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Abstract

Applied researchers typically pre-test to decide the final estimator of the
coefficients in a regression model. Brook (1976) shows that the optimal
critical value for the preliminary test is approximately two in value,
regardless of the degrees of freedom, according to a mini-max (risk) regret
criterion, when the prior test is of the validity of restrictions on the
model’s coefficients. Brook’s result depends on the often unrealistic
assumption of normally distributed disturbances. We consider the wider
family of multivariate Student-t disturbances.
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1. INTRODUCTION

Applied statisticians and econometricians frequently choose the

ultimate specification of a multiple linear regression model on the basis
of preliminary tests oh that model. For instance, they may test the
validity of exact linear restrictions on the model’s parameters and then,
depending on the outcome of the prior test, use either the Ordinary Least
Squares estimator (OLSE) or the Restricted Least Squares estimator (RLSE).
This procedure leads to the use of a "preliminary test" estimator (PTE).
The PTE is the OLSE if we reject the hypothesis that the restrictions are
correct or it is the RLSE if we cannot reject this hypothesis.
Unfortunately, however, many researchers fail to recognize that they are
reporting a PTE, which has different sampling properties than either of its
component estimators.

The use of pre-test estimators is common in a range of statistical
applications, as is evidenced by the extensive bibliographies of Bancroft
and Han (1977) and Han et al. (1988). The finite sample properties of many
pre-test estimators (typically their biases and risks under quadratic loss)
have been examined in the literature. In each case, the sampling
properties of the PTE depend on, among other factors, the size (and hence
critical value) selected for the preliminary test. This suggests, if a
researcher is going to pre-test, that he should use a critical value that
is "optimal" in some sense, rather than use arbitrary test sizes of say 1%
or 57.

One such procedure is to use a critical value according to the
mini-max regret criterion used by, for example, Gun (1967), Sawa and
Hiromatsu (1973), Ohtani and Toyoda (1978), and Giles et al. (1991). In
particular, assuming a correctly specified model and normally distributed

disturbances, Brook (1976) examines the choice of optimal critical value




(OCV) according to the mini-max regret criterion when the pre-test is of
the validity of exact linear restrictions on the model’s coefficients. He
finds that the OCV is approximately equal to two irrespective of the number
of restrictions under test or the degrees of freedom of the model. This
result has obvious practical appeal.

This result, of course, does not imply a constant test size, as this
will vary across different degrees of freedom and numbers of restrictions.
Further, the OCV of two rarely results in a test size of 1% or 5% - the
optimal test size can be as high as 30%, and for less than five
restrictions it is always more than 10%.

Brook’s result depends on the often. unrealistic assumption that the
disturbances. are normally distributed. Frequently we use data series which
exhibit more kurtosis than implied under normality. This paper addresses
this issue by extending Brook’s analysis to the case of Multivariate

Student-t disturbances.

2. MODEL FRAMEWORK AND RISK FUNCTIONS
We consider the classical linear regression model y = X8 + e, where y
is a (Txl1) vector of observations on the dependent variable, X is a (Txk) ~
full rank matrix of non-stochastic regressors (k<T), and e is a. (Txl)
vector of disturbance terms. We test m independent linear restrictions
expressed by the hypotheses, H

: RB = r against H,: RB # r, where R is

0 Al
(mxk), of rank m; r is (mxl); and both R and r are non-stochastic. This
testing structure includes, for example, testing the individual
significance of one or more regressors and testing the joint significance

of the .regressors. We assume e has a multivariate Student-t (Mt)

distribution with degrees of freedom v and scale parameter 0_2 = 1, for

simplicity (and without any loss of generality). Then f(e) =




-(v+T)/72
] The mean and covariance

-1
[v"/ 2]'[(v+’l‘)/2]] [u”’ 2 l"(v/Z)] [v+e'e

matrix of e, for v > 2, are E(e) = 0 and E(ee’) = v/(v-Z)IT. Normal errors
correspond to v = . For v < « the. marginal distributions have more
kurtosis than when v = w.

The validity of the restr_ictions is tested using the wusual
F-statistic, f = (Rb-r)’[RS-lR']-I(Rb-r)/msz, where S = X’X; b = S_IX’y is
the OLSE of B; 52 = (y-Xb)/(y-Xb)/v; and v = (T-k). This is the uniformly
most powerful invariant size - a test of HO when e is distributed according
to any member of the elliptically symmetric family (see King (1979)), of
which the Mt distribution is a member. It is straightforward.to show that
f~ F(m,v) under Hj, and that its distribution under H , for Mt disturbances
is

: Br Br-1
(2a/ r..v 2 2
v) I‘(i-lrr)m vef

fMt(n =

v m+v
§+r m v v 2 +r
) - .- - -
r!(1+2x/v) B[2+r,2]l'[2] (v+mf]

r=0

(see Ullah and Phillips (1986), Sutradhar (1988), or Giles (1991)). A=
(RB—r)’[RS-lR’ I(RB-r)/2 is the usual non-centrality parameter under normal
errors and is a measure of the hypothesis error (A = O when RB = r), and
B(.;.) is the Beta function. When e ~ N(0,I), f ~ Fl(m,v;k)'

In practice, the researcher tests the validity of the restrictions
prior to deciding whether to use the OLSE, b, or the RLSE, b* = b +
S—lR' [RS-IR’]_l(r—Rb). Consequently, the estimator we use is conditional

on the preliminary test of HO and we are actually reporting the PTE:

b if f > cla)
b* if §f = cla)

where c(x) is the critical value of the test associated with an o%




significance level. Thus, a researcher has three options for estimation in
this ‘model framework: a) ignore the a priori restrictions and apply OLS; b)
impose the a priori restrictions and apply RLS; or c) apply OLS or RLS
depending on the outcome of the pre-test.

We follow the usual approach in the associated literature and compare
the sampling properties of ©, b, and b* on the basis of predictive risk
under squared error loss. This enables the analysis to be explicitly
independent of the regressor data. For any estimator, b, of B, we define
this risk as p(Xb,E(y)) = E[(XS—E(yi)'(xS-E(y))], which is equal to the
risk of b itself if the regressors are orthonormal.

Giles (1991) derives the risk of Xb, Xb*, and Xb for Mt disturbances:
th(Xb’E(y)) kv/(v-2)

* - - -
th(Xb LE(y)) [(k m)v+2A(v 2)]/(1) 2)

Pyt (XB.E(y) [kv-mvP21+27\(v-2) [ZPZZ—P 42]] /w-2)

: [2A/v] r (g+r+j-2]

1 . v
Ix [é(mﬂ)ﬂ",é]
§+j—2]

Yirs+ j-2
|

r! [1+27«/v]2

for i,j = 0,1,2, ... . Ix(.,.) is Pearson’s incomplete beta function with

x = cm/(v+cm).

When v = o the disturbances are normally distributed, and (2.1) -
(2.3) collapse to the expressions given by, for instance, Brook (1976) and
Judge and Bock (1978). Figure 1 illustrates the risk functions when v = §,

= 24 and k = 5. This figure is qualitatively similar to that

which results under normal errors, though there are some quantitative




differences (see Giles (1991)).

One of the key results under normal disturbances is that it is never
preferable to pre-test; that is, the risk of the pre-test estimator never
dominates both of its component estimators. Consequently, if A were known,
the optimal strategy in terms of minimizing risk under quadratic loss, is
to use the RLSE for A € [0, %‘ ] and the OLSE for A > %’ The risk so traced
is termed the "minimum risk boundary".

As Figure 1 illustrates, there are many cases with Mt disturbances,
for which these results qualitatively carry over. However this need not
occur. When v < « there are situations for which the pre-test estimator

can dominate both of its component estimators. This is possible as first,

th(Xb,E(y)

(Xb*,E(y) when A = mv/(2(v-2)), secondly Py (KB.E(Y) =
[ 2vP

) = Py

th(Xb,E(y)) for 7\1 such that 7\1 €

my 21
4(v-2) 2(v-2)l='22

), and as P 1 can

2

be greater than P ZVPZI/(Z(V-Z)Pzz) can be greater than 2v/(2(v-2)).

22’

This implies that for those cases for which Pz > }’22 there exists a region

over which the pre-test estima‘xtof' can dominate both of its component
estimators.1

Figure 2 illustrates such an example. Our numerical evaluations of
the risk functions suggest that the existence and magnitude of the
dominating region for the pre-test estimator depends on the values of m and
v (but not v). In particular, the value of m for which the dominating
region occurs, decreases as v decreases. For example, when v = S0 we find
that the pre-test estimator can dominate both of its component estimators
for m > 10. However, when v = 5 it can result for m = 4. Further, (a) the
dominating A-range, say [7\‘.).+], increases as m increases; (b) the minimum

risk boundary is no longer given by min{p(Xb.(E(y)),p(Xb‘,E(y))}, though
A

the potential risk gain of - the pre-test estimator over this boundary is

relatively small; (c) there is no strictly dominating pre-test estimator




+ . . . .
over [A*,A']. That is, the risk functions of the pre-test estimator for

¢ € (0,0) cross within [k‘.A+1.

3. MINI-MAX REGRET CRITERION

Unfortunately, A is typically unobservable and the restricted
estimator can have an infinite risk. This suggests that the optimal
strategy is to pre-test and use a critical value which draws the risk of
the pre-test estimator "as close as possible” to the minimum risk boundary.
In this paper we use Brook’s (1976) mini-max regret criterion as our notion
of "as close as possible”. This is similar to the criteria used by Gun
(1964) and Sawa and Hiromatsu (1973) and is equivalent to that used by
Giles et al. (1991). We def;ne the regret associated with using the
pre-test estimator as

p(X6,E(y)) - p(Xb*,E(y)); A s mv/(2(v-2))

R(X6) = A .
p(Xb,E(y)) - p(Xb,E(y)); A > mv/(2(v-2))

We define J\L as the value of A = mv/(2(v-2)) such that R(Xb) is maximized

and dL as that value of R(Xb). We define AU as the value of A >
mv/(2(v-2)) such that R(Xb) is maximized and dU as that value of R(Xb).

It is well known that an increase in c(a) decreases dL but increases
dU while the opposite results from a decrease in c(a). The mini-max regret
procedure exploits this result and finds the critical value cla) = c*(«)

such that dU = dl. and both are simultaneously minimized. That is, the OCV

must satisfy:

i max R(X6)} = min max R(Xb)} .
c A= my c A D> my
2(v-2) 2(v-2)

Figure 3 depicts the criterion. Brook (1976) obtains the OCVs according to




this procedure for normal disturbances. Giles (1991) shows that Brook’s
OCV is not invariant to the values of v. This is clear .from both of

Figures 1 and 2 - d = dU for Brook’s OCV and in fact d, is always greater

L L
than dU for finite v. Consequently, the OCV for finite v will be higher

than Brook’s OCV as we wish to decrease dL and increase dU until they are

equal and simultaneously minimized.

The wuse of this criterion for Mt disturbances has the same
Jjustification as that for normal disturbances when there is no region of
the dominance of the pre-test estimator. When the pre-test estimator can
dominate both Xb and Xb*, the minimum risk boundary is no longer given by

min: [p(Xb,E(y)]. p[Xb‘.E(y)]}. Nevertheless, given the aforementioned
A

points (b) and (c), the criterion still achieves (in an overall sense) our
desired aim of bringing the pre-test estimators risk function "as close as

possible” to the minimum risk boundary.

4. OCV’S AND DISCUSSION OF THE RESULTS

OCV’s, c*, are reported in Table 1 for several values of m,v and v.
These were calculated using a FORTRAN program written by the authors and
executed on a VAX 6340. Subroutines from Press et al. (1986) were used to
evaluate the gamma and incomplete beta functions. Once the OCV was
determined, its corresponding size (a*) was calculated using Davies’ (1980)
algorithm. Table '1 also gives_ the normal errors case (v = o) for
comparative purposes.

The results suggest first, that the OCVs are not constant over all
values of v. For a given m and v, the OCV is higher the lower is v.
This implies a* decreases with decreases in v, ceteris paribus. Optimally,
the pre-test estimator will select the restricted estimator more often when

v < o than for when v = w. Nevertheless, we still typically maintain that




pre-testing at the 172 and 5% levels is not recommended. At best, the

arbitrary choice of a 57 significance level is only approximately

appropriate for relatively high m (say, m = 4) and high v (say, v = 60)

with small v, while the use of a 17 significance level is never appropriate
for the range of arguments investigated in Table 1.

Secondly, the results suggest that for a given v, the OCVs are
relatively invariant to m and v, and that Brook’s rule of thumb of an OCV
of approximately two holds reasonably well for v = 20. Thus, if v is
known, the results are as easy to apply in practice as is Brook’s rule.
For example, use c* = 2.4 for v = 5, ¢c* = 2.1 for v = 10, and c* = 2.0 for

v = 20 regardless of m and v.

5. RISK COMPARISONS

We have calculated the OCV’s according\ to the mini-max regret
criterion, and we have suggested rules that are straightforward to apply in
practice when v is known. What if v is unknown? We could estimate v and
assume that our results are still approximately valid. Alternatively, we
consider whether there is a critical value that will be approximately
optimal according to the mini-max regret criterion for all values of v.
The obvious candidate is Brook’s OCV. Accordingly, we have evaluated the
risk functions for each of the cases presented in Table 1. Figure 4
illustrates a typical result. Our evaluations suggest that there is
relatively little diff"er‘ence between the risk functions using the OCVs we
arrived at for finite v and those computed by Brook for normal errors.
Thus if v is unknown, the applied researcher could be (practically) content

with using Brook’s OCV for all values of v.




6. FINAL REMARKS

Pre-testing is typically practised by applied researchers. It is
therefore important to investigate the consequences of this practice and,
given the impact of c(a) on the sampling properties of the pre-test
estim;tor, to determine an optimal choice of critial- value. We have
focussed our attention on this issue using the mini-max regret criterion
when the disturbances are Mt.

Our results show that Brook’s practically appealing rule of thumb, of
a critical value of approximately two in value, is not invariant to the
value of v. Nevertheless, we offer equally practical prescriptions when v

_is known. Further, if v is unknown, our results suggest that a researcher

could be (practically) content to continue to use Brook’s OCV.




FOOTNOTES

Giles’ (1991) bounds for the Mt case are incorrect. Her bounds imply

that the pre-test estimator can never dominate both of its component

estimators. This was also supported by her limited numerical

evaluations.
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Table 1 Optimal Critical Values

v=>5

v=10

v=15

v=20

v=150

v=100

V=

©0

mvc*a“'c*a*c*a*c*a*c‘a*c“a*c“<a*

1

2.535
2445
2.394
2.366
2.357
2.345
2341

2.675
2.541
2454
2412
2.399
2.383
2.378

2.582
2.490
2.444
2429
2411
2405

2.607
2512
2.463
2.446
2426

2.528
2.476
2.457
2434
2.426

2.555
2.497
2474
2.445
2434

2418

0252
0.193
0.160
0.144
0.138
0.131
0.129

0272
0.194
0.148
0.12
0.112
0.101
0.097

0.191
0.135
0.102
0.090
0.076
0.071

0.188
0.125
0.087
0.074
0.058
0.052

0.117
0.076
0.062
0.045
0.039

0.103
0.057
0.041

"0.023

0.018

2.187
2.122
2.089
2071
2.065
2.058
2.055

2317
2210
2.143
2.109
2.098
2.087
2.083

2246
2.169
2.135
2.125
2.114
2.110

2267
2.188
2.153
2.143
2.131
2127

2202
2.166
2.154
2.142
2.138

2227
2.187
2.174
2.158
2152

0277
0219
0.186
0.169
0.164
0.157
0.154

0.302
0226
0.180
0.154
0.145
0.133
0.129

0225
0.170
0.136
0.124
0.108
0.103

0224
0.161
0.121
0.107
0.088
0.082

0.154
0.110
0.093
0.073
0.066

0.139
0.087
0.068
0.044
0.036

2.104 0284
0.226
0.193
0.177
0.171
0.164
0.161

0.309
0234
0.189
0.163
0.154
0.142
0.138

0.235
0.130
0.146
0.133
0.117
0.112

0234
0.171
0.131
0.116
0.097
0.091

0.164
0.120
0.103
0.082
0.074

0.150
0.097
0.076
0.051
0.042

2.068
2012
1.984
1.970
1.965
1.959
1.957

2.195
2.098
2.038
2.006

0287
0.229
0.197
0.180
0.174
0.167
0.164

0313
0238
0.193
0.167
0.158
0.146
0.142

0239
0.184
0.150
0.138
0.122
0.116

0238
0.176
0.136
0.121

-0.102

0.095

0.169
0.125
0.108
0.086
0.078

0.155
0.101
0.081
0.055
0.046

2.008
1956
1931
1918
1914
1.908
1907

2.134
2041
1.985
1954
1.945
1935
1932

2075
2.004
1974
1.966
1958
1956

2094
2.020

0292
0.235
0202
0.185
0.179
0.172
0.170

0319
0245
0.200
0.174
0.165
0.153
0.149

0.246
0.192
0.159
0.146
0.130
0.124

0.246
0.184
0.145
0.129
0.110
0.103

0.178
0.133
0.116
0.094
0.086

0.164
0.110
0.088
0.061
0.052

1990

1.939
1914
1.902
1.898
1.893
1.891

2.115
2.023
1.968
1.938
1.929
1.919
1916

2.057
1987
1.958
1.950
1.942
1.940

2.076
2.003
1974
1.966
1.959
1.957

2015
1.985
1.977
1.970
1.968

2.037
2.005
1.997
1.988
1.986

0.294
0236
0.204
0.187
0.181
0.174
0.172

0321
0.247
0.202
0.176
0.167
0.156
0.152

0.249
0.195
0.161
0.149
0.133
0.127

0.248
0.187
0.147
0.132
0.112
0.106

0.181
0.136
0.119
0.096
0.088

0.167
0.112
0.091
0.063
0.054

1.990
1.939
1.910
1.500
1.890
1.890
1.890

2.090
2.000
1.960
1.930
1.920
1910
1.500

2.040
1.970
1.942
1.934
1.926
1.924

2.060
1.990
1.960
1.950
1.940
1.940

1.998
1.969
1.961
1.954
1.952

2.020
1.990
1.980
1.970
1.970

0294
0236
0.204
0.187
0.182
0.174
0.172

0.324
0.250
0203
0.177
0.168
0.157
0.154

0.251
0.197
0.164
0.151
0.135
0.129

0.251
0.189
0.149
0.135
0.115
0.108

0.183
0.139
0.121
0.099
0.091

0.170
0.115
0.094
0.066
0.056




PREDICTIVE RISK

PREDICTIVE RISK

1 1 1 1 1 Il 1 1 1 1 1 1 1 1 Il L 1

a=0.01

PTE
a=0.05

PTE
Brook:c=1.93
a=0.151

2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18

Figure 2. Predictive Risk Functions - v=5, m=8, v=120, k=10.
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Figure 3. Mini-max Regret Criterion
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Figure 4. Predictive Risk Functions - v=5, m=4, v=24, k=5.










