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1. Introduction

The influence of risk aversion on the outcomes in a t)-person Nash

bargaining solution has been considered in several studies. It was

shown, when all outcomes are riskless, that risk aversion is

disadvantageous; Namely, becoming more risk averse improves the outcome

of the opponent. This result appears in Kannai (1977) for the Nash

solution in a distribution problem, and in Kihlstrom, Roth, and

Schmeidler (1981) for other solutions as well (including the

Kalai-Smorodinsky solution). Other related works are those of Peters

and Tijs (1985) and Wakker, Peters and van Riel*(1986). The case where

risky outcomes are allowed yields a different result under some

conditions. It was shown by Roth and Rothblum (1982), for the Nash

solution (when the disagreement outcome is riskless), that increasing

risk aversion might be advantageous. This occurs when the Nash outcome

involves the risk of being worse off than the disagreement outcome.

This result was extended by Safra and Zilcha (1988b) to the case where

the disagreement outcome is risky as well.

In all these works it was assumed that the bargaining individuals

are expected utility maximizers. However, due to recent developments in

the theory of decision making under risk, it is clear that this is not

always the case (see Machina (1982) for a survey). In this work we

investigate the relations between risk aversion and the outcomes in the

Nash bargaining solution and the Kalai-Smorodinsky solution when general

utility functionals are allowed. We show that in this case there is no

relationship between risk aversion and the outcomes in these bargaining
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solutions, and bring examples to demonstrate it. It is shown that the

parameter that influences the outcome of those 
solutions is not risk

aversion, but rather, the degree of concavity of the certainty u
tility

functions of the bargainers (where this util
ity function is obtained by

restricting the utility functional to certain
 outcomes). In the case of

expected utility the certainty utilities are 
the von Neumann-Morgenstern

utility functions and their concavity is clearly equivalent to risk

aversion. In general, however, there need not be any relation between

the concavity of the certainty utility and the degree of r
isk aversion

of the given functional (this is demonstrate
d by an example).

Section 2 contains some definitions. In section 3 we present the

bargaining model and the solutions that we investigate in the sequel.

The results for the Nash bargaining solutio
n are described in section 4.

Section 5 explains how these results can be extended to the

Kalai-Smorodinski solution.

2. Definitions

Let C be a given set of certain alternatives wh
ich is assumed to

be equal to an interval [0,M] in R. The restriction C c R is made

only for the sake of facilitating the pre
sentation; our analysis still

holds for more general cases. We denote by L the set of cumulative

distribution functions on [0,M]. An element F of L represents a

lottery on C and the degenerate distribution that 
gives c E C with

probability 1 is denoted by Sc.
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We consider utility functionals V: L R that are monotonically

increasing with respect to the relation of first-order stochastic

dominance, (i.e., V(F) V(G) if for all x F(x) u:x)) and are

differentiable in the sense that there existsafunction R

such that for all F and G

—V(F + a(G - F))I 
a=0 

= fe(x;F)d(G-F)(x).
da

This notion of differentiability is called Gateaux differentiability.

The function “.,F) is called the local utility function at F (see

Machina (1982)). the case of expected utility “.,F) is always

equal to the von Neumann-Morgenstern (VNM) utility function.

With every utility functional V:L R we associate a real function

u:C R which is the restriction of V to certain outcomes. We call

it the certainty utility (CU) of V and it is defined by u(c) = V(Sc)

for all c in C. In the case of expected utility the certainty

utility is the VNM utility function.

Examples

(a) Weighted utility (WU, see Chew (1983) and Fishburn (1983)).

A weighted utility functional is given by

V(F) — fw(x)v(x)dF(x)
fw(x)dF(x)

(1)
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where w is the weight function and v is the value function. The

local utility function at F is

(x;F) —
w(x)[v(x) - V(F)]

fw(x)dF(x)

and the CU is = v(c).

(2)

(b) Rank dependent utility (RDU, see Quiggin (1982) and Yaari (1987)).

The rank dependent utility (also known as Anticipated utility and

Expected utility with rank dependent probabilities) is given by

V(F) = fv(x)dg(F(x)) (3)

where the function g:[0,1 [0,1] is increasing and onto. The local

utility function at F is (see Chew, Karni and Safra (1987))

rX

(x,F) 
=

v'(z)g'(F(z))dz
0

and the CU is u(c) = v(c).

(4)

Risk aversion is defined with respect to mean preserving spreads

(see Safra and Zilcha (1988a) for other possible definitions). The
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comparison of the risk aversion of any two utility functionals V and

A

V uses the idea of a simple compensated spread. Specifically, we say

A

that V is more risk averse than V if for any F md G that

satisfy (a) for some x* F(x) < G(x) if x < x* and F(x) > G(x) if

A A

and (b) V(F) = V(G), we have V(F) > V(G). It was shown by

Machina (1982) that this definition is equivalent (assuming a stronger

notion of differentiability) to the condition that each local utility

A

function of V is a concave transformation of some local utility

function of V.

3. The Bargaining Model

A two-person bargaining game takes place where the two decision

makers bargain in order to reach an agreed outcome in a given set of

possible outcomes. We assume throughout this paper that this set is L.

If they do not reach an agreement then they receive the disagreement

outcome c, which is an element of C.

We denote the utility functionals of the two bargainers by V
1 

and

V
2' 

and define

S = ((V 1(F), V2(F)) F e L). (5)

is the feasible set of utility payoffs. The element d E S defined

by d — (V
1 
(6 

)' 
V
2 
(6 )) is called the threat point of the game and we

-  -
c

assume that there exists x E S such that x > d. The Pareto-optimal

subset of is denoted by P(S



Hence, a bargaining game is described by (S, d, C, (V1, V2)) where

_
c is fixed and S and d depend on (V

1, 
V2). The game is

deterministic if every payoff can be achieved by a ,:terministic

outcome, i.e., if S — (011(5c), V2(5)) I c E C).

The Nash bargaining solution is denoted by F(S, d) and it is the

element in S that maximizes the product (x
1 

- d
1
)(x

2 
-

ES d) (see Nash (1950)).

) over (x

The Kalai-Smorodinski (KS) solution denoted by G(S,d), is the

element of P(S) that satisfies 
1 

- d )/(x2 - d
2
) = (xi -

d
2
), where x = max(x. Ix ES and d), j= 1,2 (see Kalai and

Smorodinski (1975)). The point x is called the ideal point.

4. Increasing Risk Aversion and Nash Bargaining Solution

4.1. Deterministic model

Let us compare the Nash solution for the two bargaining games (S,

A A A A

d, &, (V1, V2)) and (S, d, C, (V1, V2)) where V2 is more risk averse

A A

than V
2 

and (S, d) is attained from (V
1, 

V
2
).

Under the expected utility assumption it was shown by Khilstrom,

Roth and Schmeidler (KRS, (1981)) that player 1 is better off when

A A

player 2 becomes more risk averse, i.e., Fi(S,d) Fi(S, d). In our

A

case we show that this result holds if the CU of V
2 

is a concave

transformation of the CU of V
2' 

i.e.,'12(c) — k(u2(0), for some

concave function k. We also show that this property does not imply

A

that V
2 

is more risk averse than V •
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A A A

Proposition 1: Let (S, d, C, (V
1, 

V
2
)) be a deterministic bargaining

game obtained from (S, d, c, (V1, V2)) by replacing V2 with

A A

V2. Let the certainty utilities of V2 and V
2 
saLLsfy

A A

A

U2

k(u
2
), for some concave function k, then F

1
(S, d) 

F1(S' 
d).

The proof of this proposition follows the same argument as in KRS

(1981), hence we do not bring it.

Let us show now that more concave CU does not imply more risk

aversion. We shall show this claim by the following example. Consider

the WU functional V with the following weight and value functions:

w(x) = e
-tx

v(x) = Ax, A > 0 is constant,

A

and the expected utility functional V, with the VNM utility function

A

A A A

In this case the CU are u v and u v, hence u = k(u) for some

strictly concave k.

Let us show that any local utility function of V, “x,F), is more

A A

concave than the local utility function of V e(x,F) hence, by Machina

A

(1982), V is more risk averse than V. Let us compare the absolute

A

risk aversion measures R
F 

and R of the local utility functions

A A A

where RF(x) = -- 11(x,F)/e1(x;F) and RF(x) = - 11(x;F)/ 1(x;F). For

A A A

V any local utility is v hence R
F
(x) t. For V the absolute risk

aversion measure is



wit

8

x)[v(x) - V(F)] + 2w'(x)v'(x)
w'(x)(v(x) - V(F)) + w(x)v'(x)

(6)

t(Ax - V(F)) + 
- t(Ax - V(F)) + A

Since V is continuous and all the distributions have support in

[0,M] then, by choosing t sufficiently small, we can be assured that

A A

R (x) > R (x) for all x. Thus V
2 

is more risk averse than V
2.

Let us also note that for RDU case Proposition 1 is closely

related to risk aversion since the condition about the certainty

A A

utilities u
2 

k(u2), for concave k, is implied if V
2 

is more

risk averse than V
2. 

Thus the reult, in the deterministic model,that

becoming more risk averse implies that your opponent is better off in

the bargaining solution (Theorem 1, KRS (1981))holds in the RDU case.

However, in our WU example we have actually derived the oppoF,ite result

since V
2 

is more risk averse than

A A

F
1 
(S,d) > F

1 
(S,d).

A

V
2'

while (by Proposition 1)

4.2. Risky outcomes

We would like to show now that in the bargaining models with risky

outcomes, when we relax the expected utility hypothesis, the results of

Roth-Rothblum (RR) do not hold. Moreover, increasing risk aversion on

the part of player 2 may result in an ambiguous change in the utility of

player 1. Therefore we shall consider the simplest possible model to

show our examples. For simplcity we assume that the Nash product

attains a unique maximum in S.
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outcoMe most

contain exactly 3 elements (c1, c2, c) where c. is the

preferred by player i. We shall see that Theorem 3 in

RR(1982) does not hold if player 2 is a RDU maximizer whi player 1 is

an ,expected utility maximizer. First let us indicate that if we

increase the risk aversion of player 2 by making v (see (3)) more

concave, leaving g unchanged, then RR's Theorem 3 still holds.

Namely, if player 2 becomes more risk-averse in this manner the Nash

bargaining solution for player 1 improves if the disagreement outcome c

is worse (for player 2) than c
2 
(for player 2). However, if c is

preferred to c2 (by player 2) player 1 is worse off. This is

summarized in the following proposition which generalizes Theorem 3 in

RR (1982).

A A A

Proposition 2: Let (S, d, c, (V
1, 

V)) be a bargaining game obtained

from (S, d, C,
A

u
2 

and u
2

V2)) by replacing V
2 

with V
2 

and let
A

be the certainty utilities of V2 and V
2

respectively. If
A

(a) The GU satisfy u
2 
— k(u2) with k concave, and

A

(b) V (F) — V
2
(G) whenever F = 

(xl, P;x2'
1-p) and G

(yi, p;y2,1-p)
A

satisy u
2 
(x.) = u2(y1) (i = 1,2),

A A

Then, u2(C) u2(c1) implies Fi(S, d) FI(S,d) and

A A

2
(c) u

2 
(c
1 
) implies Fi(S,d) Fi(S,d).

A

Proof: . First note that the boundary of S is the same as that of S.

This follows from the application of condition (b) after normalizing
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) =1, '1(c1)
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A A

V

1
, V

2 
and V

2 
to achieve u1(c1) = u2(c2) = u2 1 and u

1
(c

2
) =

A

u2(c1) = u2(c1) — 0. (Note that the boundary of S, and S, is composed

of the utilities of lotteries over cl and c2).

2

A A

If u2(c) u2(c1) (-0) then, since u2 = k(u2), we get u
2
(c)

A A

and thus d2 d2 (while d1 = d1). It is now immediate to see

that moving d upwards results in an increase in F
2
(S
'
d) and a

decrease in Fi(S,d). The case where ) u (el) is proved

similarly.

Note that in the case of RDU increasing risk aversion by making v

more concave satisfies the conditions (a) and (b) of Proposition 2.

Now we increase the risk aversion of player 2 by making g more

concave and demonstrate that the R-R result does not hold.

Take V
2
(F) = fvdF and V

2
(F) = vdg(F) with g strictly

A

F) = fvidF, and assume that v(c) = v(c ) = 0,

1
v
1
(c2) = 0 

and vi(") = 0. The boundary of S

is given by x2 — 1 - xl since, for a typical lottery which yields cl

with probability p and c2 with probability. 1-p, the utility V1 is

equal to p and the utility V
2 

is equal to 1-p. The Nash bargaining

A A

solution is clearly F(S,d) = (1' 
1). Consider now V

2 
and S. Given

2 2
A

lottery as above the value of V
2 

is 1-g(p) and thus the boundary

A

of S is given by x
2 
= 1 - g(x1). The Nash solution maximizes the

product (1-g(x1)). Take now g(P) = P
1/2 

• Differentiating

4
x
1
(1-x

1
1/2

and equating to zero gives x
1 
= 
9 

as the global maximum.

1
Hence the utility of the first player decreased from to .

12. 
while

2 9
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his opponent became more risk averse. Note that the same qualitative

result will still hold if d
2 

— v(C) < 0. This is in -.ontrast to the

results of Roth and Rothblum.

5. Risk Aversion and the Kalai-Smorodinsky Solution

It has been shown by KRS (1981) that the impact of .increasing risk

aversion (on the part of player 2) on player l's payoff in the

Kalai-Smorodinsky bargaining solution is (in the deterministic model)

similar to that attained for the Nash bargaining solution. Departing

from the expected utility assumptions, we can show that, as in the Nash

solution, there is ambiguity in the results in this case too. Again the

results in KRS will depend upon increasing the concavity of the GU

rather than increasing risk aversion. Our Proposition 1 and the

examples we have brought can be generalized to the KS solution as well.

Finally, we use an example to show that in the risky outcomes model an

increase in player 2 risk aversion, while the threat point remains d =

(0,0), may make player 1 worse off.

Consider the example brought in section 4.2. The ideal point is

(1,1). The KS solution for (S,d) is G(S,d) = (1
' 
1), while the KS

2 2
A A A A

1 1
solution for (S, d) is G(S, d) (71., V This clearly violates the

spirit of Theorem 3 in RR (1982) and shows that this theorem cannot be

extended to the KS solution with general utility functionals.

•.
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