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SEMIPARAMETRIC IDENTIFICATION AND ESTIMATION 

* OF POLYNOMIAL ERRORS-IN-VARIABLES MODELS 

by 

Jerry A. Hausman, Hidehiko Ichimura, 

Whitney K. Newey, and James L. Powell 

1. Introduction 

A particularly challenging statistical problem is the construction of 

consistent estimators of the parameters of nonlinear regression models when 

the regressors as well as the dependent variable are subject to measurement 

errors. As Griliches and Ringstad (1970) illustrate, the bias of classical 

least squares estimates can be exacerbated when the regression function is 

nonlinear; in view of the increasing number of applications of nonlinear 

models, and of the implausibility of assumptions which confine errors of 

measurement to the "dependent" variable, consistent estimation in this context 

is of more than theoretical interest. In the linear errors-in-variables 

model, this problem can be easily solved if additional observations on 

instrumental variables are available; since the linear model with measurement 

error is isomorphic to a linear simultaneous equations model, nonlinear two­

stage least squares (T. Amemiya (1974)) yields a consistent estimator for 

linear regression functions. However, as recently noted by Y. Amemiya (1985), 

this correspondence breaks down when the regression function is nonlinear, and 

the standard application of instrumental variables estimation does not yield 

* This research was supported by grants from the National Science Foundation. 
An earlier version of this paper was presented at the Fifth World Congress 
of the Econometric Society at M.I.T. in August, 1985. 
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consistent estimators for nonlinear models. 

Thus, the few results available for nonlinear models require quite strong 

restrictions on the distribution of the measurement errors for identification 

(here used synonymously with consistent estimability) of the unknown 

regression coefficients. Knowledge of the parametric form of the distribution 

function of the measurement errors is not sufficient in general, unless the 

"true" values of the regressors (i.e., values without measurement errors) are 

also assumed to be random drawings from a distribution with known (or suitably 

restricted) parametric form. If, as assumed below, the "true" regressors are 

treated as fixed but unknown constants, then maximum likelihood estimation for 

the nonlinear model suffers from the notorious "incidental parameters" problem 

(Neyman and Scott (1948)) which renders maximum likelihood estimators 

inconsistent. 

Most results on consistent estimation of nonlinear errors-in-variables 

models assume that the covariance matrix of the measurement errors for the 

regressors is shrinking toward zero as the sample size increases. Such a 

condition might be appropriate when a large number of measurements (relative 

to the sample size> on each "true" regressor are available, so that the 

average of these measurements more closely approximates the "true" regressors 

(in probability). Alternatively, the "shrinking covariance matrix" 

approximation may be appropriate if the measurement errors are thought to be 

small relative to the sample size. Examples of consistency results under this 

assumption can be found in Villegas (.1969), Dolby and Lipton (1972>, Wolter 

and Fuller (1982b>, Powell and Stoker (1984), and Y. Amemiya (1985). An 

exception is Wolter and Fuller (1982a), which proposes a consistent estimator 

for a quadratic regression model with normal errors and requires neither 

additional measurements nor instrumental variables. 
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In this paper, we impose more structure on the form of the (nonlinear) 

regression function of interest, in order to eliminate the assumption of a 

shrinking error variance. Specifically, we assume that the regression 

function is a polynomial in the "true" regressors; for this special case, we 

can construct a consistent and asymptotically normal estimator for the unknown 

polynomial coefficients if either instrumental variables or an additional 

measurement of each ''true" regressor is available (and satisfies appropriate 

regularity conditions). While a polynomial regression function is far from 

the most general forms of nonlinearity which arise in practice, it is an 

important starting point, and may lead to a more general theory of estimation 

based upon polynomial approximation of smooth nonlinear regression functions. 

In the next section, identification and estimation of the coefficients of 

a polynomial regression function is considered when the explanatory variable 

is measured with error and when a single additional replicated measurement of 

the regressor (also with error) is available. Section 3 considers 

identification and estimation when additional information is available in the 

form of a structural model for the unobserved regressor in terms of observable 

instrumental variables, rather than a replicated measurement. The paper 

concludes with some remarks on possible extensions and limitations of the 

present approach. 

2. Jhe Functional Model with a Single Replicated Measurement 

2.1 Identification 

In this and the following section, we consider estimation of the 

parameters of a behavioral equation 
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K 
( 2. 1 > 2. 

j=O 
(l_(z_)j + e. 

J l l 
i = 1, ... , n 

th which is a K -order polynomial in the variable z., which is assumed to be 
l 

unobserved. In this section we treat z. as a random variable with 
1 

distribution function which is completely unknown (but satisfies certain 

regularity conditions). Alternatively, the {z.} can be viewed as a sequence 
l 

of fixed constants, with appropriate modifications in the regularity 

conditions (as described at the end of this subsection). The variable z. is 
l 

assumed to be measured with error, with the observed variable x. being related 
l 

to z. by the measurement equation 
1 

(2.2) X. = Z. + fl. 
1 1 l 

i = 1, .•. , n, 

defining the measurement error fl .• In thP dbsence of further knowledge of the 
l 

functional form of the distribution of the unobservables (e.g., joint 

normality of e. and fl. and nonnormality of z., or known moments of fl.), more 
. l l l 1 

information than is contained in equations (2.1) and (2.2) will generally be 

required in order to consistently estimate the regression coefficients 

(l = rn 0 , •.. , (lK)'. In this section we will consider identification and 

estimation when this extra information takes the form of a single repeated 

measurement w. of z., with an additional measurement error v. defined as 
l l l 

( 2. 3) W. = Z. + V. i = 1, .•• , n. 
l l l 

To guarantee that this equation contains sufficient additional 

information that can be used to identify and estimate (l, it will be necessary 
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to impose some conditions on the joint distribution of e., 11., v., and 2 .• 
l l l l 

Defining the matrix norm IIAtt - max. _la .. 1 (where A= [a .. J>, we impose 
l,J lJ lJ 

with 

( i ) 

( i i } 

( iii ) 

( i V} 

Assumption 1: The random variables ei, 11i, 

ECe. I z., v.) = E<11. I 2., v.) = O; 
1 l l l l l 

v. is independent of zi; 
l 

2K 2K 2 Ell(e., 11., V. , z. )tt < m, 
l l l l 

V.' 
l 

and 2. are jointly i.i.d. 
1 

All necessary moment matrices are nonsingular. 

Of these conditions, (ii) is the most crucial for the estimation scheme 

discussed below. The i.i.d. assumption is made simply for convenience; since 

the identification argument is based only on the properties of the marginal 

distribution of the random variables for a given index i, dependence and/or 

heterogeneity can be introduced at the cost of some additional complexity. 

Only first moments need to exist in (iii) for the identification of a, but 

second moments are assumed to obtain the asymptotic distribution of the 

corresponding estimator. Also, the conditional moment restriction in Ci} is 

imposed instead of independence in order to derive results under the weakest 

possible assumptions which permit identification; while this introduces an 

asymmetry which is somewhat unnatural in the measurement equations (2.2) and 

(2.3), the results will obviously hold if the stronger assumption of 

independence of 11. and 2. is imposed. 
l l 

Note also that the usual restriction E(v.) = 0 is not imposed here. 
l 

Allowing v. to have a nonzero mean is equivalent to allowing the presence of a 
l 

constant term in the measurement equation (2.3). It would also be useful.to 

allow for .a coefficient of z. in <2.3) which is not unity, but it can be shown 
l 
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that this coefficient and the regression coefficients of interest would not be 

identified if v. is allowed to have nonzero mean. Thus the restriction that 
l 

the coefficient of z. in (2.3) is equal to one is a normalization that is 
l 

essential for identification of the remaining parameters. It will be apparent 

from the analysis to follow that the measurement equations (2.2> and (2.3> 

together with the restrictions of Assumption 1 place no additional 

restrictions on the moments of the observable variables. 

Turning now to the identification question, if the moments 

f = E[y. (z. )l] and C = E[(z. )ml are identified for l = 0, ..• ,Kand 
L 1 1 m 1 

m = 0, ..• , 2K, then the coefficient vector a= <a0 , ••• , aK>' would be 

identified as the solution to the linear projection equations 

K 
(2.4) l a J .• c 1· +G ' 

j=O , 
l = 0, ... , K. 

<These are just the population analogues of the "normal equations.'') Although 

the moments in this projection involve the unobservable variable z., they are 
1 

l l l related to the moments ECx. (w. > l, EC(w.) J, and E[y. (w.) J of the observable 
l l 1 l 1 

variables. First, note that 1 = E[(w_)OJ = EClz_)OJ = E[(v. , 0 J. Also, it 
l l 1 

follows from Assumption 1 that the observable moments satisfy the following 

relations: 

(2.5} E [ j I-1 1· j 1 ] ( ) ( ) l ( ) j-1-Q, ] = 0 • Z. + fl. • Z. • V. 
~ . l l 1 1 l=O 

= j~l [ j "., 1 ] 1.., • (l+l'l'J·--l-l' for j = 1, ... , 2K; 
l=O · 
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(2.6) Q, ·-o, ] (z.l •(v_)J 
1 1 

= f [ [ ] ( g," v J. -o, , for j = 1 , ••• , 2K; 
t=O · 

and 

(2.7) 
j 

2~ 
J,=0 

( t l Q, j-t ] y.•(z.l •<v.l 
1 1 l 

= j. [ ! ) l.. X, eg,•VJ·-t 'for j = o, ... , K. 
t=O 

These (5K + 1) equations yield a one-to-one relationship between the moments 

of the observable variables and the (5K + ll elements of the "unobservable" 

moment vectors? E <? 1, ••. , c2K>', v E <v 1, ••• , v2K>', and 

EE <, 0 , .•• , tKl'. Moreover, the relationships can be used to solve 

recursively for the parameter vector e E ((', v', c'}'. The recursion starts 

with ?0 = 1, v0 = 1, and t0 = E[yi] (which follows from (2.7> above). Then, 

from equations (2.5) and <2.6>, the 2K values of? and the nuisance parameters 

v can be obtained from 

( 2. 8) 

and 

(2.9) 

for = 1, ..• , 2K. Finally, the remaining e coefficients can be obtained 
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from 

(2.10) t [ j ) 
O.= 1 . 0. . 

using the previously-obtained v coefficients. Thus e can be computed from the 

observable Etx. (w. >o.J, EC(w. )o.J, and Ety. (w. >o.J, and a is then identifiable as 
l 1 1 l l 

a solution to the normal equations (2.4). 

Note that if the {z.} are assumed to be fixed rather than random, then 
1 

expectations over z. can be interpreted as sample averages (e.g., 
l 

l 0 = n-l r z~ = C0 ) in the derivations above. Provided the matrix 
i,. l ~,, n 

D = Cd .. J = [? .. 2 , i,j = 1, ... , K+lJ which characterizes the linear 
l J 1 + 3-

pro jec t ion equations has mimimum characteristic root which is bounded away 

from zero for all n suitably large, the "observable" moments used in the 

calculation of lg,, vo,' and fg, can clearly be replaced by the corresponding 

sample averages in the arguments above. 

2.2 Estimation 

To estimate the "structural parameters" a in equation <2.1), the moments 

in the projection equation (2.4) can be estimated and a can then be obtained 

as the solution to these equations. As shown above, the moments in the 

projection equation are related to moments of the observable variables, which 

can be estimated by sample moments. Let 

m. - x., ... , x.(w.>, ( 2K-1 
1 1 1 1 

w.' 
1 

... ' ( w . ) ;K y . ' ••• ' y . ( w . ) Kl 
1 l l l 

denote the (5K + !)-dimensional data vector and let the corresponding vector 
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of population moments be~= Etm. ]. The moment vector J-l can be consistently 
l 

A 1 , 
estimated bv the sampl~ moment vector m = - '· m., and, by the Lindeberg-Levy n L1 1 

central limit theorem, the asymptotic distribution of m. is given by 
l 

(2.11) 

where n = Etm.m'.J -J,lJ,l'. 
l l 

The covariance matrix n can clearly be consistently 

estimated 
A - 1 ~ , AA' 

by n = [ - } . m . m . ] - mm • n l..1 l 1 

The recursion formulae (2.8)-(2.10) yield a one-to-one relationship 

between the moments J-l of the observable data vector m. and the moment vector 
1 

0 - ((', v', e'>' needed for the projection formula (2.4>. Since the mapping 

0 = h(J-l} given by (2.8)-(2.10} is clearly continuous (and continuously 

differentiable}, 0 can be consistently estimated by 0 = h(m), i.e., as a 

solution to the recursion equations using the estimated moments of the data 
-"· 

vector. The "delta method" gives the asymptotic distribution of e to be 

(2.12} ✓n (8 - 0} ~ NCO, HOH'>, 

where H = 3h(~)/3J-l' is the Jacobian matrix for the transformation e = h(J-ll. 

The elements of H can also be calculated recursively: starting with 

indicator function of the statement "A''>, direct differentiation of (2.8)-

(2.10} yields 

(2. 13} 
j-1 

ltk = jJ - l ( i 
Q.=1 

] ' 
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(2.14) 

ac 
(2.15) __j_ 

a1\ 

for j ~ 1. A 

l[k 

= l[k 

= j+2KJ -
;. 
L 

t=l 

= j+4K+l] - ± 
t=l 

( j 
Q, 

consistent estimator of H 

• V + 
j--0. 

) [ a,t a V. Q, 

] •V + ~ . 't at\ j-0, i}f\ 

A A 

is given by H - ah<m)/iW'. 

Finally, the structural coefficients a can be consistently estimated by 

solving the normal equations (3.2) with elements of the estimated vector of 

moments e used in place of the corresponding elements of 0. To give an 

algebraic representation of this solution, let D denote the second moment 

K A 

matrix of ( 1 , z .. , ... , ( z. > > ' and D = 
l l 

A 

0(0) its estimator based on the 
A 

preceeding calculations, and write O - ((', v', £')'. Then the solution to 

the normal equations (2.4) is given by 

(2.16) 
-"-1 A a = o , • 

A 

A 

We can obtain the asymptotic distribution of a by using the fact that 

A 

(2.17) ✓n ((l - a) "'-1 - A 

= D ✓n [ e 

where ff denotes the Kronecker product, IK+l is a K+l-dimensional identity 

matrix, and the matrices s, and S( are the selection matrices which yield 
A A 

s,e = c and 5(0 = vec<D>, the usual column vectorization of D. It follows 
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that 

(2.18) ✓n ca - a>~ N<O, V), 

where 

(2.19) 

This asymptotic covariance matrix will be consistently estimated by 

,...,..,.. 
(2.20) 

where each of the component estimators is defined above. 

3. The Structural Model with Instrumental Variables 

3.1 Identification 

In this section, we consider identification and estimation when the 

identifying information takes the form of "instrumental variables" which can 

be used to predict the unobserved regressor zi. The polynomial behavioral 

equation and measurement equations are the same as in (2.1) and (2.2) above: 

that is, 

11 



K 
( 3. 1 > y. = L a.< z. > j + E. ' and 

1 
j=O J 1 1 

(3.2} x. = z. + \ ' for i = 1 ' ... , n. 
1 l 

In this section, though, we assume that z. is related to a p-dimensional 
1 

vector of instrumental variables q. by the "causal equation" 
1 

< 3. 3) = q~~ + V i = 2 i 1 i ' 
1, .•• , n. 

Unlike the previous section, where the latent variable z. was independent of 
1 

the error term v., here we will assume v. and the instruments q. are 
1 1 1 

independent. Thus (3.3} can be viewed as an auxiliary behavioral equation for 

the unobserved z .• 
1 

Again, it is necessary to impose sufficient conditions on the disturbance 

terms ei, TJi, and vi to ensure that these equations contain information that 

can be used to identify the regression coefficients {l. Here we impose 

with 

( i) 

( ii ) 

( iii ) 

Assumption 2: The random variables ei, TJi, V.' 
1 

and q. are jointly i.i.d. 
1 

E<e. I q., v.> = E(TJ_ I q., v.> = o, E<e.-t1. I q 1., v.> = 
1 l 1 1 l 1 11 1 

(T • 

e: TJ' 

v. is independent of q. with ECv.J = O; 
1 1 1 

2 2(K+ll ECll<e:., TJ.lll J < m, ECll(v., q~lll J < m; and 
1 1 1 1 

<ivl All necessary moment matrices are nonsingular. 

As before, the assumption of independently and identically-distributed data 

can be relaxed, and Assumption 2 (ii) is crucial for the scheme described 

12 
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below. Unlike the previous section, we need here to rule out any dependence 

of the conditional covariance of e. and~- on the conditioning variates q. and 
l l l 

vi; also, we. impose a mean zero restriction of vi, though relaxation of this 

restriction is discussed below. 

If equation (3.3) is substituted into equation (3.2) we obtain 

(3.4) X. = q'.<X + ~- + V. , 
l l l l 

i = 1, ... , n, 

so that a is identified as the coefficient vector of the least squares 

proiection of x. on q .• We will consider the estimation of a below, but since 
. l l 

a is identified we can assume without loss of generality that a is known when 

considering the identification of the behavioral parameters a below. 

Let w. E q'.a (again, assumed observable> and v. = E[(v. )JJ. As in the 
l l J l 

previous section, identification of a will also involve identification of the 

nuisance parameters Cvj, j = 2, .•• , K} (note that v0 E 1, and by Assumption 2 

(ii), v1 = O>. First, substitution of (3.3) into (3.1) yields 

K 
(3.5) y. = 2' '\ <wi + V. ) j + f. . 

l j=O l l 

K 

[ 
K 

[ Q, ] a •(v_)O.-j ] = r ( w. ) j 2. + G. 
j=O 

l 
Q,= j 

j Q, l l 

K 
- r Y.<w.)j + e. 

j=O J l l 

where the second inequality follows from a binomial expansion with suitable 

reindexing, and where 
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(3.6} 

and 

(3.7) 

Y. -
J 

K 

L 
t=j 

e. - E. + 
1 1 

K K 

E L 
j=O t=j 

which implies E(ei I wi> - 0. 

j=O, ... ,K, 

] . ( w. ) j 
l 

Because the disturbance term e. is uncorrelated 
l 

with any function of wi, a least-squares projection of yi on the vector 

(1, w., ••• , (w_)K), of powers of w. gives the coefficients 
l 1 , l 

y ~ C,'1, ••• , ,'Kl'. 

It is interesting to note that it follows from v0 = 1 and v1 = 0 that 

YK = aK and YK-l = aK-l' so that the coefficients on the two highest order 

terms are identified from (3.5) alone. For example, if equation (3.1} is 

quadratic CK= 2>, then the coefficients of the nonconstant variables will be 

identical to the corresponding coefficients in the least-squares regression of 

yi on <1, wi, (wi> 2 >•. In general, though, the coefficients r0 , ••. , YK_2 

will be functions of both the structural coefficients a and the K-dimensional 

vector v ~ <v 1 .•• , vK)' of nuisance parameters, so not all the structural 

coefficients will be identified from (3.5) alone (unless K = 1, i.e., the 

model is linear>. 

To identify the remaining structural coefficients we use the restriction 

E[f.:.•11.1 w., v.J = <rt.., of Assumption 2(i). We make use of this restriction by 
l 1 1 1 ~ 'I 

considering the regression equation for xi,yi, which can also be written in 

terms of a and v. Multiplying equation (3.1) by x. and substituting w. + v. 
1 l l 

for z. as in (3.5) above, we have 
1 

14 
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e 

• 

( 3. 8 > xi ,y i 

where ll_1 - 0, 

(3.9) 

and 

(3.10) 

00 -

0 . -
J 

u. -
1 

K 
= 2. a /wi + 

j=0 

K+l 

[ = L ( w. ) j 
1 

j=0 

K+l 
8/wi)j - ~ 

j=0 

K+l 

~ 
t=j 

[ ~ ) 

K+l K+l 

r Z: 
j=0 t=j 

·+1 
V. ) J + 

1 

K+l 

[ t I j 
t=j 

+ u. 
1 ' 

fJ .• y. + ( w. + V. ) • e. 
1 1 1 l 1 

) t-j ] l'lo,-1•(vi) + fJ. y. 
1 l 

for j = 1, ••• , K+l, 

- 11 
t-j 

] . ( w. ) j 
1 

i = 1, ••. , n. 

+ z. e. 
1 1 

Because of the moment restrictions imposed in Assumption 2 and the 

independence of w. and v., the disturbance term u. has E[u. lw., v. J = 0 by 
1 1 l l l l 

construction, so that the projection of x.•y. on the vector 
1 1 

K+l 
(1, wi, ••• , (wi) )' yields the coefficients o = (o0 , •.. , oK+l)'. Here 

also the coefficients on the two highest-order terms in this projection 

equation are equal to the corresponding highest-order coefficients in the 

polynomial; that is, oK+l = (lK and oK = llK-l' 

15 



The (2K + 3} "reduced form" coefficients 10 , ••• , )'K' o0 , .•. , oK+l are 

thus identified as coefficients of the linear projections of yi and xiyi on 

the appropriate powers of ~\. The K + 1 "structural" coefficients a0 , ••• , 

l'lK, and the K nuisance parameters v1, •.• , vK can then be identified from the 

reduced form coefficients Y and o. First, note that YK, )'K-l' oK+l' and oK 

identify only (lK and (lK-l, and provide no information concerning the other 

structural coefficients. Thus, the remaining 2K - 1 structural and nuisance 

parameters must be obtained as functions of the remaining 2K - 1 reduced form 

coefficients. Equations (3.6) and (3.9) can be solved to obtain recursion 

relationships for the remaining parameters. For j > 1, these formulae are 

given as follows: 

CALCULATION OF l/ • j • Assume { v ll, , ll, = 0, •.. , j-1 } and 

{(lK-t' t = 0, .•• , j-1} are known from previous calculations. Then by (3.61 

and ( 3. 9 l, 

(3.11) 

so that 

< 3. 12 l V :: [ ( 
j 

K 
K-j+l 

K 

l 
O.=K-j 

1 (l • V 
K j 

[ ( o. + 1 
K-j+l ) - ( 0. 

K - j ] ] (l 0 .• 11 0. -K + . ... J 

K-1 . 

. [ °K-j+l - 1K-j - ll,=k-j+l ( K-~+l ] ao, •vll,-K+ j ] ' 

where the right-hand side of this equation depends only on parameters that 

16 
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have been assumed to be previously identified. 

CALCULATION OF ij: Now assume Cv1 , l=O, ..• ,j} and CIK-I' l=O, ••. ,j-1} 

are known; then 

(3.13) 

and solving for aK . gives 
-J 

(3.14) f K g, j 1 at. ·v 
t-K+ j ' 

which also depends only on previously-known coefficients. Equation (2.9) 

could also be used to solve for aK . here. 
-J 

The recursion relationships (3.12) and (3.14) can thus be used to 

identify all of the parameters of the original polynomial equation. Note that 

the intercept term &0 of equation (3.9) is not used in the identification of 

a; if the value of uE~ were known, &0 could be used to identify vK+l (or vice 

versa) . 

3.2 Fstimation 

It is useful to consider estimation in two stages, where the first stage 

consists of estimation of the "reduced form" parameters Y and & and the second 

stage consists of solving for the "structural" and nuisance parameters/land 11 

from Y and 8. For the estimation of the reduced form parameters, we follow 

17 



the identification results given above and consider a two-step least squares 

procedure for their estimation. This type of estimator has the virtue of ease 

of computation, with the drawback that there may be other, more efficient 

estimators of Y and&. 

As noted above, the parameter vector a can be consistently estimated by a 

least squares regression of x. on q.; letting a denote this estimator, a 
1 1 
A 

sequence of estimated values w. of w. can be formed as w. - q'.a. The 
l l l l 

coefficients Y = <10 , ••• , YK>' can then be estimated with a least squares 

" regression of Yi on si = (1, w., ... , 
l 

" K 
Cw.) )', and the coefficients 

l 

& = <&o' 

t. - (1, 
l 

... ' &K+l>' can similarly be estimated from a regression of xi •yi on 

A K+l 
••• , Cw.) )' 

l 

To conduct inference and to form estimates of the structural parameters 

from the reduced form parameters, it is useful to have an estimator of the 

asymptotic covariance matrix of (1', &')', Let 

r. = X. - W. = ~- + V. 
l l 1 1 1 

and define the matrices 

Q = E [ q. q ~ J and R = E [ Cr. l 2 q. q '. ]. 
1 1 1 1 1 

Then it immediately follows from our assumptions that 

(3.15) 
A [ 1 

n ]-1 [ 1 
n 

] ✓n Ca - a) = I q .q'. l q.r. n i=l l 1 n i=l l l 

~ N (0, Q-lRQ-1 l • 

A 

Since the reduced form estimators depend on the estimator a through the 

estimated regressors w., the asymptotic covariance matrix of (1' , &')' will 
l 

include terms resulting from estimation of a. To give an explicit algebraic 

form for this asymptotic covariance matrix, define 
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r' 

Al so, let 

s. - (1, w., 
1 1 

... ' <w.>K>', t. 
l 1 

- ( 1' W. ' 1 
... ' K+l 

( w. ) ) ' 
l 

(As. ) ' -
1 

as: 
1 

- (0, ••• , 
K-1 

K<q'.(J() >' and 

(At.)' -
1 

a (q?od 
1 

at: 
1 

a<q:od 
1 

- (0, ••• , 

S - E[s.s'.J, T = E[t.t:J, 
1 l 1 1 

1 

F - E [ ( As . ) ' 1 · s . q : ] , and G = E [ ( At . ) ' o • t . q . ] . 
l 1 1 1 l l 

Then straightforward calculations (see Newey (1984) for details) yield 

( 3 .16) 

for 

MO E[(s.e. -1 -1 
- FQ q . r . ) < s . e. FQ q. r. > 'J, 

l 1 1 l 1 1 l 1 

Ml E[(t.u. 
-1 -1 

and - GQ q.r.)(t.u. - GQ q . r . > ' J , 
1 l 1 l 1 1 1 l 

M2 E[(t.u. -1 -1 - GQ q . r . ) ( s . e . FQ q. r. > 'J. 
1 l 1 l 1 l 1 1 

The matrices S, T, F, G, M0 , M1, and M2 can be consistently estimated by 

their finite-sample analogues, replacing expectations, error terms, and 

parameters by the corresponding sample averages, residuals, and estimates. If 

(J( were known (equivalently, if w. were directly observable), the matrices F 
l 

and G would be replaced by conformable zero matrices in the formulae above. 

With these preliminary estimators of the reduced form parameters, we turn 
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now to the estimation of the structural parameters a of interest. Given the 
,.... ,.... 

oarticular estimators 1 and o of the reduced form parameters, an efficient 

method of obtaining estimates of a (and vi is optimal minimum distance 

estimation, i.e., minimum chi-square estimation. To define these estimators, 

first note that the coefficient o0 is not useful in the identification of the 

a parameters, and thus the estimate o0 is not used in the estimation of a. 

For later convenience, we write the remaining estimated reduced form 

parameters as the (2K + 2)-dimensional vector 
A 

lT -

-

A 

< 1 K' 
A 

( lT i ' 
... ' 

TJ2>', with lTl = (1K, YK-l' oK+l' oKJ', 

0 ) ' 
1 

with the corresponding vector of estimands denoted by lT = (lTi, lT21'. 

Similarly, we write the 2K-dimensional vector of structural and nuisance 

parameters as 

e - <aK, aK-1' aK-2' ... ' ao' VK' ... ' V ) ' 
2 

- (81' 0' ) ' 2 ' where el - (f3K, aK-1 J ' ' 

The parameters lT can be written in terms of e, 

lT=h(8), 

which denotes the relationships given in (3.6) and (3.9) above. Finally, we 
A 

let V denote the asymptotic covariance matrix of lT (obtained by suitable 

rearrangement of the matrix given in (3.16)), and V denote its consistent 

estimator based on sample averages and estimated reduced form parameters. 

With these definitions, the minimum chi-square (MCSJ estimator O of O is 

given as 

(3.17) ~ = argmin [; - h(O)J'0-1c; - h(9)J . 
e 

In the context of the particular h(OJ function of the present problem, this 
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MCS estimator takes a particularly simple form. Because e2 is ''just 

identifiedtt given e1 and n2 , i.e., 

for a particular invertible function g<•>, it can be shown that the MCS · 
A 

estimator e1 of o1 = <aK, aK_1>' depends on n only through 

(3.18) 

where v11 is the submatrix of V corresponding to n1 and 

A 

Solving this minimization problem, we find that e1 can be written as a matrix-

weighted average, 

A 

(3.19) = w + [ I - WJ 

where 

"-1 
for v11 written in the partitioned form 

A 

The MCS estimator of the remaining parameters e2 can be obtained by 

substitution of e1 into the minimand of (3.17) and minimization with respect 

to e2 . The solution to this problem is given by 
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(3.20) 

where 

TT2 -
A 

for v21 the appropriate submatrix of V. In terms of the recursion formulae 

(3.12) and (3.14) given above, tis equation is equivalent to solving for the 

estimates of the remaining structural parameters using the MCS estimators aK 

and aK-l and the modified reduced form estimators 

A 

The asymptotic covariance matrix of the MCS estimator e will have the 

-1 -1 
usual form (H'V Hl , where h = a1r1ae' = ah(8)/o0', so that 

A 

(3.21) ,. -.- N<O, (H'V-1H>-l > • ✓n [ 01, -- a1,] g_ 

To estimate the asymptotic covariance matrix of e, an estimate of the Jacobian 

matrix His required; recursion formulae for computation of the components of 

this matrix (similar to (2.13)-(2.15) of the previous section) can be obtained 

bv differentiation of (3.6) and (3.9), and evaluating these formulae at B 

yields a consistent estimate of H. 

In addition to providing efficient estimators of the structural 

parameters given the particular estimator of Y and o used, the minimum chi-

square estimator also allows one to test the overidentification of aK and aK-l 

in a convenient way. The model (3.1)-(3.3) can be viewed as a special case of 

a more general model, in which the measurement equation (3.2) is replaced by 
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(3.2'} X. = T + pz. + ~- , 
1 1 1 

i=l, ••• ,n. 

It can be shown that the structural parameters a and the nuisance parameters 

v, p, and Tare just identified given the reduced form parameters rand 8 

above, so the overidentification of aK and aK-l can be viewed as the 

imposition of the null hypothesis H: T = 0, p = 1. Because of the structure 
0 

of the minimand in (3.17), its minimized value is equal to the minimized value 

of the criterion in (3.18}, so by the general theory of minimum chi-square 

estimation, 

(3.22} 

under H. Large values of the statistic in (3.22) provide evidence that the 
0 

overidentifying restrictions implied by our assumptions are not satisfied, or 

indicates some other departure from the assumptions of the model. 

4. Ext.ens ions and Limitations 

The approaches taken above to estimation of regression coefficients for a 

polynomial equation of a single latent regressor can be extended to 

multivariate versions of polynomial regression functions, with each of the 

regressors being measured with error. While requiring a considerable increase 

in notation, identification and estimation results analogous to those in the 

previous sections can readily be obtained. For example, for estimation of a 

multivariate quadratic model with "structural equations" for the latent 

regressors as auxiliary identifying information, the coefficients of the 

nonconstant variables can be consistently estimated by a least squares 
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regression which replaces the unobserved regressors by their fitted values 

from the estimated causal equations. Similarly, concommitant variables which 

are measured without error can be introduced into the regression equation; 

these can be viewed as special cases of the multivariate polynomial regression 

model, in which the appropriate regressors have measurement errors which are 

identically zero. 

It should be noted that the estimation strategies given above will not in 

general yield asymptotically efficient estimators, even under the relatively 

weak moment restrictions imposed on the measurement errors. We have focused 

on the usual linear projection equations in the development of our proposed 

estimators, but these need not be the most efficient subset of the(infinite) 

class of unconditional moment restrictions which follow from the conditional 

moment restrictions on the error terms; thus, no claim for efficiency of the 

proposed procedures is made. The question of best attainable efficiency under 

the conditions imposed above, and the construction of feasible efficient 

estimators in these cases, are interesting questions for futher research. 

A related caveat concerns the robustness of the proposed methods. The 

approaches outlined above require the existence of higher-order moments of 

latent variables and error terms, and the precision of the estimators is 

dependent on the precision with which these high-order moments can be 

estimated. Though this dependence is a direct consequence of the nature of 

the polynomial regression model considered, it does suggest caution in the 

application of this approach to polynomial models of high degree when the 

measured variables are though to be particularly "noisy."' 
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