 
experienced by merchantable timber. Furthermore, because trees are no longer susceptible to 
impairment by the time they reach merchantability, the reduction in said tree’s effective age will 
remain constant over time. In other words, there is no difference between a tree’s merchantable 
volume prior to reaching merchantability regardless of τ(a), and once merchantability (and thus 
insusceptibility) has been reached, τ(a) stays constant until harvest. 
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ā – α + τ(α) when α < ā; else 0. We therefore express the total mortality caused by 

impairment as 

δ(α) = 1 − sā – α + τ(α) if α < ā; else 0    [4.1] 

 

The Impaired Timber Production Function for a Single Impairment Class 

Plugging Equations 3.1 and 4.1 into Equation 2, we can rewrite g(t, a) in its fully 

expanded form as 

g(t, a) = { s
ā – α + τ-bar (ā – α)/ā f(t – (ā – α)/ā) when α < ā                  

[2.1] f(t) when α ≥ ā 
 

Before moving on, recall that earlier we defined the term δ  = δ(α = 0), or the 

maximum level of invasion-induced mortality. This can now be explicitly expressed as 

 = 1 – sā + τ-bar. The reason why we draw attention to the term δ  is that given the 

limited data available on the impacts of many invasive shrubs, it may in fact prove easier 

in some cases to estimate δ  than to estimate s directly. In such cases, once ā and τ  have 

be estimated, s can be estimated as a function of δ  as s = (1 – δ )1/(ā + τ-bar). As such, this 

method could also be used to cross-validate estimates obtained from different data sets.  

 

The Invasion Growth Model 

We next need to specify a functional form for ý. In Section III, we expressed the 

generalized form of ý as 

ý(t, m) = (1 – m)σ(t)z(t)    [5.2] 

τ

δ
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where z(t) represented the total number of invader seeds deposited in the plot in time t 

and was a combination of local onsite seed dispersal and inbound seed dispersal from 

invaders on neighboring properties. This total number of deposited seeds was then 

multiplied by (1 – m)σ(t), or the probability of a deposited seed surviving to maturity in 

the absence of invasion mitigation, σ(t),21  multiplied by the reduction in invader seedling 

survival resulting from invasion mitigation, (1 – m).  

In order to present a functional form that is not only straightforward, but also 

contains all the components necessary for our sensitivity analysis, we make the following 

assumptions. First, that the average number of locally deposited seeds produced per area 

invaded is constant over time. Secondly, we assume that the rate of seedling survival is 

constant over all values of y(t) < 1, and it equal to 0 when y(t) = 1.22 Lastly, in order to 

achieve consistent numerical solutions, we also make the simplifying assumption that the 

rate of inbound seed dispersal from neighboring invaders is constant over time. This 

framework allows us to distribute and combine terms, rewriting 5.1 as  

ý(t, m) = (1 – m) (β1y(t) + β2) when y(t) < 1; else 0   [5.2 C] 

 

Above, β1 represents the quantity of locally deposited seeds that enter the invader 

population (in units of total area) per y(t), making β1 the product of the local seed 

production rate per y(t) and the seed survival rate while. Similarly β2 represents the 

quantity of inbound seed that go on to enter the invader population (also in units of total 

area) in each period and is the product of the inbound seed rate and the seed survival 

                                   
21 Which we said was equal to zero when y(t) = 1. 
22 This is in line with the most recent and comprehensive model of glossy buckthorn population 
dynamics, Swewczyk et al. (forthcoming). 
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rate). When y(t) = 1, ý(t, m) = 0, which can be thought of as forcing β1 and β2 equal to 

zero by reducing the seed survival rate to zero. 

 When applying our model to a discrete-time setting, ý(t, m) can be expressed 

using first-difference notation as yt+1 – yt = min((1 – m)(ytβ1 + β2), 1 – yt). 

 

The Impairment-Class Structured Timber Production Function 

Having specified the explicit functional forms for g(t, α), τ(α), δ(α), y0(y, r), and 

ý(t, m), they can now be plugged into either the continuous or discrete-time version of our 

impairment-class-structured timber production function to obtain an explicit form for  

F(t, y0, ý | r, m).  

In its continuous-time form,   

F(t, y0, ý | r, m) =  (1 – r)y(1 – δ )f(t – τ )                           

                    + ∫[0, ā]  ý(t = u, m)(1 – δ(u))f(t – τ(u)) du                

                       + (1 – yā)f(t).                   [6.1 C] 

In its discrete-time form, 

F(t, y0, ý | r, m) =  (1 – r)y(1 – δ )f(t – τ )                           

                  + Σ[i=1, ā – 1] (yi – yi–1)(1 – δ(i))f(t – τ(i))     

                             + (1 – yā–1)f(t).                                                  [6.1 D] 

In the discrete formulation, the total volume of timber produced is equal to the sum of the 

timber produced by a total of ā + 1 impairment classes, each of which suffer their own 

unique level of impairment. For a comprehensive description of each impairment class 

using our baseline values of ā, τ , and s, see Table 1. 
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IV. NUMERICAL RESULTS 

The parameter values used to obtain our numerical results are presented in Table 

2. All parameters relating to unimpaired timber production are taken from Macpherson et 

al. (2018) and are based on a yield class 14 Picea sitchensis without thinning and with 2-

m initial spacing.23 Our baseline estimates for the impairment parameters ā, τ , δ , and s 

were estimated using data from Fagan & Peart (2014) and Lee, Eisenhaure & Gaudreau 

(2016) who both analyzed the effect of the invasive shrub glossy buckthorn (Frangula 

alnus Mill.) on eastern white pine forest regeneration using independent data sets. These 

parameter estimates, as well as alternate values considered, are presented in Table 3. 

Table 2: Unimpaired Timber Production Parameters 
Parameter Definition Value 
H Area of forest 1 ha 

T1 
Age when an unimpaired forest becomes 
merchantable 15 years 

v1 Volume produced at T1 43 m3 ha-1 
V Maximum attainable volume on top of v1 1500 m3 ha-1 

b Fitted timber production parameter -0.01933 
p Standing price of timber $22.48 m-3 
π Discount rate 0.03 

C0 Forest establishment (planting) cost $0 ha-1 
A Future rent payments (annually, after harvest) $0 ha-1 
Notes: All above values come directly from Macpherson et al. (2018). The price of 
timber has been converted from British Pounds to US Dollars. For additional 
information on how these parameters were estimated and why some are set to zero, 
see Macpherson. 

 

  

                                   
23 Like Macpherson, we set the land rent parameter equal to zero in order to more clearly 
determine the relative effects of our impairment and invasion parameters, as well as to allow for a 
direct comparison of their results and ours. 
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Table 3: Best Estimates and Alternative Values for Impairment Parameters 

Parameter Definition 
Best 

Estimate 
Alternative 

Values 

ā 
The age at which an unimpaired tree reaches adulthood 
(insusceptibility) 10 n/a 

τ  Reduction in the effective age for trees invaded at the time of 
planting 5 0, 10 

δ  
Reduction in the overall juvenile survival rate for trees invaded at 
the time of planting 2/3 0, 1/3 

s Annual net-survival rate for an impaired juvenile 0.93 1, * 

Notes: As previously discussed, δ  and s are not independent estimates as s = (1 – δ )1/(ā + τ-bar). 
Using this formulation, s depends not only on δ , but also on ā and τ so long as δ  > 0). Thus, 
in order to analyze the effects of invader-induced juvenile mortality in a way that is independent 
of τ , we consider alternate values of δ  rather than s. For completeness, given ā = 10 and δ  = 
1/3, s is approximately equal to 0.96, 0.973, and 0.98 for τ = 0, 5, and 10, respectively. Also note 
that s denotes the annual survival rate net of the natural survival rate. 

 

We begin by examining the effects impairment on the optimal forest rotation age, 

along with the subsequent economic damages. We then move on to demonstrate how our 

modeling framework can be used to optimize across a discrete set of invasion 

management strategies. 
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Optimal Forest Rotation Age 

Sensitivity to Impairment Parameters Under Static Impairment  

 

Figure 2 

 

 

Figure 2 presents the optimal rotation age (T*) as a function of initial infestation 

level (y0) across six possible combinations of impairment parameters (described in terms 

of τ and δ ) for the case where invasion levels are assumed constant over time (β1 = β2 = 

0, or y(t) = y0 for all t). Though making such an assumption may be unrealistic in most 

cases, we do so temporarily in order to isolate the competing effects of delayed growth 

and reduced juvenile survivability in a way that is not compounded by the additional 

competing effects of β1 and β2. The left-hand graph plots the optimal rotation age for the 

case where trees infested at the time of planting face a 5-year delay in reaching their 

merchantable height (τ = 5), while the center graph plots the optimal rotation age for the 

case where trees infested at the time of planting face a 10-year delay in reaching their 

merchantable height (τ = 10). For both delay scenarios, we consider three (3) potential 
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reductions in overall density, namely 1) trees infested at the time of planting face no 

reduction in density, 2) trees infested at the time of planting face a 1/3 reduction in 

density/survival (δ  = 1/3), and 3) trees infested at the time of planting face a 2/3 

reduction in density/survival (δ  = 2/3).  

While the left and center graphs compare the optimal rotation age across different 

density reduction values for a fixed delay parameter, the right-hand graph compares the 

effect of the growth delay parameter across each of the three density reduction scenarios. 

For an apples-to-apples comparison, we normalize this y-axis to be in units of (T* − TU)/ 

τ , which is to say in terms of the extension in the optimal rotation age, T* − TU, as a 

fraction of the maximum delay. For all three (3) subplots we include a 45° line to aid the 

reader in determining the concavity/convexity of a given curve. 

Starting our examining of these results with the left-hand graph, we see that when 

impairment reduces juvenile growth without reducing juvenile survival (τ > 0, δ = 0), the 

extension in the optimal rotation age is concave over y0 (d2T*/dy0
2 < 0), though only 

barely so (as evidenced by the fact that the blue and black lines are nearly overlapping 

with the blue line being only slightly higher than the black 45° line for 0 < y0 <1). Thus, 

we find that in the absence of any density/survival reduction, the optimal rotation age in 

the case of static impairment is approximately equal to TU plus the average delay, or      

T* =  TU + y0τ .  

Once we introduce a reduction in density/survival for impaired trees, however, 

this curve becomes convex over y0 (d2T*/dy0
2 > 0), with optimal extension in rotation age 

following below that of the average delay. This result makes sense intuitively due to the 

fact that the impaired cohort of trees will be producing less timber and thus their relative 
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value will be reduced, i.e. less relative importance is placed on the impaired trees thus 

reducing their impact of the optimal rotation age.  

At first glance, the center subplot looks nearly identical to the left-hand subplot, 

save that as τ  has been doubled so has the range of the y-axis. However, overlaying 

these two subplots in units of (T* − TU)/τ  allows us to see that this transformation is not 

entirely linear, but rather that increasing τ in the center subplot caused T*(y0 | τ, δ) to 

become less convex/more concave for all three curves, though only very slightly (the 

result of a small Jensin’s inequality). This tells us that the effect of τ on T* is 

approximately linear such that doubling τ  roughly doubles the additional time between 

TU and T*. 

Lastly, as should be expected in the case of static impairment, across all six 

scenarios we observe that when y0 = 0, T* = TU, whereas when y0 = 1, T* = TU + τ .  

 

Sensitivity to Invasion Growth Parameters  

Figure 3 
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In Figure 3 we abandon our earlier assumption of fixed invasion levels to examine 

the effects of increased impairment over time on optimal rotation age, T*, as a function of 

initial invasion level, y0, using our baseline estimates of τ  and s. We consider three rates 

of local seed dispersal and survival, β1, (from left to right 0.05, 0.10, and 0.25) in 

combination with three levels of inbound seed dispersal and survival, β2, (0 (purple), β1/2 

(blue), and β1 (green)). In each sub-plot, the lower red line serves as our baseline results 

from the case of static impairment (i.e. β1 = β2 = 0). Whereas in Figure 2 we observed 

that when 0 < y0 <0, an increase in the rate of mortality for impaired trees led to a 

decrease in T* by reducing the volume produced by impaired trees and thus their relative 

importance, when we include the impact of increasing invasion levels over time we find 

that as the rate of local invasion growth (β1) increases, the optimal rotation age increases 

(dT*/dβ1 > 0) for all 0 < y0 <0, with T* increasing faster for lower levels of y0 and 

decreasing as y0 approaches 1. We also observe that while β2 has the similar effect of 

increasing T*, it does so for all values of y0 < 1. This is because the presence of inbound 

seed dispersal no longer means that T*(y0  = 0) is equal to TU. For example, when β1 = β2 

= 0.25, the optimal rotation solution when y0  = 0 is to extend TU by almost 4 years (or 

almost 80% of the maximum delay of 5 years). 

While the finding that the presence of invasive shrubs increases the optimal 

rotation length is intuitive given the underlying mechanics of impairment, this finding is 

in striking contrast to previous results found under other models of the effect of 

biological invasion (non-shrub) on optimal rotation length, specifically Macpherson (see 

Background section for more details). This is because traditional models of invasion-

induced impairment model the damages caused by impairment as continuing to increase 
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into adulthood as the invasion continues to spread. Thus there becomes a tradeoff 

between increased growth and increased impairment that causes producers to harvest 

earlier than they otherwise would to avoid additional damages. In contrast to these 

models, our model accounts for the fact that the damages resulting from impairment 

remain fixed once all trees have become merchantable, thus eliminating this incentive to 

harvest early. Rather, the delay in growth has the effect of increasing the point in time 

when the marginal benefits from additional growth become equal to the marginal losses 

from additional time discounting.  

The finding that the optimal response to the presence of invasive shrubs is to 

extend rather than reduce rotation length is important not just because adjusting harvest 

decisions in the face of an ecological disturbance is an essential tool in reducing the 

overall impact of that disturbance, but due to the fact that any determination of the 

optimal invasion management strategy implicitly relies on determining the optimal 

rotation length under each potential invasion management scenario24,25.  

 

Economic Damages 

We now move on to examine the corresponding economic damages associated 

with the scenarios presented in Figure 3. Figure 4 shows the economic damages incurred 

by the producer as a result of the invasion population dynamics.  In each graph, the red 

shaded area depicts the damages resulting from the initial invasion level, y0, and is 

equivalent to the damages incurred under the static impairment model and are therefore 

                                   
24 Specifically, in order to compare one or more invasion management strategies, one must 
calculate NPV in each scenario, with each NPV equation taking its own T* as a necessary input 
such that the solution for T* is nested within the solution for the optimal management strategy. 
25 This is also true for calculating economic damages. 
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constant across all values of β1. The purple shaded area represents the additional damages 

incurred as a result of strictly local invasion growth26, which can be thought of as the 

internalized spillover effects of y0. The blue shaded area represents the damages incurred 

as a result of imported invaders in the case of medium dispersal and can be thought of as 

the negative externality imposed on the producer from inbound offsite invaders. The 

green area represents the additional damages from dispersal in the high dispersal case, 

such that the total damages resulting from high dispersal are equal to the combined height 

of the blue and green area, or the distance between the green and purple line.  

Figure 4 

 

Focusing on the externally-caused damages, we can observe that when y0 and β1 

are relatively small, the marginal damages caused by β2 approximately double when β2 is 

doubled. However as y0 and/or β1 increase, the marginal effect of β2 decreases and may 

even become equal to zero (i.e. the points where the blue and green lines overlap). This 

results from the fact that when y0 and/or β1 are sufficiently high, y(t) will reach its upper-

bound of 1 quickly enough that the effect of additional inbound seed dispersal becomes 

                                   
26 New invaders originating from those present in the time of planting. 
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minimal. Not surprisingly, increasing β1 has the affect of increasing damages for all         

0 < y < 1. 

While all lines no longer share the same value at y0 = 0, they still share the same 

level of maximum damages at y0 = 1, which we can solve for explicitly in terms of % of 

NPVU Lost as  

Max % NPVU Lost = 100%×(1 – (1 – )e-rτ-bar). 

Using our best estimates of τ  and  for the shrub glossy buckthorn and 

assuming a discount rate of 0.03, we find that buckthorn has the potential to reduce the 

present value of a forest plot by 71.5%. This loss in NPV is the combined result of a 2/3 

reduction in the volume of merchantable timber caused by increased juvenile mortality, 

with the additional roughly 3.8% loss resulting from a 5-year delay in becoming 

merchantable leading to a 5-year increase in the optimal rotation age and thus an 

additional five years of discounting. 

 What we find particularly noteworthy about Figure 4 are not its results per se, but 

rather in the ability to decouple the internal and external damages experienced by the 

forest manager. This is because while this paper focuses exclusively on the private 

decision-making of a single manager, this framework also has the potential to be used in 

an optimal policy-design setting as well. By expanding our model to consider multiple 

forest plots and including site-specific dispersal, it is possible to calculate not just the 

private benefits of invasion management for a specific site, but also the external (social) 

benefits of invasion management on that site as well. Such an ability is particularly useful 

for the case of optimal subsidy design since the socially optimal subsidy is the one that 

sets subsidies equal to the external benefits produced. 

δ

δ
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Optimal Integrated Invasion Management Strategy 

Optimal Strategy as a Function of y Across 9 Invasion Growth Scenarios (β1, β2) 

 In order to demonstrate how our modeling framework can be used to determine a 

producer’s optimal invasion management strategy, we allow the producer to choose 

between a discrete combination of integrated management strategies, specifically ‘no 

control’, ‘prevention only’, ‘removal only’, and ‘prevention and removal’. Parameter 

values (r, m, c) for each strategy are outlined in Table 4. Recall that whereas in our 

previous analyses our results were a function of the invasion level at the time of planting, 

y0, the optimal invasion management strategy is a function of the pre-management 

invasion level, y, where y0 = y(1 – r). Figure 5 presents the optimal invasion management 

strategy as a function y across the nine scenarios presented in Figures 3 and 4. 

Table 4: Description of Potential Invasion Management Strategies 
Management Strategy r m c 
No Control 0 0 0 
Prevention Only 0 0.175 $50 ha-1 
Removal Only 0.9 0 $1730 ha-1 
Prevention and Removal 0.9 0.175 $1780 ha-1 
Notes: Removal and prevention rates sourced from Szewcyk et. al 
(forthcoming). Cost data sourced from Lee (2017). Costs have been 
converted from per acre to per hectare.  
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Figure 5 

 

  

Examining Figure 5, we observe that across all 9 scenarios, ‘prevention only’ is 

strictly preferred across some set of pre-management invasion levels, y. In the absence of 

inbound dispersal, the lower bound of this set will always be > 0 due to the fact that 

without inbound dispersal, Dam(y0 = 0) = 0. Once inbound dispersal is included, 

however, this lower bound quickly approaches 0, making invasion prevention a cost-

effective strategy even when no invasion is present at the time of planting.  

In terms of invasion removal, we find that as both β1 and β2 increase, the benefits 

of removal decrease such that it is no longer a cost-effective strategy regardless of the 

initial invasion level. This is shown by the lack of either a green or red shaded area in the 

four bottom-right graphs. This is not surprising given that when invasion growth is high, 
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those removed are quickly replaced, thus reducing the benefits of removal. When either 

β1 or β2 are low, however, there generally exists a level of y0 at which the optimal 

invasion management strategy switches from ‘prevention only’ to some form or removal 

(with or without prevention).  

We find that when inbound dispersal is absent and local growth is low-moderate, 

‘removal only’ is more cost-effective than ‘prevention and removal’ despite the relatively 

low cost of prevention. This is because in such cases removal alone is effective enough to 

significantly reduce the spread of invasion. However, as the rate of either local growth or 

inbound dispersal grows, this is no longer the case and the combination of ‘prevention 

and removal’ is preferred to ‘removal only’. 

Interestingly, however, it is not always the case that the optimal strategy switches 

directly from prevention to some form of removal. As the Low-High scenario (top right 

sub-plot) demonstrates, there can exist an intermediary range of y where ‘no control’ is 

preferred, but below which ‘prevention only’ is preferred and above which ‘prevention 

and removal’ is preferred.  

 

Optimal Strategy as a Function of y, β1, and β2 

 In order to get a more comprehensive view of the effect of our invader population 

parameters on the optimal management strategy, we move on to plotting the optimal 

management strategy as a function of both y and β2 across the three local growth 

scenarios included above, plus an additional ‘very low local growth’ scenario (β1 = 0.01). 

These results are presented in Figure 6. In all four sub-plots, the x-axis represents the pre-

management invasion level, y, with the left y-axis displaying β2/β1 from 0 to 2, and the 
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right y-axis displaying β2. In each sub-plot the purple shaded area represents the set of 

points where ‘prevention alone’ is preferred, the red shaded area represents the set of 

points where ‘removal alone’ is preferred, the green shaded area represents the set of 

points where ‘prevention and removal’ is preferred, and the yellow shaded area 

represents the set of points where ‘no control’ is preferred.  

Figure 6 

 

One of the first things we observe when looking at Figure 6 is that our purple, red, 

and green areas appear to be contiguous regions, whereas this is not the case for the 

yellow area (no control). This should be expected as these two distinct yellow regions 

represent two diametric outcomes. Specifically, while both regions represents cases 

where none of the potential reductions in damages exceed their corresponding cost, the 

bottom-left yellow region represents cases where the damages from invasion are low 

enough that they do not justify the cost of control. In contrast, the top-right yellow region 

represents cases where the spread of the invasion is so aggressive that none of the 

available forms of management are able to adequately contain the population and reduce 

their damages enough to justify its cost. In other words, the former represents cases 

where it is too early for control to be cost-effective, with the latter representing cases 

where it is too late for control to be cost-effective. 
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In comparing our four sub-plots, it would almost appear as if our sub-plots were 

overlapping puzzle pieces of some larger plot. Put another way, the plane shown in each 

sub-plot looks as if it could be a close-up snapshot of some larger general plane or super-

plot. For example, it would appear as if a good section of the top right of sub-plot 1 

overlaps with a good part of the bottom left of sub-plot 2. The same is true for sub-plots 2 

and 3, and sub-plots 3 and 4, respectively. 

By expanding the axes in the left sub-plot, we can plot an approximation of this 

‘super-plot’, shown in Figure 7. While our x and y-axis still represent the pre-

management invasion level and the rate of inbound invader seed dispersal, respectively, 

they no longer represent specific values. This is because as β1 increases, the position of 

corresponding pairs of (y, β2) move as well such that the axis values (including the 

position of the origin) are themselves a function of β1. This does not prevent us from 

observing how the optimal management strategy changes as a function of y and β2. 
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Figure 7 

  

By observing the approximate position of each sub-plot from Figure 6 within 

Figure 7 and examining how the position of corresponding points move as β1 increases, 

we find that as β1 increases, the point denoting the optimal management strategy 

generally moves steeply up and to the right.27 One particularly illustrative example of this 

upward diagonal travel is the case of y = 0.45, β2 = 0. In this scenario the optimal strategy 

actually crosses through all four management options as β1 increases. As can be observed 

in Figure 5, when β1 = 0.01, the optimal strategy is ‘no control’. As β1 moves from 0.01 

to 0.05, the optimal strategy moves up and to the right to become ‘prevention only’. As β1 

moves from 0.05 to 0.10, the optimal strategy moves up and to the right again to become 

‘removal only’. Finally, as β1 moves from 0.10 to 0.25, the optimal strategy moves up 

and to the right one last time to become ‘prevention and removal’. 

                                   
27 It is worth noting that no matter how large β1 gets, ‘no control’ will remain optimal for the case 
y = 0, β2 = 0.  
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Having demonstrated our ability to map how the optimal strategy changes not 

only as a function of y and β2, but also β1, it is possible for us to include the approximate 

effect of β1 in Figure 6. This is done by essentially overlaying a diagonal β1-axis on top of 

our 2-dimensional plane, which we draw as a >1-sloped arrow-headed line from the 

origin.  

While one way to interpret this line is as shifting the optimal strategy up and to 

the right, this line also has a dual interpretation. Recalling earlier that we said the units of 

the x and y-axis, including the origin, were actually functions of β1, one can just as easily 

think of the effect of increasing β1 as shifting the origin up and to the right such that some 

portion of the bottom and left of our generalized plane of possible scenarios are no longer 

possible.28,29 This idea of shifting the origin up and to the right (and adjusting the scale) 

as β1 increases rather than shifting the location of the optimal strategy directly can be 

seen by comparing the four sub-plots of Figure 6. 

To conclude, Figure 7 provides a generalized template for examining the effects 

of multiple invader population dynamics parameters on the optimal integrated invasive 

shrub management strategy for a given set of impairment parameters. 

 

VI. CONCLUSION AND DISCUSSION 

At its core, this paper provides a framework for answering the question of what is the 

most cost-effective response to the presence of an invasive shrub that reduces and delays 

timber growth within a plantation forest.  

                                   
28 See previous footnote. 
29 With the axis-units being scaled if necessary. 
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We began by explaining how the case of invasive shrubs is unique from more 

traditional invasive species, and as such requires a unique modeling approach. Unlike the 

case of invasive insects or disease, the ecological evidence suggests that trees are only 

susceptible to the negative impacts of invasive shrubs while their height falls below that 

of their shrub competitors, with the effect that once trees have reached their merchantable 

height, they are no longer susceptible to these negative impacts. This is in contrast to an 

invasive insect or disease in which trees continue to become increasingly negatively 

impacted until they are harvested. 

We developed a generalizable model for simultaneously determining both the 

optimal invasion management strategy (prevention and/or removal) and the optimal forest 

rotation age that combines a Faustmann single-rotation model, an age-structured impaired 

timber production function, and an ecological model of invasion dynamics. The model 

might also be described as an expanded Faustmann model in which the traditional timber 

production function is transformed as a function of the ecological characteristics of the 

invasive shrub (initial presence, growth, impact), but where the initial invasion level 

and/or invasion spread can be endogenously reduced by choosing from a discrete set of 

invasion management options (growth prevention and/or removal, inaction). In this setup, 

the forest manager considers how each invasion management option will affect the 

impaired timber production function, what the optimal rotation age will be given that 

production function, as well as the economic outcome (net-present value of the timber 

given said rotation age minus invasion management costs), before choosing the most 

advantageous option.  
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We explored the results of our model using parameter estimates of the effect of 

the invasive shrub glossy buckthorn on timber regeneration (increased juvenile mortality, 

delayed growth) as a baseline, examining how our optimal solutions change as an effect 

of not just this parameter set, but also as a function of the dynamics of the invasion 

(invasion level at the time of planting, local growth rate, inbound dispersal rate).   

We provided a tractable approach for determining the optimal invasion 

management strategy as a function of a forester’s site-specific invasion dynamics, for a 

known set of impairment parameters. We also showed that the optimal response to the 

presence of an invasive shrub is to increase, rather than decrease, the forest rotation age. 

This result is in contrast to previous results obtained under models of non-shrub invasives 

(Macpherson et al., 2018; Sims, 2011), and we believe that these opposing findings are 

evidence in favor of the implicit hypothesis of this paper - that the unique effects of 

invasive shrubs on timber production requires its own unique modeling framework. 

To that point, this work has two implicit objections, in addition to answering the 

explicit research question. These were to demonstrate the need for a shrub-specific model 

of forest invasive species management, and to develop such a model in as generalizable a 

way as feasible given the level of complexity and number of moving parts. As such, we 

consider this work to be a starting framework for researchers interested in working on the 

economics of forest invasive shrub management.  

One avenue of expansion that would be valuable in applying such a model to a 

public policy setting but is beyond the scope of this paper would be to expand our 

framework to be spatially explicit, rather than implicit, and expanding the number of 

foresters. As stated previously, our modeling framework allows one to decompose the 
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economic damages resulting from invasion into three distinct categories, namely those 

resulting from the initial invasion level, those resulting from subsequent local seed 

dispersal, and those resulting from off-site (external) seed dispersal. The introduction of 

additional foresters whose invasion management decisions endogenously affect inbound 

dispersal rates according to their location and who are additionally affected by the 

management decisions of others would allow policymakers to quantify the external 

benefits derived from invasive shrub management and design policies accordingly. As we 

know from the fundamentals of environmental economics, the socially optimal subsidy 

level for a transaction that produces an external benefit to others is equal to the value of 

that benefit. Thus a spatially explicit, multi-forester version of our model could allow 

policy makers to determine the optimal invasion management subsidy based on the 

ecological characteristics of a specific invasion and location, as well as the population. 

Additional expansions to the model that might prove valuable include allowing 

for stochastic, rather than deterministic, invasion growth; considering solutions under an 

infinite, rather than a single, rotation, where the invasion management decisions in one 

rotation affect timber production in following rotations; expanding the invasion 

population model to allow for delayed population and seedbank dynamics to account for 

the facts that not all shrub seeds germinate immediately after being deposited but remain 

viable in a seedbank, that shrub removal is unlikely to affect the size of the seedbank, and 

that newly germinated shrubs may need to reach a certain age before they begin to 

impair/compete with juvenile trees (Jardine and Sandricho, 2018). 

Despite its potential for expansion, we believe that the model as presented has the 

potential to serve as a valuable decision support tool for foresters and extension workers 
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seeking advice on how best to respond to the threat of invasive shrubs. However, in order 

for our model to provide case-specific recommendations, economists will have to work 

closely with forest ecologists/biologists to obtain accurate parameter estimates regarding 

the population dynamics of the specific invasive shrub in question, as well as how said 

shrub impairs timber production. This is in addition to quantifying the cost and 

effectiveness of potential invasion management strategies, which has the potential to pose 

its own set of challenges (Jardine and Sandricho, 2018). 

It is our hope that this work can serve as a template both for those who wish to 

study the impacts of invasive shrubs on forest management, as well as those who wish to 

use bioeconomics to better model the specific mechanisms by which specific invasive 

species affect timber production and invasion management. 
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