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ABSTRACT

The paper examines the asymptotic behavior of the set of equilibrium payoffs in a

repeated game when there are bounds on the complexity of the strategies players may

select. The complexity of a strategy is measured by the size of the minimal automaton

that can implement it.

The main result is that in a zero—sum game, when the size of the automata of both

players go together to infinity, the sequence of values converges to the value of the

one—shot game. This is true even if the size of the automata of one player is a polynomial

of the size of the automata of the other player. The result for the zero—sum games gives an

estimation for the general case.



1. INTRODUCTION

In this paper I examine the asymptotic behavior of the set of equilibrium payoffs in

a repeated game when there are bounds on the complexity of the strategies that players

may select. The main part of the paper is devoted to the analysis of zero—sum games.

(The extension to general games is then relatively simple.) In particular we are interested

in the following problem: Let G be a zero—sum game. If player I is restricted to strategies

below complexity n, what is the complexity that is required from player II in order to gain

something from player I's limitation?

The interest in putting bounds on the complexity of the strategies stems from the

limited computational ability of humans and devices used by humans (see Simon [8], [9)].

For example, most of the strategies in a repeated game cannot be implemented by any

computer.

It is important to distinguish between the complexity of a strategy and the

complexity of the process of selecting a strategy. We will not deal with the selection

process directly. We will assume that the limitation of a player is such that he can

consider all the strategies below a certain level of complexity. A possible interpretation of

this set—up is that the players abilities are unbounded but they use bounded devices to

implement their strategies (for example — computers.)

We use the notion of a finite automaton to define a complexity measure on the

strategies. A finite automaton is a machine which has a finite number of states. One of

these states is the initial state. The machine has an action function and a transition

function. The action function determines the one—shot game action that is played at each

state. The transition function specifies the next state as a function of the current state and

the current actions of the other players. An automaton induces a strategy as follows: The
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state at the first stage is the initial state. The state and the actions of the other players at

stage t determine the state at stage t+1 (by the transition function). The state

determines the one—shot game strategy (by the action function). The size of an automaton

is the number of states it has. The complexity of a strategy is defined as the size of the

minimal automaton that can implement it.

Let G be a zero—sum game and let V(G) denote its value. Let V(Gn,m) denote

the value of the infinitely repeated game where players I and II are restricted to strategies

that can be implemented by automata of size n and size m respectively. The main

result (Theorem 2) is that if Q: N-)1\T is a function such that Q(n) > n and limn..

1111Q(n)1 = 0 (where in[Q(n)] is the natural log of Q(n)) then limn..V(Gn,Q(n)) =

V(G). In particular, if Q(n) is a polynomial, then limn..V(Gn,Q(n)) = V(G). We also

show (Theorem 1) that if Q(n) is big enough (Q(n) > exp[cin(n)], where exp means the

exponent and c is a constant) then V(Gn,Q(n)) is maxmin(G) in pure strategies (which

is smaller and typically strictly smaller than the value.) This means that a player can gain

from using strategies which are more complicated than his opponent's strategies only if his

strategies are much more complicated. The results for zero—sum games provide an

estimation for the asymptotic behavior of the set of Nash equilibria payoffs in a general

repeated game.

The idea of using a finite automaton in order to distinguish between simple and

complicated strategies was proposed by Auman [1]. The first two studies of the model were

done (independently of each other) by Neyman [6] and Rubinstein [7]. The two works

differ in their interpretations and goals. Neyman shows that cooperation can be achieved

in the finitely repeated prisoners' dilemma, if there are bounds (even very large bounds) on

the complexity of the strategies that players may use. In Rubinstein's paper, the
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complexity of the strategies is determined endogenously. Players seek, on the one hand, to

maximize their payoff and on the other to minimize the complexity of their strategies. It is

shown that in the infinitely repeated prisoners' dilemma this behavior considerably

restricts the set of equilibrium strategies.

Since the appearance of the first version of the current paper (Ben—Porath [2]),

there have been many studies of complexity in games. We will mention here only two

related works, and refer the reader to a survey by Kalai [3]. Lehrer [5] addresses a problem

that is similar to the one we study here, but he uses a different notion of complexity. The

complexity of a strategy is measured by the length of the recall that the strategy requires.

A t—bounded recall strategy (t—BRS) is a strategy where the action of the player at each

stage depends only on the play in the preceding t stages. Although the complexity measure

in Leher's model is different, his results are similar to the ones obtained here.' The main

difference between restricting the player to bounded recall strategies and to finite automata

is that, while in both cases there is a bound on the amount of information that the player

can use at each stage, an automaton gives the player a certain flexibility in deciding what

information will be retained. (When a player uses a bounded recall strategy he takes into

account only recent information.) In many cases, while there are serious bounds on the

amount of information that the decision maker can process, it is not difficult to focus on

specific data even if it is not recent. In particular there are strategies in repeated games

that are intuitively simple yet are infinitely complex according to the recall measure. (An

example is given in the Appendix).

'Specifically, let V(Gn,Q(n)) denote the value of the repeated game where players I and II

are restricted to n—BRS and Q(h)—BRS respectively. The main result is that if Q(n) > n

and limn-io) Ini?i(n)1 = 0, then limn-to V(Gn,Q(n)) 
V(G).
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Kalai and Stanford [4] study strategic complexity in repeated games with

discounting. They show that any subgame perfect equilibrium in the supergame can be

approximated by an c—subgame perfect equilibrium with strategies of finite complexity.

They also show that in "robust" equilibria of generic 2—person games, players use strategies

of the same complexity. This result appears to contrast with theorem 1 in this paper

because it implies that in a zero—sum game a player does not gain from being able to

choose complicated strategies. The reason for this difference is that in our model players

can choose automata randomly while in KS they cannot. In particular, in zero—sum games

there is typically no equilibrium if players cannot randomize. Therefore the results of KS

do not apply for such games. The main effort in my paper is in determining the level of

complexity that is required of player II in order to beat player I, when player I is restricted

to relatively simple strategies and tries to "defend" himself by randomizing.

The paper is organized as follows: The model is described in section 2. Section 3

considers zero—sum games and contains the main theorem. Section 4 extends the results to

N—person games and section 5 concludes with a simple extension to a class of complexity

measures.

2. THE MODEL

l, s 2 ,Let G be a zero—sum game, G = (s ) where Si is a finite set of actions for

player i = 1,2) and r: Si x S2 -1 R is the payoff function of player I. Let V(G)

denote the value of the game and let maxmin(G) and minmax(G) denote

max 1 imin 2r(s1,s2) and min 2 2 max 1 1r(s1,s2) respectively.
s ES s ES s ES s ES

An automaton Ai for player i is a four—tuple <Mi, fi,gi> where Mi is a set,

E Mi, fi: Mi Si, and x # 0. These symbols have the following



interpretation: Mi is the set of states of the automaton, is the initial state, fi(qi) is

the action the player chooses when the automaton is at state qi, and gl(qi, s) is the

state of the automaton at the next stage, if at the current stage the automaton is at state

qi and the other player plays the action si. An automaton is finite if the set of states is

finite. We will consider only finite automata. The size of an automaton is the number of

the states it has. An automaton of player i induces a (pure) strategy in the repeated game
• •

as follows: The action at stage t is fl(cilt) where ciit is the state of the automaton at stage
, . • •

t. The sequence of states is determined inductively by q = —qi, = s) where

si is the action of the other player at stage t. For example, consider the game described in

figure 1.

The strategy of player I which begins with T, continues with it as long as player II

chooses L and plays B forever if player II plays R, is induced by the automaton A =

<M,q,f,g>, where

M = {1,2}, q = 1; f(1) = T f(2) = B

g(1,L) = 1 g(1,R) = 2 g(2,L) = g(2,R) = 2.

Given that the automata of the players are A1 and A2, the corresponding strategies in

the repeated game determine a sequence of actions and payoffs. Denote by Rt(A1, A2)

the payoff at stage t. The payoff when player I chooses A1 and player II chooses A2 is

defined to be the limit of the means:2

2Since the set of the states of each automaton is finite the automata enter a cycle, i.e., there
1 2 1 2

exists numbers c, k < I M11021 such that for every t > c (qt, qt) = (qt+k, qt+k) and

so the limit (1) exists.
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A2N • 1 R (A1,AR(A = t(1)
T--)ED t =

We are interested in the value of the game where each player is restricted to strategies that

can be implemented by an automaton of a given size.

Formally define:

= {A1 I Al is an automaton of size n for player I}

2,A2 = {A2 I A is an automaton of size m for player II}

G = R).n,m n m

Thus Gn,m is the game induced by restricting player I and player II to strategies that can

be implemented by automata of size n and m respectively. Note that Gn,m is also a

zero—sum game.

I assume without loss of generality that the set of states of an automaton of size n is

{1,...,n}. With this identification in and ,Am2 are finite. Let k = I S1 I and h = I S2 I.
n n kn nnxh cAm2 m hm mmxk.Then I and

3. THE ASYMPTOTIC BEHAVIOR OF V(Gn,m)

The main result in this section is that if p(n) is a polynomial, then limn,.

V(Gn,p(n)) = V(G).

First note that player I can get at least the maxrnin (G) by playing constantly the

maxmin action. An automaton of size one can implement this strategy and, of course, any

larger automaton can do it as well. Similarly player II can get minmax (G). Thus the

following inequalities hold
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maxmin (G) < V(Gn m) minmax (G).

The first -result states that for any number n there exists a larger number m such that

V(Gn m = maxmin G.

First we need a definition and a lemma.

DEFINITION:

(a) A is a partial automaton for player i (i = 1,2) if the transition function, gi,

is defined on a subset of Mi x Si.

(b) For two partial automata A and A', A' is an extension of A if its

transition function is an extension of the transition function of A. If A' is an

automaton it will be called a completion of A.

LEMMA (1.1): For every Al E .441 there exists a partial automaton Al, of size n for

player II such that for any extension, A2, of IAT R(A1,A2) is well defined (i.e. when A1

and A2 play the transition of A2 is defined at every stage) and:

(2) R(Al, A maxmin G

PROOF: Define

•

h: S1 S2

h(s1) = argmin 2 Q2 r(s1's2)*
5
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41.

h(s1 ) is the best reaction for player II to the action sl of player I. Denote the different

states of A1 by {1,...,n} and assume that the initial state is 1. Define the partial

automaton A = <M2,q2,f2,g2> as follows:

= f2(i) = (i)) 1 < i < n.

g2 is a partial function satisfying:

20,f10g )) = it (1))1SiSn.

It is easy to see that g2 can be defined in such a way and that every extension A2 o

satisfies (2).

Al

rucTHEOREM 1: If L(n) > ni i = n2,_n•n k there exists an automaton A
2 

E (J.
(n)

such that for every A1 E R(A1,A2) < maxmin(G).

We will construct A2. Roughly, A2 operates as follows: it first identifies the

automaton A and then uses a subautomaton from the type described in Lemma 1.1.

PROOF: Let Al 1StS I 4j I, be an ordering of the automata of player I. With every

automaton Al associate n similar partial automata A2 .

in lemma 1.1. (Therefore each partial automaton A2/ r has

maxmin(G)•).

. An from the type defined•, t, 

n states and 11.(Ai, A2/ r)



The set of states of any two different partial autoinata, A r and A2. (i # j or r

z), are disjoint. Together they form a partial automaton with n2 I 4;111 states. Define

2
the initial state to be the initial state of A1,1' Denote this partial automaton by A

2 We

will extend the automaton inductively so that the partial automaton at stage p, A
2 will

satisfy

(3) R(Asl, Ap2) < maxmin(G)

for 1 < s < p.

The extension is complete when we define A
2 . We then show that only n I (41 I

I 411
states are actually used and we can discard the rest.

So assume that A
2 has been defined and define A2 +1' Play Al against A.p p+1 p

1
If there is some 1 < s < p such that the sequence of actions of Ap+i equals to the

1 2 1 2 1 2
sequence of actions when As plays -against Ap then R(Ap+i, Ap) = R(As, Ap)

2 2 1 
maxmin(G) and we define Ap+i = A. Otherwise, A "reveals reveals its identity" at some

time, i.e. there exists a time t such that the sequence of actions played by Ap1+1

1 1 1
(si1 ,...,st) — is different from the action sequences of the automata At,... ,A. Assume that

1 1
t is the first time when this happens. Let qt+i denote the state of Ap+i at time t+1

(this state is determined at time t) and let Api+1(qt1+1) denote the automaton which is

1 1 2 2
identical to Ap+i but has q as an initial state. We extend Ap to Ap+i so that

2 1 1 1
starting from stage t+1, Ap+i will play against Ap+i like Ap+i(qt+i) (the partial

1 1
automaton defined in Lemma 1.1.) Let i(p+1) denote the index of Ap44(qt+1) in the

order. Let c(p+1) denote the index of the first copy among
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2that hasn't been used yet (in the process of the extension.) Finally let qt denote the state
2 2 1of Ap at time t. The inductive step is to set g2 (qt,st) to be equal to the initial state of

2Ai(p+1),c(p+1)* A simple induction shows that for every p, 1 < p <

extension of A2 and (3) is satisfied. So for every 1 < I < I41 1

I 411, Ap2+1 is an

, R(AA2 <

I 411
maxmin(G).

Now since there are only I I automata for player I at most I 411 partial
2automata from the set {A.i,r I 1 < < I ink 1 < r < n} are actually used in the extension

that we described. Let B denote this set of partial automata and let A2 denote the

partial automaton that is derived from A2 by discarding all the states that do not
I 411

belong to a member in B. (The action and transition functions of A2 are restrictions of

the respective functions of A2 ). A2 has at most n I 41 I states and it is
I 411

straightforward to check that if A2 is an extension of A2 then R(Al
P'

R(Al
' 
A2

1 
) 1 < maxmin(G) for every 1 < p < I 411. This implies the result.

P 

THEOREM 2:

Let Q(n) be a function which satisfies Q(n) > n and limn,.

Then limn„.V(Gn,Q(n)) = V(G).

in[Q(01  = 0.

PROOF: We will show that limn„. V(Gn,Q(n)) > V(G). A similar argument proves that

iiir V(Gn,Q(n)) V(G). The two inequalities imply the result.

For each n we will define a mixed strategy Pn for player I (i.e., a probability

distribution on .4) such that for every A2 E J‘ (n) 
Pn (A1 ) • R(A1 , A2) >

Al E
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s.

V(G) — en where limn.. cn = 0.

Assume S1 = {1,...,k} and S2 = {1,...,h}. Define 1n 
= {51 . Let w E Sin'

(w1,...,wn). Denote by Al E tin) the following automaton:

2{1,...,n}, =
 1, fl(i) = g .)

1 J i=n

Let (P1,.. k) be a mixed strategy for player I in the game G, such that
k 12

P. r(i,j) > V(G) for every j E S2. Define a probability measure on (On, 2 n)
1.1 1

by

An(w) = 111.1 P1=1 (4).•
1

The strategy P1t of player I in the game Gn,Q(n is defined by

Pn(Awl) =

We have to show that,

(1) For every c > 0 there exists N(c) such that for every n > N(c) and for every

A2 E tit(n) 
the following is satisfied:Q

An(w)11(Awl,A2) V(G) — E.
wE
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a

It suffices to show that:

(2) For every e > .0 there exists N(e) such that for every n > N(€), A2 E

and c E N (2') is satisfied.

(2')
(c+1)n 1 2Rt(AO A > V(G)E.

cdE nn
lin( 41) 1t= c • n+1

Let A
2 
E 

eitQ(n) 
2 and assume M2 = {1.,...,Q(n)}. Let A2(0, p = 1,...,Q(n), denote the

automaton which is identical to A2 but with initial state p. Let q(A2 cd,c) denote the

state of the automaton A2 in the stage c • n+1, when player I chooses A. Finally

define:

(3) A2,c(w)dgf 1 
V,

n

c+1) • n
R
t 1,A2) =1 In 

Rt(Awl'A2(cl(A2'w'c))).n t== c •n+1

Note that the left expression in (2') is the expectation of X 
` 

. To estimate the
A.,c

expectation and compare it to V(G), we will estimate:

(4) : X
A2 

(w) <V(G) — e}.
,C

The important point in the proof is that the state of an automaton A2 for player II in

stage 1, 1 < < n, is determined by the first t — 1 actions of player I. Thus, given an

automaton A2 we can associate with every action j = 1,...,h of player II a sequence of
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random variables

A 21 the action of A at stage t

1 when it plays against Aw is j

0 otherwise

and fit are measurable w.r.t. the algebra which is generated by the first 1-1 elements.

We need two lemmas. Call a sequence w E f11 "nice", if the number of times the actions

(i,j) are played divided by the number of times j is played, is 'close' to Pi (the

probability of the action i in a mixed strategy that ensures V(G) for player I.) Lemma

2.1 (the main lemma) says that almost all the sequences are "nice". Lemma 2.2 states that

in a "nice" sequence the average payoff is 'close' to V(G).

LEMMA 2.1. Let A = {ai,...,ak} be a finite set. Let (A, 2A, P) be a probability space

and let (2,22,p) be the product space (A, 2A, P)n i.e., CZ = An and for every u.) =

E An it(w) = Hiii=1P(wi)* Let Ht be the partial algebra of 2n which is

generated byw1,...,w1_1 Hi = {0,f2}. Let ff}":::' be a set of random variables

which are adapted to (H1)1=1,... n (i.e., fit is measurable w.r.t. (0, ly) and with values

in the set {0,1}. Define

n n1 1t w: 1 ii I 
11

I(wrai)(w)fi,i(w) — ii 1 1=1P(a)fit(cv) I > E
=

1 for some 1 < i < k 1 < j < h.
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4

c2n

There exists b > 0 such that for every b> e> 0 (S)p < 2 k • h • e —

In Lemma 2.2 Sin and f. refer to {S1}n and the indicator functions of the

actions respectively, as defined before Lemma 2.1. Let W(G) denote max 1 i 2 2s ES s ES

I r(s1,s2)1

LEMMA 2.2: Define

w: I 
I(wi=i) (w)fi,i(w)

t=1

1

for some 1 < j <1c1 <i< h.

P.f. Aw) > c
t=1 1 J'‘'

n1 1 ^ 2If w E 0 — 
5A2 

then V(G) — Trill R
t
(A0A ) < W(G)- k • h • c.n 

c,t =1

The proofs of the lemmas are in the Appendix.

We can now evaluate (4). It follows from (3) that:

(5)

Let 11=

{w: X 
A 
2 
c 
(w) < V(G — c UQpini){w : X 

A 
2 (AO(w) < V(G) — c}.

, 

Note that by lemma 2.2 if w E 11 — S 2 then X 2 (co) >
77,A (P) A (p),0

V(G) — c. This and lemma 2.1. imply that for every p = 1,...,Q(n)

—n2n

(6) An{wl X 2 (w) < V(G) — f} 5_ An(S ) 2 • k • h • e
A (AO 77,A (P)
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From (5) and (6) we have

An : X 2 (w) < V(G) — c} <
A ,c

2

_Q(n)• •k•h•e

Q ( n)

p=1 A (AO
< V( G) — c}

Since limn —£n Q(n) = 0, for every > 0 limn Q(n) • 2 • k • h • e = O.-ko

Hence, for every c> 0 there exists N(E) such that for any n > N(c), A2 E (42A(n) and

C E N, (7) is satisfied.

(7) fw I X 2
n A ,c

Since X are uniformly bounded (i.e. Vc, Vn, VA2 E (iCir1/42(nl (w) W(G)) we
A2,c I A

obtain (2).

We have proved limn,. V(Gn,Q(n)) V(G). Since Q(n) n a similar argument

shows that limn,. V(Gn,Q(n)) < V(G). These inequalities imply the result.

4. N—PERSON GAMES

In this section we study N—person games. Given a one—shot game G, we can

associate with each vector of N natural numbers, (al ...,aN), the set of Nash equilibrium

payoffs in the repeated game where player i is restricted to strategies that can be
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implemented by automata of size ai.3 Let S(ai,...,aN) denote this set. Let Sm be a

sequence of such sets where the sizes of the automata of all the players tend together to

infinity. We will use theorem 2 to derive an estimate for the liminf and limsup of the

sequence Sm. Let co G denote the convex hull of the vectors in the payoff matrix of G.

Let S denote the set of individually rational and feasible payoffs in mixed strategies.

Formally S is defined as follows: Let A(B) denote the set of probability distributions on

(a set B. Let z. = min max r''1) where ri E A(Si) and T-i E S.]). Define
i

T T

S = {x : x E co G x z}. Let y = (y1,... 'IN) denote the vector of maximal payoffs that

each player can get regardless of what the other players do (in mixed strategies), i.e., yi =

max imin r—i) where Ti E A(Si) and 774 E Il AO). Define S = Ix : x E CO
T T

G x > y}.

By the Folk Theorem, S is the set of Nash equilibrium payoffs in the infinitely

repeated game (with mixed strategies). Note that S c S- and in two—person games S = S.

THEOREM 3:

Let Q2(n),...,QN(n) be functions such that Q(n) > n, i = 2,...,N and limn_tp

En[Q (n)]
= 0. Then

S._c lim S(n' Q2 (n)" QN (n)) c S(n,Q (n),... Q (n)) _c—

It is easy to see that every rational convex combination of the payoff vectors in G

can be implemented by automata which are large enough and that conversely, each payoff

3An automaton for player i is the same as was previously defined, except that the transition
function is defined on Mi x S—i where S—i is the set of action tuples of the other players.
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vector in the repeated game with automata is a rational convex combination of the payoff

vectors in G. Player i can get yi by using the strategy that was defined in Theorem 2.

Therefore lIiii S(n,Q2(n),...,QN(n)) c S. The other players can bring player i down to

his individual rational payoff by using the same type of strategies. More specifically, each

pure strategy (i.e. automaton) of player i is composed of an equilibrium phase and

punishment phases for each player j, j i which will be implemented if j deviates. It is

easy to see that player i can randomize his automata so that if j deviates i will play

where 7-7i(z.) is i's part in the combination of mixed strategies that bring j's

payoff down to zj. This implies that S limn..S(n,Q2(n),...,QN(n)). The formal proof

goes along the lines of the proof of Theorem 2. I omit the details.

COROLLARY: Let G be a 2—person game and let Q(n) be a function that satisfies Q(n) >

n and limn.. IlliQn(n)1 = 0. Then

1 i m S(n,Q(n)) = = S.
co

So in two—person games there exists a limit set and it is equal to the set of equilibrium

payoffs in the super—game.

5. CONCLUSION

So far we have considered a specific measure of complexity. However, a version of

Theorem 2 is true for a large class of measures.
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DEFINITION: A function g: N N is log—polynomial bounded (henceforth 1.p.b.) if there

exists a polynomial p such that in(g(n)) p(in(n)).

Note that every polynomial is an 1.p.b.

Consider a complexity measure as a function from the set of strategies to the

natural numbers.

DEFINITION: Two measures of complexity C1, C2 are log—polynomial equivalent if there

exists a pair of functions gi(n), g2(n) > n which are increasing and 1.p.b. such that

C-1{x : x < n} c C-21{x : x gi(n)}1

x : x < n} c Cil{x : x g2(n)}.

Let C be a complexity measure. Gn m denotes a game that is similar to Gn,m
except that the complexity of the strategies is measured by C. (So player I, for example,

is restricted to strategies that according to C have a complexity that is less than n.)

THEOREM 4: Let C be a complexity measure that is log—polynomial equivalent to the

automata measure and let Q(n) be a 1.p.b. function that satisfies Q(n) > n. Then

lim V(Gnc,Q(n)) = V(G).

PROOF: There exists an 1.p.b. function g1 such that player II is restricted to strategies

that can be implemented by an automaton of size gi(Q(n)). Since g1 and Q are 1.p.b.

there exists polynomials p1 and p2 such that in[gi(Q(n))] pi[tn(Q(n))] and in[Q(n)]
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p2[6.(n)]. Together these inequalities yield:

(8) in[gl(Q(n))] P1[P2(in(n))1*

There exists an 1.p.b. function g2 such that for every x E N that satisfies g2(x) < n

player I can use any strategy that can be implemented by an automaton of size x. Let m

be the largest number such that g2(m) n. We have g2(m + 1) n. Since g2 is 1.p.b.

there exists a polynomial p3 such that in[g2(m+1)] p3[in(m)]. Putting together with

(1) we get:

ill[g1(Q(n))1 P1(132(P ))))'

P1[P2[P 3 [6(41 
= 0. SinceA composition of polynomials is a polynomial. Hence limm-'w rn

player I can use any automaton of size m while player II is restricted to a subset of the

automata of size gi(Q(n)), and because m co when n co Theorem 2 implies that

V(Gnc7Q(n)) V(G). Since Q(n) > n a similar calculation gives

V(G). The last two inequalities imply the result.n-ico n,(.2

4
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4

APPENDIX

An example of an unbounded recall strategy that is intuitively simple.

The game that is described in Figure 2 is the prisoners' dilemma. Consider the following

strategy for the row player. Start by cooperating (playing C) and continue to do so as long

as the opponent cooperates. If the opponent defects in the first stage (by playing D)

punish him (play D) forever (regardless of what he does.) If the opponent defects at a

stage different from the first, punish him as long as he defects, but if and when he plays

cooperatively "forgive" him and continue to play as though the game has just started. In

order to play this strategy the player does not need to remember much (in particular this

strategy can be implemented by an automaton of size 3) but he has to remember what

happened in the first stage. Therefore this is not a finite recall strategy.

PROOF of LEMMA 2.1: We will show that if ft is measurable w.r.t. Ht then:

—e2n
1Va E A : 1 1(0),= a)(w)ficv) — i.iP(a)g(w) I >e} 2 • e .

n t=1

It is easy to see that this implies the lemma.

PROOF: Define

Z1= I(wt = a) —P(a)
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It suffices to show that there exists A > 0 such that

—E2 fl
n —V

(1) IL{IA I Yi I >Am} 2 • e .
t=1

(2)

We will show that there exists A > 0 which satisfies:

---e 
2
n

Aftd:A Y1> Acn < e
t=1

—E2 fl
n —V

(3) A{:A I Yi < —Acn} S e .
t=1

This implies (1). We will show that (2) and (3) can be proved in a similar way.

Zi are independent w.r.t. Hi, hence E(exp(AZi) I iv E(exp(AZi)). Exp is a

convex function and therefore:

(4), 1 = exp(E(AZd) E(exp(AZi))).

By the Taylor expansion
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where

A2Z 2

exp(AZd = 1 + AZ +  2' R(AZd

R(AZ,
'
)

urn  2 2  =0.A-40 Zi

Hence there exists d > 0 such that if d > A > 0

which implies

(5)

exp(nd 1 + AZ t+ A2Z2/

2 2E(exp(A-Zd) 1 + AE(Z1) E(Zi) 1 + A
2
.

Zl'"Zn are i.i.d. from (4) and (5) we have

1 < E(exp(A Zp)) (1 + A2)n.
t=1

CLAIM: Vi 1 < < N.

(6) E(exp(AY/) I H) E(exp(AZi) I = E exp(AZd.

PROOF: When f — 1 Y — Z When 
f1 — — 0 Y — 0 and thus the left expression equalst — t —

one while the right expression is greater or equal to one.
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CLAIM: . 1 < j < n.
J

(7) E(exp(A Yi)) -< E(exp(AI Zi)).
t=1

PROOF: By induction. For j = 1 the claim follows from (6). Let j> 1:

j=1
E(exp(A Ird) = E(E(exp(Alf Yi) • ex(AY) I 11.)).

t=1 J J

j-1
Since Y is measurable W.T. . H.

1=1

j-1
E(exp(AI IT') • E(exp(AY.) I Hi))

t=1 J 

j-1
< E(exp(AZ.)) E(exp(A \TX by (6)

j-1
< E(exp(AZ.)) • E(exp(A Zi)) by the induction hypothesis

1=1

= E(exp(AI Z )) since Z ,..,Z. are i.i.d.
t=1

From (7) and (5) we get
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E(exp(A Y1)) 5_ 1 +
i=1

By Chebyshev inequality

2n

:A Y1> Am} 5_ (1 + A2)n • exp(—A En).
i=1

—E2n E
2n

--T- —4—EFor A = the 2 right expression is less than e (since (1 + A2)n < e ), hence for 0

< c < 2d (d is the constant derived from the Taylor expansion of Exp) (2) is satisfied.

PROOF of LEMMA 2.2: Denote:

— the number of times (i,j) was played

x(w) — the number of times A2 played j. xi =

From the definitions

= I(w= i)(w)fit(w)

x Ii(te • P. =

Hence if cv E 12 — S then for every 1 < i < k 1 <',j < hn
E A2
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From this:

 )1 x.w) Pi I -x, (w * c
J(

X(W) k •

xw) 
r — 

i =1
Pir(ii))

i=1 j 

x.(w) k t• • (

4w) P.I•Ir(i,j)15.1c•WG -c.
n 1=1 1

For every 1 h Pi r(i,j) > V(G).
i=1

Hence, summing over j gives the result.
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