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1. INTRODUCTION

Generally, a policy-maker will be interested mainly in how to
behave in the immediate future. Decisions with respect to later periods
can be postponed, and can be based on new information as it becomes
available. On the other hand, the policy-maker must take
into account the effect of his first—periéd decision upon the following
periods. He has to estimate this influence and decide what 51gn1f1cance

it has for his first-period decision.

! The author wishes to thank Prof.Ir. J. Sandee for his critical comments

and useful suggestions, and Mr. A.S. Louter for his valuable .assistance
in writing the needed computer programs.




Defining the decision model over only a few periods entails the risk
that a great deal of the future effects is neglected. If, on the other
hand, a great number of periods is taken into account, the model may no
longer be manageable. It would be better to truncate the decision model
in such a way that only a limited number of periods is included, while
approximately the same first-period optimél policy results as in the case
of an infinite horizon.

In the present paper a model, defined over two subsequent periods,
is truncated at the end of the first period. In the solution, the effect
of a decision upon the second period is represented by the partial
derivatives with respect to the variables "linking" two periods, of the
part of the decision model to be replaced. These partial derivatives
are called "valuations" of link variables. Link variables are both
endogenous variables and instruments, which appear in a lagged form
in the second period part of the decision model, including the second
period part of the target function.

After a presentation of some results published earlier attention is
given to the case of a model, consisting of a quadratic target function
and linear relations between endogenous and exogenous variables. First,

a number of results is derived for a model defined over two periods.
Subsequently, a model is introduced defined over infinitely many periods;
the truncation method is extended to this case. |

Finally, the method is applied to a decision model that is non-linear
in the relations between instruments and target variables. After a brief
summary of some previously published results, the results of additional

experiments are given.

2. THE MATHEMATICAL FORMULATION OF THE TRUNCATION PROBLEM

2.1. The General Problem

In a previous publication [2] a number of results .with respect to
the truncation of decision models was derived. The most important
result is that a deterministic decision model, defined over two subsequent
periods, and having a unique optimum, can be truncated at the end of the
first period in such a way that the optimum of the original problem, as

far as the first period is concerned,satisfies the first-order optimal




conditions of the truncated problem.

We formulate the following deterministic decision problem:

(2.1.1) max 4= {6,(a;, py) + b,(a;s aps Bys D))
(py5p,)

subject to:

(2.1.2) | q; = G,(p,)

and

(2.1.3) a, = Gy(ays Py» D,)
where

: vector of endogenous variables of period 1
: vector of endogenous variables of period 2
: vector of instruments of period 1
: vector of instruments of period 2

s ¢45 ¢, scalar functions

G,, G : vector functions.
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In the following we further restrict ourselves to the class of

problems P for which there is an isolated optimum with the optimal
solution (p?, pg), vhere all first-order derivatives with respect to
Py» Pps 9y, and q, exist. By substitution of (2.1.2) and (2.1.3) into

¢ we define:

(2.1.8) . 8(p;, py) = 144(6,(p,), p,) +

*+ ¢5(64(pq)5 G,(Gy(py)s By Pp)s By P2

A necessary condition for an optimum of P is that the derivatives of ¢ with

respect to p, and P, vanish:




(2.1.5)

| 3% _
.(2.1.6) %, ~ o,

Substitution of (2.1.3) into ¢ provides the function $2 defined by
(2-1-7) 62(q1’ P1, P2) = ¢2(q19 Gé(q1, P«‘a PQ)" P1’ P2) :

In the optimum (p?, pg) definé vectors u and v as follows:

332 | 3¢, S wm, e
(2.1.8) u = 5=%(af, 2}, pj) = (q1, aj, py, p3) + T 3E;(q?, af, p§, P}
1 "

8%, %, S 3G, 3,
(2.1.9) v = (q1, r}, pj) = 55-(af, af, pf, pR) + W, (q", af, p%, p})
1 .

99,

where
¢, (p%)
o = G(afs p%, pg)
Consider now thebtruncated problem Q:
(2.1.10) max u = {¢.(qa;, py) +u'q +v p1}

(p,)

subject to .

(2.1.11) q, = G1(p1)

and let this problem, like P, have an isolated optimum where all first-
order derivatives with respect to p1‘and a, exist.




Substitution of (2.1.11) into (2.1.10) provides the definition:
. 0 = ' '
(2.1.12) w=1{6,(G,(py)> p;) +u'c (p) +v p,}

A necessary condition for an optimum of Q is that the first-order

derivatives of u with respect to P, vanish:

- 3¢, 8G, 3., oG
(2.1.13) w 1,1 1, —  u+v=o0

9%py 3, 3P, ' 3q, = dp,

Upon substitution of the definitions (2.1.8) and (2.1.9), equation
(2.1.5) reappears, i.e. the vector p? occurring in the optimum
solution to P satisfies the necessary condition for an extremum of Q.
Although this does not imply that p? is the oﬁtimum solution to Q,

this was always true in the practical problems considered in [2].

2.2. A Quadratic Target Function with Linear Constraints

In the previous subsection we indicated that the optimum solution
to the original problem satisfies the first-order optimum conditions
for the truncated problem. For the more restricted case of a quadratic
target function with linear constraints it can be proved that the
optimum solution to the original problem is also the optimum solution
to the truncated problem. l

Consider the following decision model:

(p,,p,) ‘

where

-yt ]
(2.2.2) ¢1(q1, p,) = wia, - 2(p; - A1Po)'Q1(P1 - A1p0)

and
(2.2.3) 42(2y5 955 15 Py) = Whay - 3p, - Ap)"Qu(p, - Agp,)

subject to




=8, * Ryp, + 8.p, + 5,4,

: vector of endogenous variables of period 1
¢ vector of endogenous variables of period 2
: vector of instruments of period 1
¢ vector of instruments of period 2
Qi’ Q2: symmetric, non-singular matrices
5:5 S5» Wi we, A1, A2, R1, R2’ S1, S2: vectors and matrices of parameters

of appropriate order.

Suppose this decision problem has a unique optimum solution (p pg).
A necessary and sufficient condltlon for such a unique optimum is that

the quadratlc form
is negative-definite. This implies that both Q1 and Q2 are positive-definite
matrices.,

It can easily be verified that the optimum solution to the problem
(2.2.1)-(2.2.5) is:

+ R!S'w,. + A R'w.}

& “TiRs
(2.2.6) »} = Ajpy + Q7 {Bjw, + Siw, + RIS, 272"

(2.2.7) pg Q£1Réw2 + A

Define in accordance with (2.1.7)

- -
(2.2.8) %5(ay5 P1s by) = wis, + WoRaPy * WiSpy + wys

¥oSo 294




and truncate the decision model as follows:

(2.2.9) max u = {¢1(q1, p1) +u'q + v'p,}
~ (p,)
P,

subject to
(2.2.10)
where
3¢

= at
(2.2.11) (q1’ p13 P ) sa P

and

a¢
' e £
(2.2.12) (91, p%, p2) 51wy + A3Q,(p% Ayps)

Substitution of (2.2.7) into (2.2.12) gives:

= '
(2.2.13) v A + ARAw, 5

_ A necessary and sufficient condition for the existence of a unique

optlmum to (2.2.10)-(2.2.11) is that the matrix of the quadratic form,
Q1, is positive-definite. This condition is satisfied because of the
uniqueness of the solution to the original problem.

Consider now the flrst—order necessary condition for an optlmum
of (2.2.9)-(2.2.10):

,- - | ' ) =

(2.2.14) | 1Pyt Q1A1p0 + R1u +v=0
Substitution of (2.2.11) and (2.2.13) into (2.2.14), and rearranging terms
gives the following optimum solution:

(2.2.15) p§ = A + Q {R' + R;Séwz + s;w2 + A'

which is identical to (2.2.6).




It follows that for a model consisting of a quadratic target function
with linear constraints:

(a) uniqueness of the optimum solution to the original problem
implies a uhique optimum for the truncated problem;

(b) the solution to the truncated problem is identical to
the solution to the original problem as far as the first period is

concerned.

2.3. An Extension to Infinity

In the previous subsections we derived formulas for the case of
two periods. In this subsection these results are extended to a situation
in which there are T subperibds, with the intention of passing to the
case of infinitely many subperiods.
In the literature, target function values are often defined as
a discounted sum of all future one-period target function values. By
passing to infinity we shall tie our formulations to current theory.
It will be seen that for a certain class of models with an infinite
horizon, truncation leads to very simple formulas. .
Consider the decision model, defined over two subsequent periods,

where both periods consist of a number of subperiods.
(203‘1) max ¢"¢1(y1, LYY yT; 11, LICIC Y XT)"'
(x1,...,xT) -
0(¥qs covs Yps Xqy eees X)) T >0, T T
subject to
(2.3.2) . = gt(y1, oo Vo3 x1; cens xt) t =1, oo, 1
and

+ Axt + Cyt'_1 _ t=1t+ ], ""“T

,(gﬂgf?) | . 8,




Yy . : vector of endogenous variables of subperiog t
X, .t vector of instruments of subperiod t

$, ¢1, ¢2 : scalar functions
By : vector functions

'at, A, C : vectors and matrices of parameters of appropriate order.

The second part of the target function is assumed to have a special

quadratic form:

(2.3.4) ¢2(y1, sees Vs Xys e XT) =

T
- t-1 1 .
= . I p {dy, - 3(x, - mx, ;)'B(x, - ox, )}
NE t e L T

B : positive-definite matrix .
d, I : vector and matrix of parameters of appropriate brder
p{0 < p < 1}: discount factor, indicating the time-preference

. of the policy-maker

In the optimum the following relations should hold:

T

]
36
(2.3.5) ' 2+

axt

For period T this implies:

T-1
9y % dlyg  qq
(2.3.6) | e + g =p~ {A'd - B(xT -'HxT_1)} =0

resulting in

(2.3.7) | B(x% - Mx¥ ) =




By induction it will be proved that the following relation holds good

for al1 T and all s, T < s < T:

T t'-s-1 T
- Ix*) = % (pmt) { £ A'(pC
5 tr=s+ t=t!

.v: t"‘t'
First we prove that (2.3.8) holds good for all T and s = T - 1. Let
s =T - 1, then (2.3.8) reduces to
R . s I %t = '
| (2.3.9) B(xT XT-1) A'd
which is identical to (2.3.7) and therefore holds good for all T. It
follows that (2.3.8) holds good for all Tand s = T - 1.
Suppose now (2.3.8) holds good for some s, T < s < T. In the optimum

we have by differentiation of (2.3.L)

T ) '
> 1 o lavy,,
t'ss

(2.3.10) o
S

From (2.3.3) we obtain

£1=1

(2.3.11) - dly,,
ox
S

e

'-
= pt 1A'(C' d

Substitution of (2.3.11) into (2.3.10), and differentiating ¢, with

respect to x_ leads to

"' '— - 0 ) ) ot
(2.3.12) 0% Tar(er ) "%a - o5 Bkt - mxt L) + oSTUB(x . - Ix¥) = O
' s s-1 s+1 s
t'=s
where xg denotes the optimum solution for period s. Dividing by ps"1

we find

T
(2.3.13) I p° “Sar(c

t'=g

t'-s % 3 ' % _qx%) =g -
) d - B(xS - Hx;_1) + pll B(xs+1 Hxs) =0




Substitute (2.3.8) in (2.3.13):

T t'-s t'-s - .
(2.3.14) I p A'(C') d - B(x* - nIx* _) ]
) L= s s-1 !

T : T .
+ ol (en)* "5 5 ar(ec)®'1a = 0
t'=s+1 t=t! /

T |}
)= 1 p% Sar(c
t'=s

)t'-s

(2.3.15) B(x% - Mx%_ d

s-1

T 1 T ]
+ o (em)Y 1 arvee)¥ e
ti=s+1 t=t'

T , T e
(e S areer)ttya
t'=s t=t!
vhich is the same as relation (2.3.8) for s - 1., Hence, if (2.3.8)
holds good for some s, T < 8 < T, it holds good for s - 1, which completes
the proof. _
The extension of the model to one defined over infinitely many
periods (T + =) runs as follows. Formula (2.3.8) is rewritten as
T-s T-s-t'

-mt) =z ()N 1 ar(ec)tla

(2.3.16) B(x*
‘ s+ =1 £=0

1

This is a partial sum of the double sum

(2.3.17) T (pn')t"1{ A'(pC')t}d
t'=1

which is absolutely convergentjprovided

)t =

(2.3.18) | lim (pC"

1o

and

(2.3.19) lim (pn')¥ =

1>

2 This occurs e.g. when IlpC'Ilw < 13 where ||pC'|| denotes the maximum

of the absolute values of the elelients of PC', and C' is an n x n matrix.




Then the double sum is equal to

(2.3.20) & (en)*'" Tz arteen¥a= £ (o) T'ar(z - por)a =
Cot=0 St'=1 SRS
= (I- o) a1 -pc")a

Hence, passing to the limit (T =+ P)'we:find '

(2.3.21) Bl - ) = (1= ent)TaN(T - qu)"a

In accordance with gection (2.2)»the model is trurcated as follows;
' 3 v : = | . ’ . : ! '
(2.3.22) max T ¢‘(y1, vees Vo x1, cees xT)‘+ u'y, +v'x
(x1’.o.,xr) . . X
In accordance with the def1n1t1on of uin (2.1.8) we obtaln from (2.3.3)
and (2.3.4) ‘ '

s PR
(2.3.23) . d'yt

pTC'd + pT+1(Q')2d ‘ + pT'l(C?)T'Td»=

THTY‘(1 }d

pTCI{I . pc? + voo + (pC")
If (2.3.18)‘holds good, and we let T go to = we obtain
(2.3.2h5 | | g ﬁ‘=IQTC'{I'; pC'j-id‘
From (2.3,h)'w§ dbtﬁiﬁ, in acéordanqe with the definition of v in (2.i.9)
(2.3.25) | "?'# ;fﬁ's(g*+1.- n##)

If both (2.3.18) and (2 3. 19) hold good we obtaln from (2 3. 21) in the
llmzt (T » a) ' o

(2.3.26) Cv= eI - pn) a1 - o)

Both (2.3.2&) and (2.3,26) seem simple‘and elegant enouéh.




3. SOME EXPERIMENTS

3.1, Summary of Previous Results

The question arises whether the truncation method, outlined in
the previous section, can be used for policy experiments. More |
expecially it would be interesting to know whether the method is
practically useful in a situation where the model, relating
endogenous and explanatory variables, is non;linear. |

The results of a first investigation into this question were given
in the publication mentioned before [2]. A nuhber of experiments were
carried out with the following target function: o

T .
(3.1.1) max = ¢ = I pXad'y, - A(x
(x1:9'°3xT) - =1 t v t

where

: scalar function

: vector of target variables of peridd t

: vector of instruments of period t

: vector of weights for the target variables

: diagonal positive-definite-matrix of the quadratic form

: diagonal matrix of growth-rates

: scalar, 1nd1cat1ng relatlve 1mportance of the qua‘ratlc
part ‘with respect to the linear part

: d1scount factor

The targets used in our experiments are:

c : deflated private consumption

W : unemployment _
ALé(ex):creation of liquidities via external payments

As instruments we used the following ones:
Cg: government consumption expenditure,‘excluding'wages and salaries

Lg: wages and salarles paid by government
ATL.change in autonomous taxes on wages




The relations between target variables Yy and 1nstruments Xy
are given by the CS-model of Van den Beld, a recently publlshed
non-linear yearly model of the Dutch economy [1J].

Because of the non-linear character of the model it was not
possible to work with infinitely many periods. We therefore
restricted the model to a time-span of 23 years. Furthermore, we
used a discount factor slightly different from the usual one.3
The first question to be answered was whether the long-term model
could be truncated along the lines outlined in Section 2, in such
a way that the truncated model generated correct results in the sense
of the same first-period decision as the original long-term model
showed. This turned out to be.the case for the model, truncated at

' the end of the third and the fifth year. '
, However, one optimization of the target function will in
general not suffice. The policy-maker will desire to be informed

- about the influence of changes in the initial conditions, and of
alternative assumptions about the data during the time-span of the
target function. Furthermore, it is not unlikely that the policy-maker
will be interested in the results of optimizations with several
alternative target functions. If the truncated model is to be of
interest for policy purposes, it has tb generate correct. results (in
the sense as defined above) in experiments with changed data or
parameters.

To test this, a number of experiments were carried out in which
parameters of the target function were changed, namely the elements
of d and pi, the discount factor. The decision model was truncated

by means of the valuations, computed in the "central 0ptimum",h vhere

in the case of changes in d these valuations were adapted to these
5 .

changes.

g . . - T
3 Py is defined as pt L 0(2 t+1). See [2].

The central optimum is the optimum computed with the original,
unchanged set of parameters and data.

2 See formulas (2.2.12) and (2.2.14) for the way in which this
adaptation can be carried out for the case of linear restrictions.
Similar formulas were derived for this adaptation in the non-
linear case.




From subsection 2.2 it can be seen that for a model with a
quadratic target function and linear constraints the truncated model
leads to correct results, even if parameters are changed, provided
that the valuations are adapted to these changes.S This is due to
the fact that the formulas (2.2.12) and (2.2.14) only contain vectors and
matrices of parameters.

This, however, is no longer true if we are dealing with a decision
model with non-linear constraints. In that case the valuations of the
link variables depend not only on the parameters of the decision model
(as in the case of subsection 2.2), but also on the optimal values of
instruments and endogenous variables. We cannot fully adapt the valuations
to the changed parameters by means of formulas such as (2.2.12) and (2.2.14),

"which implies that the use of the truncated model with changed parameters
will, in general, lead to a first-period decision, different from that
obtained by optimizing the long-term model.

- The consequence of the above is that our original criterion for
the applicability of the truncated model (the same first-period decision)
cannot be maintained.We therefore used a new criterion to indicate whether
the first-period decision obtained by the optimization of the truncated
model was close enough to that obtained by optimizing the long-term model.
The usefulness of the method depends on the range within which the parameters
can be changed without exceeding the criterion. ‘

Our experiments learned that changes iﬁ d do not do much harm. The
results obtained with the truncated model do not differ much from the
results of the long-term model, which implies that given the underlying
decision model, the truncated model can be used to investigate the effects
of changes in d.

The same applies for experiments with changes ih pﬁ. However, the
valuations of the central optimum were not adapted to these changes,
which resulted in outcomes lesslsatisfactéry than those in the case
of changes in d.

'Finally, some experiments were carried out with changes in the data.

" Here, too, the truncated model turned out to be a useful tool for policy

experiments.

The next subsections will be devoted to the results of a number of

additional experiments.




3.2. Changes in the Matrix of the Quadratic Form

The experiments summarized in the previous'subéection were devoted
to an‘investigation of fhe'intluencé of chahges in date or parameters
upon the usefulness ih'practicé of the truncated model. However, not
all parameters were considered. We'restricted ourselves to the , .
perameters of the linear term (d), and the discount factor (pg). It is -
of some interest to know something more about the influence of changes -
in the elements of B. This matrix indicates the relative importance,
attached to the losses due to the "use" of the various instruments. In
this connection the use of the instruments is defined as the
‘difference (xt - th_1) (cf;<formula 3.1.1). The values represented by
Nx,_, (to be called the "trend values" of x,) can be considered to be
what Theil calls the "desiréd'values"of xt§»The results of some
experiments with changes in B are presented in this subsection.

First, eight optimizations with the long-term model were carried out.
In these 6ptimizations the‘diagonﬁl elements of B were changed : '
simultaneously. The results ofbthe experiments as far as the first-
period decision is éoncérned; together with the result of the central
optimum,7 are summarized in Table 3.1, columns "a". .
| We see that the changes in the elements of B lead to very
different first-period policies, a result that could be expected.

This is, however, no answer yet to the question, whether the truncated
model will lead to almost the same first-period policies. ' '

To answer this question the iong-term model was truncated at the end
of the fifth year, using the valuations of link variables as computed in
the central optimum; We did not develop g,formula'to,adapt the
veluations to the changes in B, as was done in our expériments with

changes in d (cf. subsection 3.1).

Theil [3] introduces the "desired values" to express the desires of the
policy-maker with respect to the future values (or changes in future
values) of targets and instruments. The decision problem consists of

& quadratic target function to be maximized, subject to linear equality
constraints "and this maximization problem is formulated in terms of
the minimization of the sum of squares of the discrepancies between
actual and desired values" '(Theil [3], page 29).

Our desired values of the instruments are equal to the trend values

Ix, .. It has to be noted that the trend values th 1'are obtained
from the actual values of the previous year (x, 407

7 . ¢, . . L . . o . - .
See the definition of "central optimum" in the previous subsection.




The use of "wrong"8 valuations in the optimization of the
truncated model will lead to first-period decisions, that are
different from the decisions, obtained by the optimization of the
long-term model (both optimizations carried out with the same
changes in B). These differences can be seen from Table 3.1, where
the first-period decision from the truncated optimization is given
next to the results of the long-term optimization (columns "b").

To judge these results we computed the "loss" due to the
optimization of the truncated model with "wrong" valuations. This
loss is obtained as follows. The value of the long-term target
function, given the changed elements of B, is defined as the "true"
optimum value. For every experiment we find such a "true" optimum value
in Table 3.1, column "c". Furthermore, we define the conditional
optimum as the long-term optimum, given the changes in B, and given
furthermore the first-period decision resulting from the
optimization of the truncated model with the same changes in B.

The conditional optimum value will be smaller than the true optimum

value, because the first-period decision of the conditional optimum

is not equal to that of the true optimum. The values in the conditional

optimum can be found in column "d" of Table 3.1. Finally, the loss

is defined as the difference between the true and the conditional

optimum values. These losses are given in column "¢-d" of Table 3.1.
The losses were compared with the loss, resulting from taking

).

the instrument values equal to their trend values (i.e. x, = IIxt_1
In our definition given in the beginning of this subsection this
implies that the "use" of the instruments is zero. The target function
value resulting from this policy would be muéh lower than the optimum
value, and a considerable loss would be incurred. This loss is a
relevant standard by which to measure the losses of truncation.

The losses, resulting from taking'xt = th_1 can be found in
column "c-e", whereas column "f" shows the loss due to the

conditional optimization as a percentage of the loss due to taking

the instrument values equal to their trend values.

8

The valuations are "wrong" because they are not equal to the valuations
belonging to the long-term optimum obtained with changed elements of B.
It has to be noted that even if the valuations would be adapted to
changes in B (as has been done in the case of changes in d) the
valuations still would have been somewhat "wrong". This is due to

the fact that the non-linear character of the model prevents a full

adaptation. .




TABLE 3.1. RESULTS OF EXPERIMENTS WITH CHANGES IN THE ELEMENTS OF THE MATRIX OF THE QUADRATIC FORM

Long-term target

. Losses™
function values™

Elements of B First-period values of instruments®

P11 Pap Py g - ot
b o a a da
Central ‘ :
optimum 1.60 2.20 1.876 3.572
E#periment
1 2.35 3.20 1.923 - 3.545 3.54k - 191.553 191.552 187.107 0.001 L.L46 o0.02
2.35 1.20 1.941 3.552 3.544 . 192.309 192.234 187.107 0.075 5.202 1.4k
0.85 3.20 1.946 3.685 3.6T1 195.837 195.794 187.107 0.043 8.730 0.49
0.85 1.20 1.944 3.682 3.669 . 196.h80' 192.442 187.107 0.038 9.373 0.40
2.35 3.20 1.727 3.538 3.545 .- . 196.289 192.278 187.107 0.011 9.182 0.12
2.35 1.20 1.720 3.535 3.5k . 196.602  196.580 187.107 0.022 9.495 0.22
0.85 3.20  1.743 3.636 3.6L48 . 198.479 198.473 187.10T 0.006 11.372 0.06
0.85 1.20 1.744 3.636 3.645 . 198.750 198.7h4k 187.107 0.006 11.643 0.06

In billions of guilders

long-term optimization
optimization with truncation after five years
target function value from true optimization
target function value from conditional optimization
target function value obtained from x, = Iix

t t-1
100(c - 4d)

c-e




It can be concluded that if the losses are considered in this way
they are in general negligible. Only in the case of experiment 2 the loss
is more than one percent of the loss, obtained by putting x, equal to its
trend value Hx _1° lee the experiments described 1n Subsection 3.1
it can be concluded that the truncated model can be used as a substitute
for the long-term model in the case the policy-maker is interested in
the influence of changes in the matrix of the quadratic form.

In this connection it has to be noted that the valuations of the
 link variables, used in our experiments with changes in B, were not
adapted to these changes. It is conceivable that such an adaptation can
be carried out just as has been done in our experiments with changes in d
(as described in Subsection 3.1). Further research may very well lead to
the conclusion that such an adaptation leads to results even better than

those, obtained in this subsection.

3.3. Changes in the Growth-rates of the Instruments

In the previous subsection we considered the influence of changes in
the elements of B, the matrix 1nd1cat1ng the relative importance attached
to the losses due to the use of the various instruments. This use was
defined as the difference between X, and th_1, where I is a diagonal
matrix of growth-rates. As in the case of changes in B it is of some
interest to know what influence a change in the elements of I has upon
~the applicability of the‘truncated model. The way in which this question
has been answered is analogous to that of Subsection‘3.2, SO our comments
can be rather brief.

Four experiments were carried out with changed élements of I, in
which experiments the long-term model was optimized.

The following step was the‘optimization of the model, truncated after
S years, with the same changes in the elements of I, and us1ng the
valuations of link variables as computed in the central optimum. As in’
the case of changes in B we did not adapt the valuatlons of the link
variables to the changed elements of M.




TABLE 3.2. RESULTS OF EXPERIMENTS WITH CHANGES IN THE GROWTH RATES OF THE INSTRUMENTS

Elements of I First-period values of instruments

m C ‘ L

22 g

Central

. 1.06
optimum .

Experiment
1

2
3
4

g X ATi

189.7TL
203.533
185.165
200.184

= Long-term target
function values

189.761
203.41Y4
185.112
200.157

Losses

&

In billions of guilders

a = long-term optimization

b = optimization with truncation after fife years
target function value from true optimization

target function value from conditional optimization




Finally, the losses due to the use of wrong valuations in the
truncated model were computed. These losses were defined in the
same way as in Subsection 3.2.

The results of our computations can be found in Table 3.2. All
losses except for the case of experiment 2, are of the same order
of smallness as those of Table 3.1.9 Because in the experiments the
valuations were not adapted to the changed elements of I it can be
expected that the results can be improved by such an adaptation. Our
conclusion therefore is the same as that given at the end of the
previous subsection, namely that the truncated model can be used as a
substitute for the long-term model in the case the policy-maker is
interested in the influence of changes in the growth-rates II of the

instruments upon the first period decision..

‘4, CONCLUSIONS

In the present study we extended the method of truncating a

deterministic decision model, as outlined in [2], in two ways. First,
a numbef of mathematical results was derived for two specific models,
Second, a number of experiments were carried out with changes in
parameters, not considered in [2].

A number of problems remains to be solved. As already outlined in
(2], one of the most important restrictions is the specific form of
the target function, which is linear in the target variables only and
quadratic in the instruments only. More insight is needed into the
consequences for the applicability of the method if more general functions
are used. ‘

However, in the experiments carried out with a long-term decision
model, consisting of a quadrafic targetlfunction and the relationships
between endogenous and explanatory variables of the Van den Beld model,
the truncafed model generated the same ootimal voliev as the 1ong-ter£.
-model. Experiments with changes in the coefficients 6f the target function, -
or in the data did not influence this materially, as can be seen from [2].
This conclusion can be maintained after our experiments with changes in
the parameters of the quadratic part of the target function, as described

in this paper. These results could now be useful in practice,

9 ¢f. columns "c-d" in both tables.
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