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1. INTRODUCTION

Generally, a policy-maker will be interested mainly in how to

behave in the immediate future. Decisions with respect to later periods

can be postponed, and can be based on new information as it becomes

available. On the other hand, the policy-maker must take

into account the effect of his first-period decision upon the following

periods. He has to estimate this influence and decide what significance

it has for his first-period decision.

1
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Defining the decision model over only a few periods entails the risk

that a great deal of the future effects is neglected. If, on the other

hand, a great number of periods is taken into account, the model may no

longer be manageable. It would be better to truncate the decision model

in such a way that only a limited number of periods is included, while

approximately the same first-period optimal policy results as in the case

of an infinite horizon.

In the present paper a model, defined over two subsequent periods,

is truncated at the end of the first period. In the solution, the effect

of a decision upon the second period is represented by the partial

derivatives with respect to the variables "linking" two periods, of the

part of the decision model to be replaced. These partial derivatives

are called "valuations" of link variables. Link variables are both

endogenous variables and instruments, which appear in a lagged form

in the second period part of the decision model, including the second

period part of the target function.

After a presentation of some results published earlier attention is

given to the case of a model, consisting of a quadratic target function

and linear relations between endogenous and exogenous variables. First,

a number of results is derived for a model defined over two periods.

Subsequently, a model is introduced defined over infinitely many periods;

the truncation method is extended to this case.

Finally, the method is applied to a decision model that is non-linear

in the relations between instruments and target variables. After a brief

summary of some previously published results, the results of additional

experiments are given.

2. THE MATHEMATICAL FORMULATION OF THE TRUNCATION PROBLEM

2. 1. The General Problem

In a previous publication [2] a number of results ,with respect to

the truncation of decision models was derived. The most important

result is that a deterministic decision model, defined over two subsequent

periods, and having a unique optimum, can be truncated at the end of the

first period in such a way that the optimum of the original problem, as

far as the first period is concerned,satisfies the first-order optimal



conditions of the truncated problem.

We formulate the following deterministic decision problem:

(2.1.1)

subject to

(2.1.2)

and

(2.1.3)

where

max = {01(q1, p ) + 02(q1, (12, pl, p2)}

'131 ,112'

q
1 
= G

1(
p
1
)

: vector of endogenous variables of period 1

: vector of endogenous variables of period 2

: vector of instruments of period 1

: vector of instruments of period 2

: scalar functions

: vector functions.

In the following we further restrict ourselves to the class of

problems P for which there is an isolated optimum with the optimal

solution (pt, p), where all first-order derivatives with respect to

pl, p2, ql, and q2 exist. By substitution of (2.1.2) and (2.1.3) into

0 we define:

(2.1.4) T(P1, P2) ' 101(G1(P0' PI)

+ 02(G1(p ), G2(G1(p1), P2), P

A necessary condition for an optimum of P is that the derivatives of 0 with

respect to pl and p2 vanish:



- 30 3G. 3.41, 30_ 3G 302
ILL. 1

(215) 
1 + _E. 4. 1

31D1 31)1 3131 • 3(11 3131 31D1 • 3q1

(2.1.6)
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2 

aci)
2 

3G1 3G
2

aq = 0

3P1 • 3q2 
3P1 • 3'41 2

Ti) 34)2 aG2 . 0
aP2 42 42 • aq2

Substitution of (2.1.3) into 02 provides the function CF2 defined by

111 the optimum (plc,

371,
(2.1.8) u =

aq1 /

(2.1.9) v = a".62 *
aP1 qi'

where

, (q G (q
2 1 p2), p1, P2)

4) define vectors u and v as follows:

*n
1' .c"2

'02
=

= *

•1

= G2(q;' PI' PP

Consider now the truncated problem Q:

(2.1.10)

subject to .

(2.1.11

max 1.1 = {0 (CI

(Pi)

n a.
2 2(,..*

aril • W2 41'

nic nic
'2' '1'

3G
2

P2 ap
1 

aq
2 

PI'

p ) + u'q + IP/pi}

= G
1 
(p

1 
)

and let this problem, like P, have an isolated optimum where all first-

order derivatives with respect to pi and qi exist.
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Substitution of (2.1.11) into (2.1.10) provides the definition:

(2.1.12) - = {4)1(G1(131)' p1) 1"1(131) /1'1°1/

A necessary condition for an optimum of Q is that the first-order

derivatives of T1 with respect to p1 vanish:

— act) ILE aG. 41 aG1 1(2.1.13) 
41 41 

. . + . u + v. = 0
41 aqi a.P1

Upon substitution of the definitions (2.1.8) and (2.1.9), equation

(2.1.5) reappears, i.e. the vector 11 occurring in the optimum

solution to P satisfies the necessary condition for an extremum of Q.

Although this does not imply that pI is the optimum solution to Q,

this was always true in the practical problems considered in [2].

2.2. A Quadratic !Target Function with Linear Constraints

In the previous subsection we indicated that the optimum solution

to the original problem satisfies the first-order optimum conditions

for the truncated problem. For the more restricted case of a quadratic

target function with linear constraints it can be proved that the

optimum solution to the original problem is also the optimum solution
to the truncated problem.

Consider the following decision model:

(2.2.1) 
max •  = {1/)1(q1, 

p1)
 42(c11, c12, P1, P2)1

(P1 ,132)

where

(2.2.2) 0
1
(q

1' 
p
1
) = w'q

1 
- i(p

1 
- 
A1p0PQ1(p1 

- A
1
p
0
)1 

and

(2.2.3)
q1 ci2 pl, 132) = 17C12 :(112 -

subject to



(2.2.4)

and

(2.2.5)

where

q
1 
= s

1 
+ R

1P1

q =s +Rp +Sp +Sa2 2 2 2 1 1 2-1

q1 : vector of endogenous variables of period 1
: vector of endogenous variables of period 2c12

P1 : vector of instruments of period 1
p
2 

: vector of instruments of period 2
Q- Q • symmetric, non-singular matrices1' 2.

1' 2'
ssw

l w2 
A
1' 

A
2' 
RR

2' S1, 
S.
2. 

vectors and matrices of parameters' ' l' 

of appropriate order.

Suppose this decision problem has a unique optimum solution (pc:, pp.
A necessary and sufficient condition for such a unique optimum is that
the quadratic form

-(P1 A1P0)'Q1(P1 A1P0) -1(132 - A2P1)'Q2(132 A2P1)

is negative-definite. This implies that both QI and Q2 are positive-definite
matrices.

It can easily be verified that the optimum solution to the problem
(2.2.1)-(2.2.5) is:

-1(2.2.6) 11 = Alpo + Q1 {Wiwi + S

(2.2.7) . Q-1R,w A p*
2 2 2 2 2 1

Define in accordance with (2.1.7)

(2.2.8

+ R 
S2'w2 

+ A'R'w
2 
12 2 

+ w'R p + w'S p + w'S q2 2 1 1 2 2 1



and truncate the decision model as follows:

(2.2.9)

subject to

(2.2.10)

where

(2.2.11)

and

max p = {4)1(q1, 1)1) + u'ql + v'pl}

(p1)

q
1 
= s

1 
+ R

1
p
1

a7)2
U = aqi 

(n*-1' 4- * = S
2
'w
2 '1 711, 

2

(2.2.12) v

7

PI, pp = s!w
2 

A tQ
2 (p* - A2 p*)2 2  1

Substitution of (2.2.7) into (2.2.12) gives:

(2.2.13) v = S'w + A Rtw1 2 2 2

A necessary and sufficient condition for the existence of a unique
optimum to (2.2.10)-(2.2.11) is that the matrix of the quadratic form,
Q
1' 

is positive-definite. This condition is satisfied because of the
uniqueness of the solution to the original problem.

Consider now the first-order necessary condition for an optimum
of (2.2.9)-(2.2.10):

(2.2.14) = R

uP1
+QAp + R'u +v= 01

Substitution of (2.2.11) and (2.2.13) into (2.2.14), and rearranging terms
gives the following optimum solution:

(2.2.15) -= A
1 p0 

11 + Q {R'w + 1S'w
2 
+ Siw

2 
i +2 1 

which is identical to (2.2.6).



It follows that for a model consisting of a quadratic target function

with linear constraints:

(a) uniqueness of the optimum solution to the original problem

implies a unique optimum for the truncated problem;

(b) the solution to the truncated problem is identical to

the solution to the original problem as far as the first period is

concerned.

2.3. An Extension to Infinity 

In the previous subsections we derived formulas for the case of

two periods. In this subsection these results are extended to a situation

in which there are T subperiods, with the intention of passing to the

case of infinitely many subperiods.

In the literature, target function values are often defined as

a discounted sum of all future one-period target function values. By

passing to infinity we shall tie our formulations to current theory.

It will be seen that for a certain class of models with an infinite

horizon, truncation leads to very simple formulas.

Consider the decision model, defined over two subsequent periods,

where both periods consist of a number of subperiods.

(2.3.1)

subject to

(2.3.2)

max
= .."

(xl,...,xT)

4)2(Y1' .." YT; 2c1'

Yt =

y = a 
t +Axt + Cyt_ i 

t

X

; x1, • • • ,

• T > 0, T > T

t = 1, ...,

t = T 3, T



where

y
t 

: vector of endogenous variables of subperiod t

x
t 

: vector of instruments of subperiod t

cP, 01, 02 : scalar functions

gt 
: vector functions

: vectors and matrices of parameters of appropriate order.at, A, C

The second part of the target function is assumed to have a special

quadratic form:

(2.3.4)

where

yT xT)
T.

= • E p
t-1

{d'y
t 

i(x
t 
- 

Rxt 1 
)1B(x Rx

t- 
)}

- 
twr+1

: positive-definite matrix

d, R : vector and matrix of parameters of appropriate order

p{0 < p < 1): discount factor, indicating the time-preference

of the policy-maker

In the optimum the following relations should hold:

(2.3.5)

s-1
E p d'ys

s=t

For period T this implies:

T-I4
2 ap d'y

T 
= p

T-I
{A''d -(2.3.6)

3cT 
axT

resulting in

(2.3.7) = A'd

t = T 1 .

(xT nxT )} = o
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By induction it will be proved that the following relation holds good

for all T and all s, T < s < T:

(2.3.8) --B(x* - = Es+1 
ti=s+1 t

(W)t's1 
E At(PC1)t-V id
=t'

First we prove that (2.3.8) holds good for all T and s = T - 1. Let

s = T - 1, then (2.3.8) reduces to

(2.3.9) B(x* - nx*
1 
) = A'dT-

which is identical to (2.3.7) and therefore holds good for all T. It

follows that (2.3.8) holds good for all T and s = T - 1.

Suppose now (2.3.8) holds good for some s, T < S < T. In the optimum

we have by differentiation of (2.3.4)

E p d'y
t'

(2.3.10) tims  
= 0ax

s Dx
s

From (2.3.3) we obtain

(2.3.11)
t'-1ap d yt, 

ti-1A,(v) d  = p
ax
s

Substitution of (2.3.11) into (2.3.10), and differentiating 02 with

respect to xs leads to

T
E (2.3.12) tf=sp

t'-1
AtC1)

tf-s
d 
-s-1 

(x
s
 
 
- 

nx0s 
 
-1 

p 
s 
n'B( 

x*s +1 
 
Hx*s
) = 0

where x* denotes the optimum solution for period s. Dividing by p
5-1

we find

(2.3.13)
ts

E p Al(C') sd B(x* - nx*
1 
) + 

s+1 
- nx*) = 0s- 



Substitute (2.3.8) in 2.3.13

'
E(2.3.14) t-sA'kC) 

t‘tt-sp d B(x* - nx*
1tt=s 5-

or

(2.3.15)

+ pH'
ti=s+

B(x* - Mc*
s-1

E A'(pC')t-tt
t=t'

t'- '-
E p 

s 
A'(C') 

s
d

t'=

t'--'
E 

S{ 
E A'(pC')

tt
 }d

t'=s+1 t=t'

E 
-s{ E A,(00c,*)t-t'}d

tt=s t=t'

which is the same as relation (2.3.8) for s - 1. Hence, if (2.3.8)

holds good for some s, T < $ < T, it holds good for s 1, which completes

the proof.

The extension of the model to one defined over infinitely many

periods (T c0) runs as follows. Formula (2.3.8) is rewritten as

(2.3.16)
T-s

B(x* - Tlx*) = E (s+1 s
t'=1

This is a partial sum of the double sum

(2.3.17)

00

' 1 
T-s-t'

- 
{ E A'(pC')

t
}d

t=0

E (01,)t'-1{ E A' (pC' )
t
}d

t'=1 t=0

CO

which is absolutely convergent provided

(2.3.18)

and

(2.3.19) lim
t4.0o

lim (pC')
t 
=

t+cie

n,)t = 0

2)

2 1This occurs e.g. when pC' L < -- where 11pC'll denotes the maximumn'of the absolute values of the elements of PC', and C' is an n x n matrix.



Then the double sum is equal to

(2.3.20)

A I -

Hence, passing to the, limit (T F°) we rind

(2.3.21)

In accordance wi,th section (2.2) the model

(2.3,22) 27184

1,...,X )

1

truncated as follows:

In accor4ance with the derinition of u in (2.1.8) vebain from (2.3.3)

and (2.3.4)

(2.3.23) t-1
zpd

t=T+1

p C'd +p' 1

pct

It

If (2.3.18)holds good, and we let T go

(2.3.24)

v•ITY-

o co we obtain

-pct

From (2.3.4) we obtain, in accordance with tI definition o

(2.3.25). V= P n /Bb04f

n (2.

If both (2.3.18) and(2,3.19) hold good we obtain from 2,3.21 in the.

limit (T

(2.3.26)

Both (2.3.24) and .3.26 seem simple an4 elegant enough.

.9)
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3. SOME EXPERIMENTS

3.1. Summary of Previous Results

The question arises whether the truncation method, outlined in

the previous section, can be used for policy experiments. More

expecially it would be interesting to know whether the metho4 is

practically useful in a situation where the model, relating

endogenous and explanatory variables, is non-linear.

The results of a first investigation into this question were given

in the publication mentioned before [2]. A number of experiments were

carried out with the following target function:

(3.1.1) max

where

2! •

= E
t=1

: scalar function

yt: vector of target variables of period t

x • vector of instruments of period tt.
d : vector of weights for the target variables

B : diagonal positive-definite matrix of the quadratic form
• : diagonal matrix of growth-rates

X : scalar, indicating relative importance of the qualiratic

part with respect to the linear part

p*' 
. discount factort 

The targets used in our experiments are:

:'deflated p▪ rivate consumption
w : unemployment

:
A'q(ex) 

creation of liquidities via external payments

As instruments we used the following ones:

}

Cg • government consumption expenditure excluding wages and salaries
.

L • wages and salaries paid by governmentgs
AT*.change in autonomous taxes on wagesL.



The relations between target variables yt and instruments xt

are given by the CS-model of Van den Beld, a recently published

non-linear yearly model of the Dutch economy [1].

Because of the non-linear character of the model it was not

possible to work with infinitely many periods. We therefore

restricted the model to a time-span of 23 years. Furthermore, we

used a discount factor slightly different from the usual one.
3

The first question to be answered was whether the long-term model

could be truncated along the lines outlined in Section 2, in such

a way that the truncated model generated correct results in the sense

of the same first-period decision as the original long-term model

showed. This turned out to be the case for the model, truncated at

the end of the third and the fifth year.

However, one optimization of the target function will in

general not suffice. The policy-maker will desire to be informed

, about the influence of changes in the initial conditions, and of

alternative assumptions about the data during the time-span of the

target function. Furthermore, it is not unlikely that the policy-maker

will be interested in the results of optimizations with several

alternative target functions. If the truncated model is to be of

interest for policy purposes, it has to generate correct. results in

the sense as defined above) in experiments with changed data or

parameters.

To test this, a number of experiments were carried out in which

parameters of the target function were changed, namely the elements

of d and pt, the discount factor. The decision model was truncated

by means of the valuations, computed in the "central optimum",
4 

where

in the case of changes in d these valuations were adapted to these

changes.5 .

3 J. is defined as 
t-1 (2T-t+1)

. See [2].p- P P

The central optimum is the optimum computed with the original,
unchanged set of parameters and data.

5 See formulas (2.2.12) and (2.2.14) for the way in which this
adaptation can be carried out for the case of linear restrictions.
Similar formulas were derived for this adaptation in the non-
linear case.



15

From subsection 2.2 it can be seen that for a model with a

quadratic target function and linear constraints the truncated mode."
leads to correct results, even if parameters are changed, provided

that the valuations are adapted to these changes.5 This is due to
the fact that the formulas (2.2.12) and (2.2.14) only contain vectors and
matrices of parameters.

This, however, is no longer true if we are dealing with a decision
model with non-linear constraints. In that case the valuations of the
link variables depend not only on the parameters of the decision model
(as in the case of subsection 2.2), but also on the optimal values of

instruments and endogenous variables. We cannot fully adapt the valuations
to the changed parameters by means of formulas such as (2.2.12) and (2.2.14),

• 
which implies that the use of the truncated model with changed parameters
will, in general, lead to a first-period decision, different from that

obtained by optimizing the long-term model.

The consequence of the above is that our original criterion for

the applicability of the truncated model (the same first-period decision)

cannot be maintained.Ve therefore used a new criterion to indicate whether
the first-period decision obtained by the optimization of the truncated
model was close enough to that obtained by optimizing the long-term model.
The usefulness of the method depends on the range within which the parameters
can be changed without exceeding the criterion.

Our experiments learned that changes in d do not do much harm. The
results obtained with the truncated model do not differ much from the
results of the long-term model, which implies that given the underlying
decision model, the truncated model can be used to investigate the effects
of changes in

The same applies for experiments with changes in pt. However, the
valuations of the central optimum were not adapted to these changes,
which resulted in outcomes less satisfactory than those in the case
of changes in d.

Finally, some experiments were carried out with changes in the data.
Here, too, the truncated model* turned out to be a useful tool for policy
experiments.

The next subsections will be devoted to the results of a number of
additional experiments.



3.2. Changes in the Matrix• of the Ctiadratic Form

The experiments summarized in the previous subsection were devoted

to an investigation of the influence of changes in data or parameters

upon the usefulness in practice of the truncated model. However, not

all parameters were considered. We restricted ourselves to the

parameters of the linear term (d), and the discount factor (q). It is

of some interest to know something more about the influence of changes

in the elements of B. This matrix indicates the relative importance

attached to the losses due to the "use" of the various instruments. In

this connection the use of tie imstruments s defined as the

difference (xt Rxt_i) (cf. formula 3.1.1). The values represented by

Rx
1 
(to be called the "trend values" of x) can be considered to bet-

what Theil calls the "desired values" of xt. The results of some

experiments with changes in B are presented in this subsection.

First, eight optimizations with the long-term model were carried out.

In these optimizations the diagonal elements of B were changed '

simultaneously. The results of the experiments as far as the first-

period decision is concerned together with the result of the central

optimum,7 are summarized in Table 3.1, columns '"a".

We see that the changes in the elements of B lead to very

different first-period policies, a result that could be expected.

This is, however, no answer yet to the question, whether the truncated

model will lead to almost the same first-period policies.

To answer this question the long-term model was truncated at the end

of the fifth year, using the valuations of link variables as computed in

the central optimum. We did not develop a formula to adapt the

valuations to the changes in B, as was done in our experiments with

changes in d (Cf. subsection 3.1).

6
Theil [3] introduces the 'desired values" to express the desires of the
policy-maker with respect to the future values (or changes in future
values) of targets and instruments. The decision problem consists oil
a quadratic target function to be maximized, subject to linear equality
constraints "and this maximization problem is formulated in terms ofthe minimization of the sum of squares of the discrepancies between
actual and desired values" '(Theil [3], page 29).
Our desired values of the instruments are equal to the trend values
11xt-1. It has to be noted that the trend values Hxt...1 are obtained
from the actual values of the previous year (x t1)t-1

7 See the definition of "central optimum" in the previous subsection.
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The use of "wrong"
8 

valuations in the optimization of the

truncated model will lead to first-period decisions, that are

different from the decisions, obtained by the optimization of the

long-term model (both optimizations carried out with the same

changes in B). These differences can be seen from Table 3.1, where

the first-period decision from the truncated optimization is given

next to the results of the long-term optimization (columns "b").

To judge these results we computed the "loss" due to the

optimization of the truncated model with "wrong" valuations. This

loss is obtained as follows. The value of the long-term target

function, given the changed elements of B, is defined as the "true"

optimum value. For every experiment we find such a "true" optimum value

in Table 3.1, column "c". Furthermore, we define the conditional

optimum as the long-term optimum, given the changes in B, and given

furthermore the first-period decision resulting from the

optimization of the truncated model with the same changes in B.

The conditional optimum value will be smaller than the true optimum

value, because the first-period decision of the conditional optimum

is not equal to that of the true optimum. The values in the conditional

optimum can be found in column "d" of Table 3.1. Finally, the loss

is defined as the difference between the true and the conditional

optimum values. These losses are given in column "c-d" of Table 3.1.

The losses were compared with the loss, resulting from taking

the instrument values equal to their trend values (i.e. x
t 
= 11xt..1).

In our definition given in the beginning of this subsection this

implies that the "use" of the instruments is zero. The target function

value resulting from this policy would be much lower than the optimum

value, and a considerable loss would be incurred. This loss is a

relevantsstandard by which to measure the losses of truncation.

The losses, resulting from takinx = Hxt...1 can be found in

column "c-e", whereas column "f" shows the loss due to the
conditional optimization as a percentage of the loss due to taking

the instrument values equal to their trend values.

8
The valuations are "wrong" because they are not equal to the valuations
belonging to the long-term optimum obtained with changed elements of B.
It has to be noted that even if the valuations would be adapted to
changes in B (as has been done in the case of changes in d) the
valuations still would have been somewhat "wrong". This is due to
the fact that the non-linear character of the model prevents a full
adaptation.



TABLE 3. 1. RESULTS OF EXPERIMENTS WITH CHANGES IN THE ELEMENTS OF THE MATRIX OF THE QUADRATIC FORM

Elements of B First-period values of instruments*

Central
optimum 1.00 1.60 2.20 1.876

Experiment

1

2

3

14

8

1.50

1.50

1.50

1.50

0.50

0.50

0.50

0.50

2.35

2.35

0.85

0.85

2.35

2.35

0.85

0.85

3.20

1.20

3.20

1.20

3.20

1.20

3.20

1.20

1.923

1.941

1.946

1.944

1.727

1.720

1.743

1.744

1.923

1.923

1.930

1.930

1.742

1.741

1.741

1.735

3.572

3.545

3.552

3.685

3.682

3.538

3.535

3.636

3.636

AT*

-.032

3.544 -.025

3.544 -.100

3.671 -.032

3.669 -.083

3.545 .024

3.544 -.058

3.6148 -.021

3.645 -.057

-.023

-.o6o

-.025

-.067

-.024

-.023

-.058

Long-term target
function values*

191.553

192.309

195.837

196.1480

196.289

196.602

198.1479

198.750

191.552

192.234

195.794

192.442

192.278

196.580

198.473

198.7414

187.107

187.107

187.107

187.107

187.107

187.107

187.107

187.107

Losses*

c-d c-e

0.001 4.446

0.075 5.202

0.043 8.730

0.038 9.373

0.011 9.182

0.022 9.495

0.006 11.372

0.006 11.643

0.02

1.44

0.49

0.40

0.12

0.22

0.06

0.06

In billions of guilders

a = long-term optimization
b = optimization with truncation after five years
c = target function value from true optimization
d = target function value from conditional optimization
e = target function value obtained from x

t 
= llxt-1. 100(c - d)f =

c e
OD
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It can be concluded that if the losses are considered in this way

they are in general negligible. Only in the case of experiment 2 the loss
is more than One percent of the loss, obtained by putting x

t 
equal to its

trend value fix t...1. Like the experiments described in Subsection 3.1
it can be concluded that the truncated model can be used as a substitute
for the long-term model in the case the policy-maker is interested in
the influence of changes in the matrix of the quadratic form.

In this connection it has to be noted that the valuations of the
link variables, used in our experiments with changes in B, were not
adapted to these changes. It is conceivable that such an adaptation can
be carried out just as has been done in our experiments with changes in d
(as described in Subsection 3.1). Further research may very well lead to
the conclusion that such an adaptation leads to results even better than
those, obtained in this subsection.

3.3. Changes in the Growth-rates of the Instruments 

In the previous subsection we considered the influence of changes in
the elements of B, the matrix indicating the relative importance attached
to the losses due to the use of the various instruments. This use was
defined as the difference between x and Rx

1' 
where 11 is a diagonalt t-

matrix of growth-rates. As in the case of changes in B it is of some
interest to know what influence a change in the elements of II has upon
the applicability of the truncated model. The way in which this question
has been answered is analogous to that of Subsection 3.2, so our comments
can be rather brief.

Four experiments were carried out with changed elements of n, in
which experiments the long-term model was optimized.

The following step was the optimization of the model, truncated after
5 years, with the same changes in the elements of n, and using the
valuations of link variables as computed in the central optimum. As in *
the case of changes in B we did not adapt the valuations of the link
variables to the changed elements of H.



TABLE 3.2. RESULTS OF EXPERIMENTS WITH CHANGES IN THE GROWTH. RATES OF THE INSTRUMENTS

Central
optimum

Experiment

Elements of H

7111 
n
22 1.33

a

1.06 1.06 0.00 1.876

First-period values of instruments

L AT*
g L

b a b a b

3.572 -.032

Long-term target
function values

* Losses

c-d

1 1.04 1.04 0.00 1.847 1.850 3.493 3.506 -.036 -.035 189.774 189.761 0.013
2 1.04 1.08 0.00 1.892 1.858 3.672 3.655 -.048 -.038 203.533 203.414 0.119
3 1.08 1.04 0.00 1.879 1.906 3.497 3.504 -.037 -.033 185.165 185.112 0.053
14 1.08 1.08 0.00 1.932 1.920 3.669 3.657 -.044 -.039 200.184 200.157 0.027

*
In billions of guilders

a = long-term optimization

b = optimization with truncation after five years

c = target function value from true optimization

d = target function value from conditional optimization
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Finally, the losses due to the use of wrong valuatipns in the

truncated model were computed. These losses were defined in the

same way as - in Subsection 3.2.

The results of our computations can be found in Table 3.2. All

losses except for the case of experiment 2, are of the same order

of smallness as those of Table 3.1.9 Because in the experiments the

valuations were not adapted to the changed elements of n it can be
expected that the results can be improved by such an adaptation. Our

conclusion therefore is the same as that given at the end of the

previous subsection, namely that the truncated model can be used as a

substitute for the long-term model in the case the policy-maker is

interested in the influence of changes in the growth-rates II of the

instruments upon the first period decision..

. CONCLUSIONS

In the present study we extended the method of truncating a

deterministic decision model, as outlined in [2], in two ways. First,

a number of mathematical results was derived for two specific models.

Second, a number of experiments were carried out with changes in

parameters, not considered in [2].

A number of problems remains to be solved. As already outlined in

[2], one of the most important restrictions is the specific form of

the target function, which is linear in the target variables only and

quadratic in the instruments only. More insight is needed into the

consequences for the applicability of the method if more general functions

are used.

However, in the experiments carried out with a long-term decision

model, consisting of a quadratic target function and the relationships

between endogenous and explanatory variables of the Van den Beld mode],

the truncated model generated the same optimal policy as tho long-term

model. Experiments with changes in the coefficients of the target function,
or in the data did not influence this materially, as can be seen from [2].
This conclusion can be maintained after our experiments with changes in
the parameters of the quadratic part of the target function, as described
in this paper. These results could now be useful in practice,

9 Cf. columns "c-d" in both tables.
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