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Abstract
The paper derives an exact unbiased estimator of the mean
squared error of the feasible generalised ridge regression

estimator for a linear regression coefficient. This provides the -

basis for calculating the standard error of such an estimator in a

meaningful way.
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1. INTRODUCTION

Hoerl and Kennard (1970) suggest the method of ridge

regression to deal with the problem of multicollinear data.

Subsequently, a variety of ridge and ridge-type estimators have
been proposed and their properties derived and compared. However,
the practical application of these estimators has been limited by
the fact that they produce only point estimates - in general,
appropriate formulae for computing the associated "standard
errors" are unavailable.

The reason for this is that the expressions for the exact
first and second moments of these estimators are extremely
complex, and obtaining unbiased estimators of these moments (as
are needed to derive standard errors which are meaningful in
finite samples) seems to be a non-trivial task.

Although asymptotic standard errors for the feasible ridge
regression estimator are easily obtained, they are of limited use.
In particular, as they coincide with the least squares standard
errors, no distinction can be drawn between the relative estimated
efficiencies of the two estimators if this approach is pursued.

In the spirit of results obtained for the Stein-rule
estimator by Carter et al. (19**), this paper derives an unbiased
estimator of the exact mean squared error of the feasible ridge.
estimator. The result obtained is of a simple form and is readily
computed. This facilitates the computation of meaningful standard
errors which have a proper finite-sample justification. We deal
only with the generalised feasible ridge estimator, but in
principle the same analytical approach could be applied to other

related estimators.




2. GENERALISED RIDGE REGRESSION
Consider the model

(2.1) -. y =XB +u ; u-~N (o,ozln)

where X 1is (nxp), and for convenience (and without 1loss of
generality) we take the model to be in canonical form, so that X’X
= A = diag.(li). The Ordinary Least Squares (OLS) estimator of B
is

1

(2.2) : b= (xx) " Ix'y = A" xy

and this unbiased estimator has covariance matrix
(2.3) v(b) = oA"Y,
for which an unbiased estimator is
A -1

(2.4) V(b) = sA /v,
where v = (n-p) denotes degrees of freedom, and s (y-Xb)’ (y-Xb)
is the residual sum of squares.

The generalised ridge regression estimator of B is

(2.5) B = (a7t

X'y ,

where K = diag.(ki), and the k;’s are biasing parameters. The ith
element of é is

(2.6) Bi= A;b./(Ag+ky)

where bi is the ith element of b.

If ki is fixed then éi has bias given by

[ xest; )

hi+ki

(2.7 B(B;) = -

and Mean Squared Error (MSE):

2,,2,2
Aio +kiBi




In this case, the choice of ki which minimizes the MSE of éiis
ki= (0‘2/8‘;?_). Hoerl and Kennard (1970) suggest a feasible version

of this 'qptimal ridge estimator:

Ak

(2.9) By = [hibi/(hib§+s/v)]bi .

Clearly, §I no longer minimises MSE - some of its exact finite
sample properties are derived by Dwivedi et al. (1980).

For applied work, a major 1limitation of 3: is that it
provides only a point estimate of the regression coefficient.
This problem is resolved in various‘ ad hoc ways in practice (e.g.

Judge et al. (1988, pp.878-882)). One possibility is to use the
1

OLS standard error (s/vki)2 as a standard error for Eiz This is
legitimate asymptotically, but has no finite-sample Jjustification
and provides no information about the gains or losses in measured
efficiency when ridge regression is used in preference to OLS.
Another approach that is sometimes adopted involves wusing

estimators of Bi and 02

to estimate ki (as in (2.9)) and hence
(2.7) and (2.8). Although "standard errors" for the ﬁ; estimators
can be generated in this way, their obvious 1limitation is that
(2.7) and (2.8) are no longer the correct expressions for the
estimator’s bias and mean squared error once ky is estimated.
Complete inference based on the feasible ridge estimator
requires knowledge of its sampling distribution. Dwivedi et al.
(1980) derive the first two moments of é:, but the expressions
concerned are complex and unobservable. However, if unbiased

estimators of these two moments can be derived, then we have a

legitimate basis for constructing ridge regression standard




errors. This task is considered in the next section. our
objective is to provide exact finite sample measures, and hence
resolve -the difficulties currently facing an applied researcher

using feasible generalised ridge regression.

3. UNBIASED ESTIMATION OF THE BIAS AND MEAN SQUARED ERROR
*

From (2.9), we observe that the bias of éi is

_ sbi ]

Ak
B(Bi) ) E[(bi‘Bi) vh.b?+s
ivi

- E [ ]
2
Vlibi+s

from which it follows that an unbiased estimator of the bias is

(3.2)

where £, = [ ; ]. It may be noticed that unbiased estimation
of the bias does not require normality of the disturbances.

Ak,
Similarly, the mean squared error of Bi is

sby ]2 ) 23[ sb (b;=8;) ]

2 2
VAibi+s

A%k 2
(3.3) M(B;) = E(b,-B.,)" + E[
1 102 vlibi+s

ey ity

2 2
vkibi+s vAibi+s

An unbiased estimator of the first term on the right hand

side of (3.3) is




while an unbiased estimator for the second term is

veE,
(3.5) T ][ ?;;i11;5 ].

For the third term, we observe that bi has a normal
distribution with mean 8; and variance (az/ki) while (s/az) has a
xz-distribution with v degrees of freedom, independent of bi’

Using this result and integrating by parts:

sb; (b;-8.) 2
(3.6) E[ __i_ii__i_ ] = %_ E [5 gBT
vhibi+s i i

[ s(v?\ibi-s) ]

2 2
(vhibi+s)

Now suppose that g(s,bi) is absolutely continuous in s and is

such that

: sb. (b.-B.)
(3.7) E(s g(s,b;)] = E[ —1—21—1 ]
vAibi+s

Integrating the left side of (3.7) by parts and using (3.6),

we get




ag(s,bi)

azE[v g(s,bi) + 2s 35

s(vlibi-s) ]

2 2
(vxibi+s)

2
ag(s,bi) . s(vhibi—s) ]

E [V g(s,b;) + 2s
1 as 2 2
hi(vlibi+s)

As (s,by) are Jjointly complete suficient statistics

(az,Bi), this last equation suggests

2
ag(s,bi) s( vlibi-s)
+
ads 2
hi(vhibi

= 0 .

3.9 v g(s,b.) + 2s
(3.9) g(s,b;) p

This is a linear differential equation of first order and

first degree, with solution

s (vaibzi’-x) x?
(3.10) g(s,bi) dx

2 2
Ai(vhibi+x)

1 (vfi-x)x2
dx,

__1_] -
[ 2}‘i 0 (vfi+x)2
which provides the functional form of g(s,bi).

Substituting (3.10) in (3.7) we observe that an unbiased

estimator of the third term on the right hand side of (3.3) is




2
(vE.-x)x
— ] ax.

Using (3.4), (3.5) and (3.11), an unbiased estimator of the

Ak,
MSE of Bi is

Vfi

(vfi+1)

(3.12) + v J(v,fi)]

2

2
(vE,-x)x
____l_.._—] dx.

2
(vfi+x)

where J(v,f;) = Il [
0

The square root of ﬁ(éz) gives a meaningful standard error
for é;. This expression is simple, especially when compared with
its population counterpart (see Dwivedi et al. (1980, p.206)). The
value of J(v,fi) is easily determined and ﬁ(éz) is expressed in
terms of quantities readily obtained from conventional regression
output.

Finally, (3.12) depends on the regressors through Ai and is
derived on the assumption that X’X has been diagonalised.
However, considering the orthogonal transformations that would be
used to achieve such a diagonalisation it is easily seen that G(b)
in (2.4) depends on the data in a corresponding way; that
"t-ratios" based on (2.9) and (3.12) are independent of this
assumption; and that the comparative evaluations considered in the
next section are perfectly general in the sense that they are not

in fact limited to the case of a diagonalised design matrix.




4. NUMERICAL EVALUATION
The numerical evaluation of (3.12) for any choice of v and fi
is straightforward - we have used the FORTRAN routines QROMB,
TRAPZD and POLINT given by Press et al. (1986) to implement
Romberg’s method to determine J(V,fi). The relative estimated
. . Ak, A AR A A
efficiency of bi to Bi is e = M(Bi)/V(bi), where V(bi) = (s/vki),

and values of e are given in Table 1 for various choices of v and
L

i = (Vfi)z. The latter quantity is the t-ratio for testing if Bi

0, so this parameterisation facilitates practical prescriptions.

We see that e < 1 for combinations of small values of v and

t;- Small values of ti are characteristic of the application of
OLS in the context of collinear data, and our results indicate
that in such cases the OLS standard errors understate the
precision of the estimates. If ti = 0.5 then §; is estimated to

be more efficient than bi for any v: and conversely if ti =z 0.8

: Ak
then bi is estimated to be more efficient than Bi for any v.

From (2.9), é: = biti/(1+t§), SO as vV -» or fi -S> o, é* - bi
and e » 1. This is supported by the results in Table 1 and also
when e is tabulated in terms of v and fi values. The results in
Table 1 also indicate that for the majority of combinations of v
and ti’ bi is estimated to be efficient relative to é;, and the
maximum such efficiency gain is 46%. Regardless of v, this
maximum gain arises for ti between 1.2 and 1.6, and generally for

;= 1.4 (t] = 2).

As noted already, in practice G(bi) is often used to produce
standard errors to use in association with §I. This can be

justified asymptotically, but in finite samples this can now be

Ak
improved upon through the use of ﬁ(Bi). Comparing these two




. . . Ak
approaches to measuring the precision of Bi, our values for e show

that generally the use of OLS standard errors in conjunction with
ridge regression point estimates involves an overstatement of the
precision of these estimates, relative to that indicated by the
more appropriate measure derived in this paper. The figures in

Table 1 may be viewed as correction factors to compensate for this
1

overstatement - multiplying an OLS standard error by e5 yields an
appropriate standard error to use with the ridge estimator.

It is interesting to note that; in terms of actual MSE, é; is
efficient relative to by if (A;85/20°) < 1. While it may be
tempting to estimate the left hand side of this expression to see
if the inequality holds empirically, it is clear that this
strategy can be very misleading. For example, substituting the
least squares estimators of Bi and az gives the condition ti < 2.
Adjusting for the bias introduced by estimating in this way yields
the condition (v-2)t§/v < 3. Tﬁét this is an unsatisfactory
procedure can be seen by noting that these last two inequalities
involve the estimation of a condition relating to the true
relative efficiencies of the two estimators. In contrast, the
information in Table 1 relates to the relative estimated
efficiencies of ﬁ; and bi' Dealing with the inequality relating
to the actual MSE'’s of é; and bi properly involves testing if
(Aiﬁi/ZUZ) < 1 and choosing the estimator accordingly. This
"preliminary-test" estimation str;tegy is discussed by Srivastava
and Giles (1984).

Another way of considering the practical implications of
1

our results 1is to compare ty with t; = é;/(M(ﬁz))z, the

ridge-regression analogue of the usual t-ratio. The quantity 7; =




(t{/ti) is the factor by which an OLS t-ratio should be scaled to
convert it to its ridge regression counterpart. Of course, tt is
not t-dfstributed, but it is still a measure of some practical
interest. Values of ¥% appear in Table 2. We see that,
especially for small values of v and/or ti, a t-ratio based on
OLS is misleading in the sense that it suggests substantially
greater estimation precision than would be inferred from the value

of t{.

5. CONCLUDING REMARKS

This paper solves the problem of presenting a meaningful
measure of the precision associated with a point estimate obtained
by feasible generalised ridge regression. The practices generally
adopted by applied workers are unsatisfactory because either they
involve the estimation of a quantity which does not actually
measure the population precision; or they are based on expressions
which are uninformative because they are valid only

asymptotically. In contrast, we present a simple expression for

an unbiased estimator of the ridge estimator’s mean squared error

which is exact in finite samples and whose square root provides a
meaningful standard error to be associated with a ridge regression
coefficient. The tabulated evaluations indicate the extent to
which standard errors and "t-ratios" based on 1least squares
results may differ from those .based on the procedure proposed
here. The calculations needed to compute the proposed standard
error are trivial, and can easily be incorporated into ridge
regression packages.
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Table 1: Values of e = M(8)/V(b;)

[oa——
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Table 2: Values of yi* = (t3/t)

1.00 1.20 1.40 1.60

<

0.59
0.59
0.59
0.59
0.59
0.58
0.58
0.58
0.58
0.58
0.57
0.57
0.57
0.57
0.57
0.57
0.57
0.57
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