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Anchoring Heuristic in Option Pricing 

 

One of the major achievements in financial economics is the no-arbitrage approach of pricing 

options pioneered in Black and Scholes (1973), and Merton (1973). The approach is appealingly 

simple as it does not have any role for investor demand. Due to its simplicity, the Black-Scholes 

model is still the most widely used model among practitioners despite its several well-known 

shortcomings. The key shortcomings are: 

1) The existence of the implied volatility skew in index options, and average implied volatility of at-

the-money options being larger than realized volatility. (Rubinstein (1994)) 

2) Superior historical performance of covered-call writing. (Whaley (2002)) 

3) Worse-than-expected performance of zero-beta straddles. (Coval and Shumway (2002)) 

4) Average call returns appear low given their systematic risk. (Coval and Shumway (2002)) 

5) Average put returns are far more negative than expected. (Bondarenko (2014)) 

6) Leverage adjusted call and put index returns exhibit patterns inconsistent with the model. 

(Constantinides, Jackwerth, and Savov (2013)) 

 These shortcomings imply that at least one (possibly more) assumption in the Black-Scholes 

model is wrong. Relaxing the Black-Scholes assumptions has led to several fruitful directions of 

research; however, no existing reduced form option pricing model convincingly explains the above 

findings (see the discussion in Bates (2008)). The two most frequently questioned assumptions in the 

Black-Scholes model are: 1) The use of geometric Brownian motion as a description for the 

underlying stock price dynamics. 2) Assuming that there are no transaction costs. 

Dropping the assumption of geometric Brownian motion to processes incorporating 

stochastic jumps in stock prices, stochastic volatility, and jumps in volatility has been the most active 

area of research. Initially, it was assumed that the diffusive risk premium is the only priced risk factor 

(Merton (1976), and Hull and White (1987)), however, state of the art models now include risk 

factors due to stochastic volatility, stochastic jumps in stock prices, and in some cases also stochastic 

jumps in volatility. Based on the assumption that all risks are correctly priced, this approach 
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empirically searches for various risk factors that could potentially matter (see Constantinides, 

Jackwerth, and Savov (2013), and Broadie, Chernov, & Johannes (2009) among others). These 

models typically attribute the divergences between objective and risk neutral probability measures to 

the free “risk premium” parameters within an affine model.1 Bates (2008) reviews the empirical 

evidence on stock index option pricing and concludes that options do not price risks in a way which 

is consistent with existing option pricing models. Many of these models are also critically discussed 

in Hull (2011), Jackwerth (2004), McDonald (2006), and Singleton (2006). 

Another area of research deviates from the Black-Scholes no-arbitrage approach by allowing 

for transaction costs. Leland (1985) considers a class of imperfectly replicating strategies in the 

presence of proportional transaction costs and derives bounds in which an option price must lie 

when there are proportional transaction costs. Hodges and Neuberger (1989) and Davis et al (1993) 

explicitly derive and numerically compute the bounds under the assumption that utility is 

exponential with a given risk aversion coefficient. Their bounds are comparable to Leland bounds. 

Constantinides and Perrakis (2002) show that expected utility maximization in the presence of 

proportional transaction costs implies that European option prices must lie within certain bounds. 

Constantinides and Perrakis bounds are generally tighter than the Leland bounds, and are the 

tightest bounds derived in the literature for European option prices. 

Yet another line of research provides evidence that options might be mispriced. Jackwerth 

(2000) shows that the pricing kernel recovered from option prices is not everywhere decreasing as 

predicted by theory, and concludes that option mispricing seems the most likely explanation. Others 

researchers (see Rosenberg and Engle (2002) among others) also find that empirical pricing kernel is 

oddly shaped. Constantinides, Jackwerth, and Perrakis (2009) find that S&P 500 index options are 

possibly overpriced relative to the underlying index quite frequently. 

Earlier, Shefrin and Statman (1994) put forward a structured behavioral framework for 

capital asset pricing theory that allows for systematic treatment of various biases. A particular bias 

that stands out in recent empirical literature on financial markets is anchoring which implies that 

adjustments in assessments away from some initial value are often insufficient. Starting from the early 

experiments in Kahneman and Tversky (1974), over 40 years of research has demonstrated the 

                                                           
1 Bates (2003) writes, “To blithely attribute divergences between objective and risk-neutral probability measures to  
the free “risk premium” parameters in an affine model is to abdicate one’s responsibilities as a financial 
economist” (page 400).  
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relevance of anchoring in a variety of decision contexts (see Furnham and Boo (2011) for a literature 

review). Starting from a self-generated initial value, adjustments are insufficient because people tend 

to stop adjusting once a plausible value is reached (see Epley and Gilovich (2006)).  Hence, 

assessments remain biased towards the starting value known as the anchor. 

Intriguingly, there is considerable evidence that anchoring matters for call option prices: 1) A 

series of laboratory experiments (see Rockenbach (2004), Siddiqi (2012), and Siddiqi (2011)) show 

that the hypothesis that a call option is priced by equating its expected return to the expected return 

from the underlying stock outperforms other pricing hypotheses.  The results are consistent with the 

idea that return of the underlying stock is used as a starting point with the anchoring heuristic 

ensuring that adjustments to the stock return to arrive at call return are insufficient. Hence, expected 

call returns do not deviate from expected underlying stock returns as much as they should. 2) 

Furthermore, market professionals with decades of experience often argue that a call option is a 

surrogate for the underlying stock.2 Such opinions are surely indicative of the importance of the 

underlying stock as a starting point for thinking about a call option, and point to insufficient 

adjustment, which creates room for the surrogacy argument.  

This article puts forward an anchoring adjusted option pricing model in which the expected 

return on the underlying stock is used as a starting point which gets adjusted upwards to form 

expectations about call returns.  In principle, there is nothing wrong in doing that, and one can 

potentially make the correct adjustment to arrive at the correct expected return. However, the 

anchoring heuristic may cause insufficient adjustment. This article explores the implications of the 

anchoring bias for option pricing. I show that the anchoring price (in continuous time) always lies 

within the bounds derived in Constantinides and Perrakis (2002). Hence, an expected utility 

maximizer may not gain utility by trading against the anchoring prone investors if there are 

proportional transaction costs. That is, proportional transaction costs not only rule out the 

possibility of riskless arbitrage, but also may not allow risky expected utility gain at the expense of 

anchoring prone investors. 

                                                           
2 As illustrative examples, see the following: 
http://finance.yahoo.com/news/stock-replacement-strategy-reduce-risk-142949569.html 
http://ezinearticles.com/?Call-Options-As-an-Alternative-to-Buying-the-Underlying-Security&id=4274772, 
http://www.investingblog.org/archives/194/deep-in-the-money-options/ 
http://www.triplescreenmethod.com/TradersCorner/TC052705.asp, 
http://daytrading.about.com/od/stocks/a/OptionsInvest.htm 
 

http://finance.yahoo.com/news/stock-replacement-strategy-reduce-risk-142949569.html
http://ezinearticles.com/?Call-Options-As-an-Alternative-to-Buying-the-Underlying-Security&id=4274772
http://www.investingblog.org/archives/194/deep-in-the-money-options/
http://www.triplescreenmethod.com/TradersCorner/TC052705.asp
http://daytrading.about.com/od/stocks/a/OptionsInvest.htm
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The anchoring model has a closed-form solution, and the pricing formula is almost as simple 

as the Black-Scholes formula if the underlying stock price follows geometric Brownian motion. The 

anchoring model converges to the Black-Scholes model in the absence of the anchoring bias. The 

anchoring model is consistent with all of the key features of option prices mentioned earlier. Hence, 

it provides a unified framework for understanding the key puzzles. 

The anchoring approach relates to all of the three directions of research described earlier, 

namely, 1) incomplete markets due to jumps and stochastic volatility, 2) bounds implied by 

transaction costs, and 3) option mispricing. Specifically, it shows that an option can be mispriced in 

such a way that it lies within the bounds implied by expected utility maximization when there are 

proportional transaction costs (Constantinides and Perrakis (2002) bounds), and remains so even 

when markets are incomplete due to jumps and stochastic volatility. 

Hirshleifer (2001) considers anchoring to be an “important part of psychology based dynamic asset 

pricing theory in its infancy” (p. 1535). Shiller (1999) argues that anchoring appears to be an important 

concept for financial markets. This argument has been supported quite strongly by recent empirical 

research on financial markets: 1) Anchoring has been found to matter in the bank loan market as the 

current spread paid by a firm seems to be anchored to the credit spread the firm had paid earlier (see 

Douglas, Engelberg, Parsons, and Van Wesep (2015)). 2) Baker, Pan, and Wurgler (2012) provide 

evidence that peak prices of target firms become anchors in mergers and acquisitions. 3) The role of 

anchoring bias has been found to be important in equity markets in how analysts forecast firms’ 

earnings (see Cen, Hillary, and Wei (2013)). 4) Campbell and Sharpe (2009) find that expert 

consensus forecasts of monthly economic releases are anchored towards the value of previous 

months’ releases. 5) Johnson and Schnytzer (2009) show that investors in a particular financial 

market (horse-race betting) are prone to the anchoring bias. 

Given the key role that anchoring appears to play in financial decision making, it seems only 

natural that anchoring matters for option pricing too, especially given the fact that an option derives 

its existence from the underlying stock. After all, a call option is equivalent to a leveraged position in 

the underlying stock. Hence, a clear starting point exists. In fact, one can argue that it would be 

rather odd if the return on the underlying stock is ignored while forming return expectations about a 

call option. The Black-Scholes model by-passed the stock return only by assuming perfect 

replication, which is impossible, if transaction costs are allowed or markets are incomplete. This 
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article shows that if anchoring matters then the resulting option pricing formula is almost as simple 

as the Black-Scholes formula. It seems that anchoring provides the minimum deviation from the 

Black-Scholes framework that is needed to capture the key empirical properties mentioned earlier. 

To my knowledge, the anchoring approach developed here is the simplest reduced-form framework 

that captures the key empirical features of option returns and prices. 

If the marginal investor in a given call option is anchoring prone, then it follows that: 

𝐸[𝑅𝐶] = 𝐸[𝑅𝑆] + 𝐴                                                                                                             (0.1) 

where 𝐸[𝑅𝐶] is the expected return from the call option, 𝐸[𝑅𝑆] is the expected return from the 

underlying stock, and 𝐴 is the adjustment term. The anchoring prone investor realizes that a call 

option is riskier than the underlying stock, as it is a leveraged position in the underlying stock. 

However, the adjustment that he makes to get to the call return from the underlying stock return is 

insufficient due to the anchoring bias. 

To contrast (0.1) with a particular case of correct adjustment, consider the expected return 

implied by the Black-Scholes model: 

𝐸[𝑅𝐶] = 𝑅𝐹 + Ω ∙ (𝐸[𝑅𝑆] − 𝑅𝐹)                                                                                           (0.2) 

Ω > 1 (it is the call price elasticity w.r.t the underlying stock price) and typically takes very large 

values (typically varies from 3 to 35 for index options), and 𝑅𝐹 is the risk-free rate. Note that (0.1) 

and (0.2) are equal if 𝐴 = (Ω − 1)(𝐸[𝑅𝑆] − 𝑅𝐹). So, the presence of anchoring bias implies that 

𝐴 < (Ω− 1)(𝐸[𝑅𝑆] − 𝑅𝐹). 

This article is organized as follows. Section 2 builds intuition by providing a numerical 

illustration of option pricing with anchoring in a complete market context. Section 3 provides a 

numerical example of an incomplete market. Section 4 puts forward the anchoring adjusted option 

pricing formulas in continuous time, and shows that the anchoring price always lies within the 

Constantinides and Perrakis (2002) bounds. Section 5 shows that if anchoring determines option 

prices, and the Black-Scholes model is used to back-out implied volatility, the skew arises, which 

flattens as time to expiry increases. Section 6 shows that the anchoring model is consistent with key 

empirical findings regarding returns from covered call writing and zero-beta straddles. Section 7 

shows that the anchoring model is consistent with empirical findings regarding leverage adjusted 
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option returns. Section 8 puts forward an anchoring adjusted pricing model when the underlying 

stock returns exhibit stochastic volatility. It integrates anchoring with the stochastic volatility model 

developed in Hull and White (1987). Section 9 integrates anchoring with the jump diffusion 

approach of Merton (1976). Section 10 concludes. 

 

2. Anchoring Adjusted Option Pricing: A Numerical Illustration 

 

To fix ideas, I provide an example in this section, which assumes a complete market.  Consider an 

investor in a two-state, two-asset complete market world with one time period marked by two points 

in time: 0 and 1. The two assets are a stock (S) and a risk-free zero coupon bond (B). The stock has 

a price of $140 today (time 0). Tomorrow (time 1), the stock price could either go up to $200 or go 

down to $94. Each state has a 50% chance of occurring. There is a riskless bond (zero coupon) that 

has a price of $1 today. Its price stays at $1 at time 1 implying that the risk free rate is zero. Suppose 

a new asset “C” is introduced to him. The asset “C” pays $100 in cash in the red state and nothing in 

the blue state. How much should the investor be willing to pay for this new asset? 

 Finance theory provides an answer by appealing to the principle of no-arbitrage: portfolios with 

identical state-wise payoffs must have the same price. Hence, to price asset “C” correctly, one solves the 

following system of equations: 

200𝑥 + 𝐵 = 100 

94𝑥 + 𝐵 = 0 

It follows that 𝑥 = 0.9434, and 𝐵 = −88.6796. 

The payoffs from asset “C” can be perfectly replicated by creating a portfolio in which one buys 

0.9434 of the underlying stock, and borrow 88.6796. The cost of setting up this portfolio is 140 ×

0.9434 − 88.6796 = 43.3964. Hence, the correct price of asset “C” is 43.3964. Note, that this 

price implies a net expected return of 15.22% from asset “C”, whereas, the expected return from the 

underlying stock is 5%. 

 The payoffs from asset “C” are strongly correlated with the payoffs from “S”. In fact, “C” is 

equivalent to a call option on “S” with a strike price of 100. Buying “C” creates a leveraged position 
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in the underlying stock. As leveraged positions amplify risks and returns, one expects higher returns 

from them. But, how much higher? In other words, what should be the value of 𝐴 in the following? 

𝐸[𝑅𝐶] = 𝐸[𝑅𝑆] + 𝐴 

where 𝐸[𝑅𝐶] is the expected return from the call option, and 𝐸[𝑅𝑆] is the expected return from the 

underlying stock. Continuing with the example, 𝐸[𝑅𝑆] is 1.05, and correct 𝐸[𝑅𝐶] is 1.1522, so 

correct adjustment to the stock return to arrive at the call return is 0.1022.  

 An anchoring prone investor starts from the return of the underlying stock; however, he 

makes insufficient adjustment. To take one example, suppose he only adjusts about halfway, that is, 

𝐴 = 0.05. It follows that, for the anchoring prone investor, the expected return from the given call 

option is 1.1. Consequently, he prices “C” at 45.4545 �0.5×100+0.5×0
1.1

= 45.4545�. 

 If there are no transaction costs, then the anchoring prone investor who values “C” at 

45.4545 creates an arbitrage opportunity for the rational investor who values “C” at 43.3964. The 

rational investor should write “C” and buy the replicating portfolio to make a riskless profit of 

45.4545 − 43.3964 = 2.0581. However, if the transaction costs are introduced, then this 

arbitrage opportunity may disappear.  

 Suppose buying and selling the underlying stock incurs a proportional transaction cost of 

1%.  That is, the buyer of “S’ pays 141.4 (1.01 × 140 = 141.4), and the seller receives 138.6 

(0.99 × 140 = 138.6). As is standard practice in option pricing literature with transaction costs, 

continue to assume that there are no transaction costs involved in trading the option or the bond. 

Replicating a long position in “C” now requires solving the following system of equations: 

0.99 × 200𝑥 + 𝐵 = 100 

0.99 × 94𝑥 + 𝐵 = 0 

It follows that 𝑥 = 0.9529, and 𝐵 = 88.67. So, the cost of replication goes up to 46.07 (1.01 ×

140 × 0.9529 − 88.67 = 46.07). Hence, the rational investor can no longer make arbitrage 

profits by trading against the anchoring prone investor unless the anchoring price is larger than 

46.07. 
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 The transaction cost upper bound derived in this simple one period example is tight, 

however, it is well known that as more trading periods are added, the total transaction cost keeps on 

rising, and grows without bound in continuous time. Hence, it is useful to focus on the upper bound 

implied by expected utility maximization when there are proportional transaction costs. So, instead 

of asking, “can a rational investor make arbitrage profits by trading against the anchoring prone 

investor?” (the answer to which is always no in continuous time), one asks, “can a risk averse 

expected utility maximizer gain utility by trading against the anchoring prone investor when there are 

proportional transaction costs?” 

 Surprisingly, it turns out that the answer to the second question is also always no in 

continuous time even though the expected utility maximization upper bound is tight (with stock 

price allowed to be in the full range [0,∞)).  That is, the anchoring price is less than the expected 

utility maximization upper bound when there are proportional transaction costs. Hence, the 

argument that an expected utility maximizer gains utility by trading against the anchoring prone 

investor cannot be made. The upper bound is derived in Constantinides and Perrakis (2002), 

(henceforth called CP upper bound), and in this example, is equal to 46.07.  The CP upper bound 

and the transaction cost upper bound are equal in this example; however, they diverge substantially 

as more trading period are added. In particular, the CP upper bound remains tight even when the 

limit of continuous time is reached. Constantinides and Perrakis (2002) show that in continuous 

time, the CP upper bound is the price at which the expected return from the call option is equal to 

the expected return from the underlying stock net of round-trip transaction costs. The CP upper 

bound is the tightest bound in the literature, and is considerably tighter than the Leland (1985) upper 

bound, in general. Section 3 discusses the continuous time case, and illustrates the CP upper bound 

and the Leland (1985) upper bound in relation with the anchoring price. 

 Clearly, anchoring lowers the expected return from the call option. What about the expected 

return from a put option? Continuing with the same example, consider a put option with the strike 

of 100. It pays 6 when the stock price is 100, and pays 0 when the stock price is 200.  With 

anchoring, the price of the call option is 45.4545, so the price of the corresponding put option is 

5.4545 (from put-call parity). Hence, the (net) expected return from the put option is -0.45 or -45%. 

With rational pricing, the price of the put option is 3.3964 (from put-call parity), and the expected 

return from the option is -0.1167 or -11.67%. One can see that anchoring implies much larger 

magnitude put returns when compared with rational pricing.  
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3. Anchoring Adjusted Option Pricing: An Incomplete Market Example 

 

To illustrate anchoring in an incomplete market, the example in the previous section is modified 

slightly. Specifically, at time 1, instead of two states, now assume that there are three states. Namely, 

the stock price can go up to 200 or go down to 94 with a probability of 0.495 each. That is, the up 

factor is 200
140

 and the down factor is 94
140

. In addition, there is a 0.01 probability that the stock price 

jumps to 0 at time 1. Everything else is kept the same. As before, the question is how much to pay 

for a call option on the stock with a strike of 100.  

 As the market is no longer complete, the call option’s payoffs cannot be perfectly replicated 

by a combination of the stock and the risk free bond. Hence, pricing by replication is not possible. 

A pertinent question is: What is the range of prices consistent with risk-averse expected utility 

maximization? A body of literature has developed in response to this question (see Perrakis and 

Ryan (1984), Ritchken (1985), Levy (1985), Perrakis (1986)(1988), and Ritchken and Kuo (1988) 

among others). Oancea and Perrakis (2007) provide a detailed review of this literature. Following 

Oancea and Perrakis (2007), the call price upper bound and lower bound consistent with risk-averse 

expected utility maximization in discrete time are: 

𝐶̅ =
1
𝑅
�
𝑅 − 𝑧̂1
𝑧̂𝑛 − 𝑧̂1

𝑐̂𝑛 +
𝑧̂𝑛 − 𝑅
𝑧̂𝑛 − 𝑧̂1

𝑐1� 

𝐶 =
1
𝑅
�
𝑅 − 𝑧̂ℎ
𝑧̂ℎ+1 − 𝑧̂ℎ

𝑐̂ℎ+1 +
𝑧̂ℎ+1 − 𝑅
𝑧̂ℎ+1 − 𝑧̂ℎ

𝑐̂ℎ� 

where 𝑧̂𝑗 =
∑ 𝑠𝑖

𝑆0
𝜋𝑖

𝑗
𝑖=1

∑ 𝜋𝑖
𝑗
𝑖=1

 , state-wise stock payoffs are 𝑠1 ≤ 𝑠2 ≤ ⋯ ≤ 𝑠𝑛 with physical probabilities 𝜋𝑗 , 

𝑆0 is the current stock price, 𝑅 is the (gross) riskless rate, state-wise call payoffs are 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤

𝑐𝑛, and 𝑐̂𝑗 =
∑ 𝑐𝑖𝜋𝑖
𝑗
𝑖=1
∑ 𝜋𝑖
𝑗
𝑖=1

.  In the expressions, ℎ is a state index such that 𝑧̂ℎ ≤ 𝑅 ≤ 𝑧̂ℎ+1. 

 Using the above formulas, the call price upper bound is 47.619, and the call price lower 

bound is 44.373. It follows that call prices in the interval [44.373, 47.619] are consistent with risk-

averse expected utility maximization. It is possible to show that various specific models pick out 

different points from this interval. For example, Merton’s jump diffusion model (Merton (1976)) 

assumes that the jump risk is not priced. Merton’s model is discretized in Amin (1993). Following 

Amin’s approach, it is easy to see that the Merton’s model picks out a price very close to the lower 
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bound of 44.373. So, the expected return from the call option under Merton’s approach is 

approximately 1.116 (gross) or 11.6% (net). The corresponding put option (one with the strike of 

100) has a price of 4.373, yielding an expected return of 0.9078 (gross) or -9.22% (net).  

 In contrast with Merton’s approach, the anchoring prone investor picks out a price close to 

the upper bound. To see this, recall that the anchoring prone investor starts from the return of the 

underlying stock and adds to it to form return expectations regarding the call option. The expected 

return from the underlying stock, in this example, is 3.95%. The anchoring prone investor would 

add to it to arrive at the return he demands from the call option with the anchoring heuristic 

ensuring that the addition is not too large. To take one example, suppose he adds 2% to demand a 

return of 5.95% from the call option. It follows that the anchoring price is 46.72. Note, if the 

adjustment term is zero, that is, if the anchoring prone investor demands the same return from the 

call option as is available from the underlying stock, then the anchoring price coincides with the call 

price upper bound. 

 From put-call parity, one can deduce that the corresponding put option is priced at 6.72, 

yielding an expected return of 0.59 (gross) or -41% (net). So, just like in the complete market case, 

the expected put return has a larger magnitude with anchoring when compared with the Black-

Scholes counterpart in incomplete markets, which is Merton’s jump diffusion model.   

 Next, we formalize the intuition developed in these examples. The complete market case and 

its implications for key puzzles are discussed in the next few sections, followed by the jump 

diffusion and stochastic volatility cases in sections 8 and 9. 

 

 

 

4. Anchoring Adjusted Option Pricing: The Continuous Case 

  

I maintain all the assumptions of the Black-Scholes model except two. The first point of departure is 

the assumption that the marginal investor in a given call option is anchoring prone. That is, the 

marginal investor starts from the return of the underlying stock, and adds to it to arrive at the 

expected call return: 

1
𝑑𝑑

𝐸[𝑑𝑑]
𝐶

= 1
𝑑𝑑

𝐸[𝑑𝑑]
𝑆

+ 𝐴𝐾                                                                                                     (4.1) 
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Where 𝐶,𝑎𝑎𝑎 𝑆, denote the call price, and the stock price respectively. 𝐴𝐾 ≥ 0. The anchoring 

prone investor understands that leverage increases expected returns. As leverage rises with strike, 𝐴𝐾 

rises with strike. 

If the risk free rate is 𝑟 and the risk premium on the underlying stock is 𝛿, then, 1
𝑑𝑑

𝐸[𝑑𝑑]
𝑆

=

𝜇 = 𝑟 + 𝛿. So, (4.1) may be written as: 

1
𝑑𝑑

𝐸[𝑑𝑑]
𝐶

= (𝑟 + 𝛿 + 𝐴𝐾)                                                                                                   (4.2) 

The underlying stock price follows geometric Brownian motion: 

𝑑𝑑 = 𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎 

Where 𝑑𝑑 is the standard Guass-Weiner process. 

From Ito’s lemma: 

𝐸[𝑑𝑑] = �𝜇𝜇 𝜕𝜕
𝜕𝜕

+ 𝜕𝜕
𝜕𝜕

+ 𝜎2𝑆2

2
𝜕2𝐶
𝜕𝜕2

� 𝑑𝑑                                                                              (4.3) 

Substituting (4.3) in (4.2) leads to: 

(𝑟 + 𝛿 + 𝐴𝐾)𝐶 = 𝜕𝜕
𝜕𝜕

+ 𝜕𝜕
𝜕𝜕

(𝑟 + 𝛿)𝑆 + 𝜕2𝐶
𝜕𝜕2

𝜎2𝑆2

2
                                                              (4.4) 

(4.4) describes the partial differential equation (PDE) that must be satisfied if anchoring determines 

call option prices. 

To appreciate the difference between the anchoring PDE and the Black-Scholes PDE, 

consider the expected return under the Black-Scholes approach, which is given in (0.2). Over a small 

time interval, 𝑑𝑑, one may re-write (0.2) as: 

1
𝑑𝑑

𝐸[𝑑𝑑]
𝐶

= 𝑟 + Ω ∙ (𝜇 − 𝑟)                                                                                              (4.5) 

Substituting (4.3) in (4.5) and realizing that Ω = 𝑆
𝐶
𝜕𝜕
𝜕𝜕

 leads to the following: 

𝑟𝑟 = 𝜕𝜕
𝜕𝜕

+ 𝑟𝑟 𝜕𝜕
𝜕𝜕

+ 𝜕2𝐶
𝜕𝜕2

𝜎2𝑆2

2
                                                                                           (4.6) 
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(4.6) is the Black-Scholes PDE. 

 In the Black-Scholes world, the correct adjustment to stock return to arrive at call return is 

𝐴 = (Ω− 1)𝛿 . By substituting 𝐴 = (Ω − 1)𝛿 in (4.4), it is easy to verify that the Black-Scholes 

PDE in (4.6) follows. That is, with correct adjustment (4.4) and (4.6) are equal to each other. Clearly, 

with insufficient adjustment, that is, with the anchoring bias (𝐴 < (Ω − 1)𝛿), (4.4) and (4.6) are 

different from each other. 

The second, and final, departure from the Black-Scholes assumptions is that proportional 

transaction costs are allowed. Such transaction costs capture brokerage fee, bid-ask spread, 

transaction taxes, market impact costs etc. Specifically, I allow for proportional transaction costs in 

the underlying stock. I assume that the buyer of the stock pays(1 + 𝜃)𝑆, and the seller receives 

(1 − 𝜃)𝑆, where 𝑆 is the stock price, and 𝜃 is a constant less than one. There are no transaction 

costs in the bond or the option market. In the presence of transaction costs, the Black-Scholes 

portfolio replication argument breaks down.  

Constantinides and Perrakis (2002) derive a tight upper bound (CP upper bound) on a call 

option’s price in the presence of proportional transaction costs. In particular, under very general 

conditions (
(1−𝜃)𝐸[𝑆]

(1+𝜃)𝑆
> 1 + 𝑟, and stock price is allowed to be in the full range [0,∞)), risk-averse 

expected utility maximization implies the following upper bound. It is the call price at which the 

expected return from the call option is equal to the expected return from the underlying stock net of 

round-trip transaction cost: 

𝐶̅ =
(1 + 𝜃)𝑆 ∙ 𝐸[𝐶]

(1 − 𝜃)𝐸[𝑆]  

It is easy to see that the anchoring price is always less than the CP upper bound. The 

anchoring prone investor expects a return from a call option which is at least as large as the expected 

return from the underlying stock. That is, with anchoring, 𝐸
[𝐶]
𝐶
≥ 𝐸[𝑆]

𝑆
> (1−𝜃)𝐸[𝑆]

(1+𝜃)𝑆
. It follows that the 

maximum price under anchoring is: 𝐶𝐴̅ < 𝐶̅ = (1+𝜃)𝑆∙𝐸[𝐶]
(1−𝜃)𝐸[𝑆] . Hence, if there are proportional 

transaction costs, not only the riskless arbitrage is eliminated, but also the risky expected utility gain, 

as an expected utility maximizer may not gain utility by trading against the anchoring prone investor.  
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Re-writing the anchoring PDE with the boundary condition, we get: 

(𝑟 + 𝛿 + 𝐴𝐾)𝐶 = 𝜕𝜕
𝜕𝜕

+ 𝜕𝜕
𝜕𝜕

(𝑟 + 𝛿)𝑆 + 𝜕2𝐶
𝜕𝜕2

𝜎2𝑆2

2
                                                             (4.7) 

where 0 ≤ 𝐴𝐾 < (Ω − 1)𝛿, and 𝐶𝑇 = 𝑚𝑚𝑚{𝑆 − 𝐾, 0}  

Note, that the presence of the anchoring bias, 𝐴𝐾 < (Ω− 1)𝛿, guarantees that the CP lower 

bound is also satisfied. The CP lower bound is weak and lies substantially below the Black-Scholes 

price. As the anchoring price is larger than the Black-Scholes price, it follows that it must be larger 

than the CP lower bound. 

One way to interpret the anchoring approach is to think of it as a mechanism that 

substantially tightens the Constantinides and Perrakis (2002) option pricing bounds. The anchoring 

price always lies in the narrow region between the Black-Scholes price and the CP upper bound. 

There is a closed form solution to the anchoring PDE. Proposition 1 puts forward the 

resulting European option pricing formulas. 

 

Proposition 1 The formula for the price of a European call is obtained by solving the 

anchoring PDE. The formula is 𝑪 = 𝒆−𝑨𝑲(𝑻−𝒕)�𝑺𝑺�𝒅𝟏𝑨� − 𝑲𝒆−(𝒓+𝜹)(𝑻−𝒕)𝑵�𝒅𝟐𝑨�� where 

𝒅𝟏𝑨 =
𝒍𝒍(𝑺/𝑲)+(𝒓+𝜹+𝝈

𝟐

𝟐 )(𝑻−𝒕)

𝝈√𝑻−𝒕
 and 𝒅𝟐𝑨 =

𝒍𝒍�𝑺𝑲�+�𝒓+𝜹−
𝝈𝟐

𝟐 �(𝑻−𝒕)

𝝈√𝑻−𝒕
 

Proof. 

See Appendix A. ▄ 

Corollary 1.1 There is a threshold value of 𝑨𝑲below which the anchoring price stays larger 

than the Black-Scholes price. 

Proof. 

See Appendix B. 

∎ 
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Corollary 1.2 The formula for the anchoring adjusted price of a European put option is  

𝑲𝒆−𝒓(𝑻−𝒕)�𝟏 − 𝒆−𝜹(𝑻−𝒕)𝑵(𝒅𝟐)𝒆−𝑨𝑲(𝑻−𝒕)� − 𝑺 �𝟏 − 𝒆−𝑨𝑲(𝑻−𝒕)𝑵(𝒅𝟏)� 

Proof.  

Follows from put-call parity.  

∎ 

 

As proposition 1 shows, the anchoring formula differs from the corresponding Black-Scholes 

formulas due to the appearance of 𝛿, and 𝐴𝐾 . If the marginal investor is risk neutral, then the two 

sets of formulas are identical. 

 It is interesting to analyze put option returns under anchoring. Proposition 2 shows that put 

option returns are more negative under anchoring when compared with put option returns in the 

Black Scholes model. 

 

Proposition 2 Expected put option returns (for options held to expiry) under anchoring are 

more negative than expected put option returns in the Black Scholes model as long as the 

underlying stock has a positive risk premium and there is anchoring bias. 

Proof.  

See Appendix F. 

▄ 

 

Proposition 2 is quite intriguing given the puzzling nature of empirical put option returns when 

compared with the predictions of popular option pricing models. Chambers et al (2014) analyze 

nearly 25 years of put option data and conclude that average put returns are, in general, significantly 

more negative than the predictions of Black Scholes, Heston stochastic volatility, and Bates SVJ 

model. See also Bondarenko (2014). Hence, anchoring offers a potential explanation.  
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Clearly, expected call return under anchoring is a lot less than what is expected under the 

Black Scholes model due to the anchoring bias. Empirical call returns are found to be a lot smaller 

given the predictions of the Black Scholes model (see Coval and Shumway (2001)). Hence, 

anchoring seems consistent with the empirical findings regarding both call and put option returns. 

 

5. The Implied Volatility Skew with Anchoring 

If anchoring determines option prices (formulas in proposition 1), and the Black Scholes model is 

used to infer implied volatility, the skew is observed. For illustrative purposes, the following 

parameter values are used: 𝑆 = 100,𝑇 − 𝑡 = 0.25 𝑦𝑦𝑦𝑦,𝜎 = 15%, 𝑟 = 0%, 𝑎𝑎𝑎 𝛿 = 4%.   

An anchoring prone investor uses the expected return of the underlying stock as a starting 

point that gets adjusted upwards to arrive at the expected return of a call option. Anchoring bias 

implies that the adjustment is not sufficient to reach the Black-Scholes price.  

 As long as the adjustment made is smaller than the adjustment required to reach the Black-

Scholes price, the implied volatility skew is observed. To reach the Black-Scholes price, it must be: 

𝑙𝑙 �𝑆𝑆�𝑑1
𝐴�−𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁�𝑑2𝐴�

𝑆𝑆(𝑑1)−𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) � ∙ 1
(𝑇−𝑡) = 𝐴̅𝐾. For the purpose of this illustration, assume that the 

actual adjustment is only a quarter of that. 

 Table 1 shows the Black-Scholes price, the anchoring price, and the resulting implied 

volatility. The skew is seen. Table 1 also shows the CP upper bound and Leland prices for various 

trading intervals by assuming that 𝜃 = 0.01. The anchoring price lies within a tight region between 

the Black-Scholes price and the CP upper bound. Furthermore, implied volatility is always larger 

than actual volatility. 

 The observed implied volatility skew also has a term-structure. Specifically, the skew tends to 

be steeper at shorter maturities. Figure 1 plots the implied volatility skews both at a longer time to 

maturity of 1 year and at a considerably shorter maturity of only one month. As can be seen, the 

skew is steeper at shorter maturity (the other parameters are 𝑆 = 100, 𝜎 = 20%, 𝑟 = 2%, 𝛿 =

3%, 𝑎𝑎𝑎 𝐴𝐾 = 0.25𝐴̅𝐾). 
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Table 1 
K/S Black-Scholes Anchoring Implied 

Volatility 

CP Upper 

Bound 

Leland Price 

(Trading Interval 

1/250 years) 

Leland Price 

(Trading Interval 

1/52 years) 

0.95 6.07 6.61 18.32% 6.93 8.36 7.59 

1.0 2.99 3.37 16.88% 3.57 5.42 4.50 

1.05 1.19 1.40 16.21% 1.50 3.28 2.38 

 

 

 

Figure 1 

 

 

 

6. The Profitability of Covered Call Writing with Anchoring 

The profitability of covered call writing is quite puzzling in the Black Scholes framework. Whaley 

(2002) shows that BXM (a Buy Write Monthly Index tracking a Covered Call on S&P 500) has 

significantly lower volatility when compared with the index, however, it offers nearly the same return 

18.00%
19.00%
20.00%
21.00%
22.00%
23.00%
24.00%
25.00%
26.00%
27.00%
28.00%

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

Implied Volatility (1 year)

Implied Volatility (1 month)

K/S 

Implied Volatility with Time to Maturity 
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as the index. In the Black Scholes framework, the covered call strategy is expected to have lower risk 

as well as lower return when compared with buying the index only. See Black (1975). In fact, in an 

efficient market, the risk adjusted return from covered call writing should be no different than the 

risk adjusted return from just holding the index. 

The covered call strategy (S denotes stock, C denotes call) is given by: 

𝑉 = 𝑆 − 𝐶 

With anchoring, this is equal to: 

𝑉 = 𝑆 − 𝑒−𝐴𝐾(𝑇−𝑡)�𝑆𝑆(𝑑1𝐴)− 𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2𝐴)� 

=> 𝑉 = �1 − 𝑒−𝐴𝐾(𝑇−𝑡)𝑁(𝑑1𝐴)� 𝑆 + 𝑒−𝐴𝐾(𝑇−𝑡)𝑁(𝑑2𝐴)𝐾𝐾−(𝑟+𝛿)(𝑇−𝑡)   (6.1) 

The corresponding value under the Black Scholes assumptions is: 

𝑉 = �1 − 𝑁(𝑑1)�𝑆 + 𝑁(𝑑2)𝐾𝐾−𝑟(𝑇−𝑡)        (6.2) 

 A comparison of 6.1 and 6.2 shows that covered call strategy is expected to perform much 

better with anchoring when compared with its expected performance in the Black Scholes world. 

With anchoring, covered call strategy creates a portfolio which is equivalent to having a portfolio 

with a weight of 1 − 𝑒−𝐴𝐾(𝑇−𝑡)𝑁(𝑑1𝐴) on the stock and a weight of 𝑒−𝐴𝐾(𝑇−𝑡)𝑁(𝑑2𝐴) on a 

hypothetical risk free asset with a return of 𝑟 + 𝛿 + 𝐴𝐾. The stock has a return of 𝑟 + 𝛿 plus 

dividend yield. This implies that, with anchoring, the return from covered call strategy is expected to 

be comparable to the return from holding the underlying stock only. The presence of a hypothetical 

risk free asset in 6.1 implies that the standard deviation of covered call returns is lower than the 

standard deviation from just holding the underlying stock. Hence, the superior historical 

performance of covered call strategy is consistent with anchoring. 

 

6.1 The Zero-Beta Straddle Performance with Anchoring 

Another empirical puzzle in the Black-Scholes/CAPM framework is that zero beta straddles lose 

money. Goltz and Lai (2009), Coval and Shumway (2001) and others find that zero beta straddles 
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earn negative returns on average. This is in sharp contrast with the Black-Scholes/CAPM prediction 

which says that the zero-beta straddles should earn the risk free rate. A zero-beta straddle is 

constructed by taking a long position in corresponding call and put options with weights chosen so 

as to make the portfolio beta equal to zero: 

𝜃 ∙ 𝛽𝐶𝐶𝐶𝐶 + (1 − 𝜃) ∙ 𝛽𝑃𝑃𝑃 = 0 

=> 𝜃 =
−𝛽𝑃𝑃𝑃

𝛽𝐶𝐶𝐶𝐶 − 𝛽𝑃𝑃𝑃
 

Where 𝛽𝐶𝐶𝐶𝐶 = 𝑁(𝑑1) ∙ 𝑆𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶

∙ 𝛽𝑆𝑆𝑆𝑆𝑆 and 𝛽𝑃𝑃𝑃 = (𝑁(𝑑1) − 1) ∙ 𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑃

∙ 𝛽𝑠𝑠𝑠𝑠𝑠 

 It is straightforward to show that with anchoring, where call and put prices are determined in 

accordance with proposition 1, the zero-beta straddle earns a significantly smaller return than the 

risk free rate (with returns being negative for a wide range of realistic parameter values). See 

Appendix E for proof. Intuitively, with anchoring, both call and put options are more expensive 

when compared with Black-Scholes prices. Hence, the returns are smaller, and are typically negative.  

Anchoring adjusted option pricing not only generates the implied volatility skew, it is also 

consistent with key empirical findings regarding option portfolio returns such as covered call writing 

and zero-beta straddles. 

 

7. Leverage Adjusted Option Returns with Anchoring 

Leverage adjustment dilutes beta risk of an option by combining it with a risk free asset. Leverage 

adjustment combines each option with a risk-free asset in such a manner that the overall beta risk 

becomes equal to the beta risk of the underlying stock. The weight of the option in the portfolio is 

equal to its inverse price elasticity w.r.t the underlying stock’s price: 

 

𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = Ω−1 × 𝛽𝑐𝑐𝑐𝑐 + (1 − Ω−1) × 𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                                                                

where Ω = 𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

× 𝑆𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶

 (i.e price elasticity of call w.r.t the underlying stock) 

𝛽𝑐𝑐𝑐𝑐 = Ω × 𝛽𝑠𝑠𝑠𝑠𝑠 

𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0 
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=> 𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛽𝑠𝑠𝑠𝑠𝑠                                                                                                             

 

 Constantinides, Jackwerth and Savov (2013) uncover a number of interesting empirical facts 

regarding leverage adjusted index option returns. They find that over a period ranging from April 

1986 to January 2012, the average percentage monthly returns of leverage-adjusted index call and put 

options are decreasing in the ratio of strike to spot.  They also find that leverage adjusted put returns are larger than 

the corresponding leverage adjusted call returns. The empirical findings in Contantinides et al (2013) are 

inconsistent with the Black-Scholes/CAPM framework, which predicts that the leverage adjusted 

returns should be equal to the return from the underlying index. That is, they should not fall with 

strike, and the leverage adjusted put option returns should not be any different than the leverage 

adjusted call returns. 

 If anchoring determines call prices, then the behavior of leverage adjusted call and put 

returns should be a lot different than their predicted behavior under the Black-Scholes assumptions. 

For call options (suppressing subscripts for simplicity): 

 

Ω−1 ∙ 1
𝑑𝑑
�𝐸[𝑑𝑑]

𝐶
� + (1 − Ω−1)𝑟                                                                                      (7.1) 

where 𝐸[𝑑𝑑] = �(𝑟 + 𝛿)𝑆 𝜕𝜕
𝜕𝜕

+ 𝜕𝜕
𝜕𝜕

+ 𝜎2𝑆2

2
𝜕2𝐶
𝜕𝜕2

� 𝑑𝑑                                                  (7.2) 

 

According to the anchoring PDE: 

 

(𝑟 + 𝛿 + 𝐴)𝐶 = 𝜕𝜕
𝜕𝜕

+ 𝜕𝜕
𝜕𝜕

(𝑟 + 𝛿)𝑆 + 𝜕2𝐶
𝜕𝜕2

𝜎2𝑆2

2
                                                             (7.3) 

 

Substituting (7.3) and (7.2) in (7.1) and simplifying leads to: 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅 = Ω−1(𝛿 + 𝐴) + 𝑟                 (7.4) 

 

Note that in (7.4), if 𝐴 = (Ω − 1)𝛿, that is if the adjustment is correct (no anchoring bias), then the 

leverage adjusted call return is equal to the return from the underlying stock.  With the anchoring 

bias, that is, when < (Ω − 1)𝛿 , the leverage adjusted call return falls with strike-to-spot. To take an 
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example, suppose the adjustment is only a quarter of the correct adjustment. That is, assume that 

𝐴 = 0.25(Ω − 1)𝛿. It follows: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅 = 0.25 + 0.75𝛿
Ω

+ 𝑟      (7.4b) 

As Ω rises rapidly with strike-to-spot ratio, leverage adjusted call return falls as strike-to-spot ratio 

rises. Hence, anchoring adjusted option pricing is consistent with empirical evidence regarding 

leverage adjusted call returns.  

The corresponding leverage adjusted put option return with anchoring adjusted option 

pricing is: 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑟 + �𝛿𝛿−(𝛿+𝐴)𝐶
𝑆(1−∆𝑐𝑐𝑐𝑐)

�                      (7.5)  

Where ∆𝑐𝑐𝑐𝑐=
𝜕𝜕
𝜕𝜕

 

If there is no anchoring bias, that is, if the adjustment is correct, then 𝐴 = (Ω − 1)𝛿. Substituting 

this value in (7.5) leads to leverage adjusted put return being equal to the return from the underlying 

stock. What happens if 𝐴 < (Ω − 1)𝛿? To fix ideas, as before, let’s take the following example: 

𝐴 = 0.25(Ω − 1)𝛿. (7.5) then becomes: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑟 + 𝛿 �𝑆−(0.75+0.25Ω)𝐶
𝑆(1−∆𝑐𝑐𝑐𝑐)

�                                               (7.5b) 

It is straightforward to check that for realistic parameter values, (7.5b) falls with strike-to-spot, and 

(7.5b) is larger than (7.4b). Hence, empirical findings in Constantinides et al (2013) regarding 

leverage adjusted option returns are consistent with anchoring adjusted option pricing. 
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8. Anchoring Adjusted Option Pricing with Stochastic Volatility 

 

In this section, I put forward an anchoring adjusted option pricing model for the case when the 

underlying stock price and its instantaneous variance are assumed to obey the uncorrelated 

stochastic processes described in Hull and White (1987): 

𝑑𝑑 = 𝜇𝜇𝜇𝜇 + √𝑉𝑆𝑆𝑆 

𝑑𝑑 = 𝜑𝜑𝜑𝜑 + 𝜀𝜀𝜀𝜀 

𝐸[𝑑𝑑𝑑𝑑] = 0  

Where 𝑉 = 𝜎2 (Instantaneous variance of stock’s returns), and 𝜑 and 𝜀 are non-negative constants. 

𝑑𝑑 and 𝑑𝑑 are standard Guass-Weiner processes that are uncorrelated. Time subscripts in 𝑆 and 𝑉 

are suppressed for notational simplicity. If 𝜀 = 0, then the instantaneous variance is a constant, and 

we are back in the Black-Scholes world. Bigger the value of 𝜀, which can be interpreted as the 

volatility of volatility parameter, larger is the departure from the constant volatility assumption of the 

Black-Scholes model.  

Hull and White (1987) is among the first option pricing models that allowed for stochastic 

volatility. A variety of stochastic volatility models have been proposed including Stein and Stein 

(1991), and Heston (1993) among others. Here, we use Hull and White (1987) assumptions to show 

that the idea of anchoring is easily combined with stochastic volatility. Clearly, with stochastic 

volatility it does not seem possible to form a hedge portfolio that eliminates risk completely because 

there is no asset which is perfectly correlated with 𝑉 = 𝜎2. 

If anchoring determines call prices and the underlying stock and its instantaneous volatility 

follow the stochastic processes described above, then the European call option price (no dividends 

on the underlying stock for simplicity) must satisfy the partial differentiation equation given below 

(see Appendix C for the derivation): 

𝜕𝜕
𝜕𝜕

+ (𝑟 + 𝛿)𝑆
𝜕𝜕
𝜕𝜕

+ 𝜑𝜑
𝜕𝜕
𝜕𝜕

+
1
2
𝜎2𝑆2

𝜕2𝐶
𝜕𝜕2

+
1
2
𝜀2𝑉2

𝜕2𝐶
𝜕𝜕2

= (𝑟 + 𝛿 + 𝐴)𝐶                          (8.1) 
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Where 𝛿 is the risk premium that a marginal investor in the call option expects to get from the 

underlying stock. 

 By definition, under anchoring, the price of the call option is the expected terminal value of 

the option discounted at the rate which the marginal investor in the option expects to get from 

investing in the option. The price of the option is then: 

𝐶(𝑆𝑡,𝜎𝑡2, 𝑡) = 𝑒−(𝑟+𝛿+𝐴)(𝑇−𝑡) ∫𝐶(𝑆𝑇 ,𝜎𝑇2,𝑇)𝑝(𝑆𝑇|𝑆𝑡,𝜎𝑡2)𝑑𝑆𝑇                                                    (8.2)  

Where the conditional distribution of 𝑆𝑇 as perceived by the marginal investor is such that 

𝐸[𝑆𝑇|𝑆𝑡,𝜎𝑡2] = 𝑆𝑡𝑒(𝑟+𝛿)(𝑇−𝑡) and 𝐶(𝑆𝑇 ,𝜎𝑇2,𝑇) is 𝑚𝑚𝑚(𝑆𝑇 − 𝐾, 0).  

 By defining 𝑉� = 1
𝑇−𝑡 ∫ 𝜎𝜏2𝑑𝑑

𝑇
𝑡  as the means variance over the life of the option, the 

distribution of 𝑆𝑇 can be expressed as: 

𝑝(𝑆𝑇|𝑆𝑡,𝜎𝑡2) = �𝑓(𝑆𝑇|𝑆𝑡,𝑉�)𝑔(𝑉�|𝑆𝑡,𝜎𝑡2)𝑑𝑉�                                                                                   (8.3) 

Substituting (8.3) in (8.2) and re-arranging leads to: 

𝐶(𝑆𝑡,𝜎𝑡2, 𝑡) = ��𝑒−(𝑟+𝛿+𝐴)(𝑇−𝑡) �𝐶(𝑆𝑇)𝑓(𝑆𝑇|𝑆𝑡,𝑉�)𝑑𝑆𝑇� 𝑔(𝑉�|𝑆𝑡,𝜎𝑡2)𝑑𝑉�                              (8.4) 

By using an argument that runs in parallel with the corresponding argument in Hull and White 

(1987), it is straightforward to show that the term inside the square brackets is the anchoring price of 

the call option with a constant variance 𝑉� . Denoting this price by 𝐶𝐶𝐶𝐶𝐴𝐴(𝑉�), the price of the call 

option under anchoring when volatility is stochastic (as in Hull and White (1987)) is given by (proof 

available from author): 

𝐶(𝑆𝑡,𝜎𝑡2, 𝑡) = �𝐶𝐶𝐶𝐶𝐴𝐴(𝑉�)𝑔(𝑉�|𝑆𝑡,𝜎𝑡2)𝑑𝑉�                                                                                     (8.5) 

Where 𝐶𝐶𝐶𝐶𝐴𝐴(𝑉�) = 𝑒−𝐴(𝑇−𝑡)�𝑆𝑆(𝑑1𝑀) − 𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2𝑀)� 

𝑑1𝑀 =
𝑙𝑙�𝑆𝐾�+�𝑟+𝛿+

𝜎2

2 �(𝑇−𝑡)

𝜎√𝑇−𝑡
 ; 𝑑2𝑀 =

𝑙𝑙�𝑆𝐾�+�𝑟+𝛿−
𝜎2

2 �(𝑇−𝑡)

𝜎√𝑇−𝑡
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Equation (8.5) shows that the anchoring adjusted call option price with stochastic volatility is the 

anchoring price with constant variance integrated with respect to the distribution of mean volatility.  

 

8.1 Option Pricing Implications 

Stochastic volatility models require a strong correlation between the volatility process and the stock 

price process in order to generate the implied volatility skew. They can only generate a more 

symmetric U-shaped smile with zero correlation as assumed here. In contrast, the anchoring 

stochastic volatility model (equation 8.5) can generate a variety of skews and smiles even with zero 

correlation. What type of implied volatility structure is ultimately seen depends on the parameters 𝛿 

and 𝜀. It is easy to see that if 𝜀 = 0 and 𝛿 > 0, only the implied volatility skew is generated, and if 

𝛿 = 0 and 𝜀 > 0, only a more symmetric smile arises. For positive 𝛿, there is a threshold value of 𝜀 

below which skew arises and above which smile takes shape. Typically, for options on individual 

stocks, the smile is seen, and for index options, the skew arises. The approach developed here 

provides a potential explanation for this as 𝜀 is likely to be lower for indices due to inbuilt 

diversification (giving rise to skew) when compared with individual stocks. 

 

9. Anchoring Adjusted Option Pricing with Jump Diffusion 

In this section, I integrate the idea of analogy making with the jump diffusion model of Merton 

(1976). As before, the point is that the idea of anchoring is independent of the distributional 

assumptions that are made regarding the behavior of the underlying stock. In the previous section, 

anchoring is combined with the Hull and White stochastic volatility model to illustrate the same 

point.   

Merton (1976) assumes that the stock returns are a mixture of geometric Brownian motion 

and Poisson-driven jumps: 

𝑑𝑑 = (𝜇 − 𝛾𝛾)𝑆𝑆𝑆 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑 

Where 𝑑𝑑 is a standard Guass-Weiner process, and 𝑞(𝑡) is a Poisson process. 𝑑𝑑 and 𝑑𝑑 are 

assumed to be independent. 𝛾 is the mean number of jump arrivals per unit time, 𝛽 = 𝐸[𝑌 − 1] 
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where 𝑌 − 1 is the random percentage change in the stock price if the Poisson event occurs, and 𝐸 

is the expectations operator over the random variable 𝑌. If 𝛾 = 0 (hence, 𝑑𝑑 = 0) then the stock 

price dynamics are identical to those assumed in the Black Scholes model. For simplicity, assume 

that 𝐸[𝑌] = 1.  

The stock price dynamics then become: 

𝑑𝑑 = 𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎 + 𝑑𝑑 

 Clearly, with jump diffusion, the Black-Scholes no-arbitrage technique cannot be employed 

as there is no portfolio of stock and options which is risk-free. However, with anchoring, the price 

of the option can be determined as the return on the call option demanded by the marginal investor 

is equal to the return he expects from the underlying stock plus an adjustment term. 

 If anchoring determines the price of the call option when the underlying stock price 

dynamics are a mixture of a geometric Brownian motion and a Poisson process as described earlier, 

then the following partial differential equation must be satisfied (see Appendix D for the derivation): 

𝜕𝜕
𝜕𝜕

+ (𝑟 + 𝛿)𝑆
𝜕𝜕
𝜕𝜕

+
1
2
𝜎2𝑆2

𝜕2𝐶
𝜕𝜕2

+ 𝛾𝛾[𝐶(𝑆𝑆, 𝑡) − 𝐶(𝑆, 𝑡)] = (𝑟 + 𝛿 + 𝐴)𝐶                      (9.1) 

   If the distribution of 𝑌 is assumed to log-normal with a mean of 1 (assumed for simplicity) 

and a variance of  𝑣2 then by using an argument analogous to Merton (1976), the following 

anchoring adjusted option pricing formula for the case of jump diffusion is easily derived (proof 

available from author): 

𝐶𝐶𝐶𝐶 = �
𝑒−𝛾(𝑇−𝑡)�𝛾(𝑇 − 𝑡)�

𝑗

𝑗!

∞

𝑗=0

𝐶𝐶𝐶𝐶𝐴𝐴�𝑆, (𝑇 − 𝑡),𝐾, 𝑟, 𝛿,𝜎𝑗�                                                    (9.2) 

𝐶𝐶𝐶𝐶𝐴𝐴�𝑆, (𝑇 − 𝑡),𝐾, 𝑟, 𝛿,𝜎𝑗� = 𝑒−𝐴(𝑇−𝑡)�𝑆𝑆(𝑑1𝑀) − 𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2𝑀)� 

𝑑1𝑀 =
𝑙𝑙 �𝑆𝐾� + �𝑟 + 𝛿 +

𝜎𝑗2
2 � (𝑇 − 𝑡)

𝜎𝑗√𝑇 − 𝑡
         𝑑2𝑀 =

𝑙𝑛 �𝑆𝐾� + �𝑟 + 𝛿 −
𝜎𝑗2
2 � (𝑇 − 𝑡)

𝜎𝑗√𝑇 − 𝑡
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𝜎𝑗 = �𝜎2 + 𝑣2 � 𝑗
𝑇−𝑡

�  and 𝑣2 = 𝑓𝜎2

𝛾
 

Where 𝑓 is the fraction of volatility explained by jumps. 

As expected, the formula in (9.2) is identical to the Merton jump diffusion formula except for two 

parameter, 𝛿 andA. 

 

9.1 Option Pricing Implications 

Merton’s jump diffusion model with symmetric jumps around the current stock price can only 

produce a symmetric smile. Generating the implied volatility skew requires asymmetric jumps (jump 

mean becomes negative) in the model. However, with anchoring, both the skew and the smile can 

be generated even when jumps are symmetric. In particular, for low values of 𝛿, a more symmetric 

smile is generated, and for larger values of 𝛿, skew arises. 

 Even if we one assumes an asymmetric jump distribution around the current stock price, 

Merton formula, when calibrated with historical data, generates a skew which is a lot less 

pronounced (steep) than what is empirically observed. See Andersen and Andreasen (2002). The 

skew generated by the anchoring formula (with asymmetric jumps) is typically more pronounced 

(steep) when compared with the skew without anchoring. Hence, anchoring potentially adds value to 

a jump diffusion model as well. 

 

10. Conclusions 

Intriguing option pricing puzzles include: 1) the implied volatility skew, 2) superior historical 

performance of covered call writing, 3) worse-than-expected performance of zero beta straddles, 

and 4) the puzzling findings regarding leverage adjusted index option returns. Furthermore, it is well 

known that average put returns are far more negative than what theory predicts, and average call 

returns are smaller than what one would expect given their systematic risk.  

 If the return of the underlying stock is used as a starting point which gets adjusted upwards 

to arrive at call option return, then the anchoring bias implies that such adjustments are insufficient. 
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There is considerable field and experimental evidence of the role of anchoring in option pricing. In 

this article, an anchoring-adjusted option pricing model is put forward. The model provides a unified 

explanation for the puzzles mentioned above. 

 The challenge for financial economics is to enrich the elegant option pricing framework 

sufficiently so that it captures key empirical regularities. This article shows that incorporating the 

anchoring bias in the option pricing framework provides the needed enrichment, while preserving 

the elegance of the framework.  Furthermore, anchoring works regardless of the distributional 

assumptions that are made about the underlying stock behavior. As shown in this article, it is easy to 

combine anchoring with jump diffusion and stochastic volatility approaches. 
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Appendix A 

The anchoring adjusted PDE can be solved by converting to heat equation and exploiting its 

solution.  

Start by making the following transformations in (4.4): 
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Plugging the above transformations into (4.4) and writing 𝑟̃ = 2(𝑟+𝛿)
𝜎2

, and 𝜖̃ = 2𝐴
𝜎2

 we get: 

𝜕𝜕
𝜕𝜕

=
𝜕2𝑐
𝜕𝜕2

+ (𝑟̃ − 1)
𝜕𝜕
𝜕𝜕

− (𝑟̃ + 𝜖̃)𝑐                                                                                                 (𝐷1) 

With the boundary condition/initial condition: 

𝐶(𝑆,𝑇) = 𝑚𝑚𝑚{𝑆 − 𝐾, 0} 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐(𝑥, 0) = 𝑚𝑚𝑚{𝑒𝑥 − 1,0} 

To eliminate the last two terms in (D1), an additional transformation is made: 

𝑐(𝑥, 𝜏) = 𝑒𝛼𝛼+𝛽𝛽𝑢(𝑥, 𝜏) 

It follows, 
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𝜕𝜕
𝜕𝜕

= 𝛼𝑒𝛼𝛼+𝛽𝛽𝑢 + 𝑒𝛼𝛼+𝛽𝛽
𝜕𝜕
𝜕𝜕

 

𝜕2𝑐
𝜕𝜕2

= 𝛼2𝑒𝛼𝛼+𝛽𝛽𝑢 + 2𝛼𝑒𝛼𝛼+𝛽𝛽
𝜕𝜕
𝜕𝜕

+ 𝑒𝛼𝛼+𝛽𝛽
𝜕2𝑢
𝜕𝜕2

 

𝜕𝜕
𝜕𝜕

= 𝛽𝑒𝛼𝛼+𝛽𝛽𝑢 + 𝑒𝛼𝛼+𝛽𝛽
𝜕𝜕
𝜕𝜕

 

Substituting the above transformations in (D1), we get: 

𝜕𝜕
𝜕𝜕

= 𝜕2𝑢
𝜕𝜕2

+ (𝛼2 + 𝛼(𝑟̃ − 1) − (𝑟̃ + 𝜖̃) − 𝛽)𝑢 + �2𝛼 + (𝑟̃ − 1)� 𝜕𝜕
𝜕𝜕

                                    (D2) 

Choose 𝛼 = − (𝑟̃−1)
2

 and 𝛽 = − (𝑟̃+1)2

4
− (𝜖̃). (D2) simplifies to the Heat equation: 

𝜕𝜕
𝜕𝜕

=
𝜕2𝑢
𝜕𝜕2

                                                                                                                                               (𝐷3) 

With the initial condition: 

𝑢(𝑥0, 0) = 𝑚𝑚𝑚��𝑒(1−𝛼)𝑥0 − 𝑒−𝛼𝑥0�, 0� = 𝑚𝑚𝑚 ��𝑒�
𝑟̃+1
2 �𝑥0 − 𝑒�

𝑟̃−1
2 �𝑥0� , 0� 

The solution to the Heat equation in our case is: 

𝑢(𝑥, 𝜏) =
1

2√𝜋𝜋
� 𝑒−

(𝑥−𝑥0)2
4𝜏

∞

−∞

𝑢(𝑥0, 0)𝑑𝑥0 

Change variables: = 𝑥0−𝑥
√2𝜏

 , which means: 𝑑𝑑 = 𝑑𝑥0
√2𝜏

. Also, from the boundary condition, we know 

that 𝑢 > 0 𝑖𝑖𝑖 𝑥0 > 0.  Hence, we can restrict the integration range to 𝑧 > −𝑥
√2𝜏

 

𝑢(𝑥, 𝜏) =
1

√2𝜋
� 𝑒−

𝑧2
2 ∙ 𝑒�

𝑟̃+1
2 ��𝑥+𝑧√2𝜏�𝑑𝑑 −

∞

− 𝑥
√2𝜋

1
√2𝜋

� 𝑒−
𝑧2
2

∞

− 𝑥
√2𝜏

∙ 𝑒�
𝑟̃−1
2 ��𝑥+𝑧√2𝜏�𝑑𝑑 

=:𝐻1 − 𝐻2 

Complete the squares for the exponent in 𝐻1: 
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𝑟̃ + 1
2

�𝑥 + 𝑧√2𝜏� −
𝑧2

2
= −

1
2
�𝑧 −

√2𝜏(𝑟̃ + 1)
2

�
2

+
𝑟̃ + 1

2
𝑥 + 𝜏

(𝑟̃ + 1)2

4
 

=:−
1
2
𝑦2 + 𝑐 

We can see that 𝑑𝑑 = 𝑑𝑑 and 𝑐 does not depend on 𝑧. Hence, we can write: 

𝐻1 =
𝑒𝑐

√2𝜋
� 𝑒−

𝑦2
2 𝑑𝑑

∞

−𝑥
√2𝜋� −�𝜏 2� (𝑟̃+1)

 

A normally distributed random variable has the following cumulative distribution function: 

𝑁(𝑑) =
1

√2𝜋
� 𝑒−

𝑦2
2 𝑑𝑑

𝑑

−∞

 

Hence, 𝐻1 = 𝑒𝑐𝑁(𝑑1) where 𝑑1 = 𝑥
√2𝜋� + �𝜏 2� (𝑟̃ + 1) 

Similarly,  𝐻2 = 𝑒𝑓𝑁(𝑑2) where 𝑑2 = 𝑥
√2𝜋� + �𝜏 2� (𝑟̃ − 1) and 𝑓 = 𝑟̃−1

2
𝑥 + 𝜏 (𝑟̃−1)2

4
 

The analogy based European call pricing formula is obtained by recovering original variables: 

𝐶 = 𝑒−𝐴(𝑇−𝑡)�𝑆𝑆(𝑑1𝐴) − 𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2𝐴)� 

Where 𝒅𝟏𝑨 =
𝒍𝒍(𝑺/𝑲)+(𝒓+𝜹+𝝈

𝟐

𝟐 )(𝑻−𝒕)

𝝈√𝑻−𝒕
 𝑎𝑎𝑎 𝒅𝟐𝑨 =

𝒍𝒍�𝑺𝑲�+�𝒓+𝜹−
𝝈𝟐

𝟐 �(𝑻−𝒕)

𝝈√𝑻−𝒕
 

 

Appendix B 

By definition, at the threshold: 

𝑒−𝐴𝐾(𝑇−𝑡)�𝑆𝑆�𝑑1
𝐴� − 𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁�𝑑2

𝐴�� = 𝑆𝑆(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) (E1) 

Solving (E1) for 𝐴𝐾 gives the threshold value: 

𝑙𝑙 �𝑆𝑆�𝑑1
𝐴�−𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁�𝑑2𝐴�

𝑆𝑆(𝑑1)−𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) � ∙ 1
(𝑇−𝑡) = |𝐴𝐾����|                  (E2) 
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Appendix C 

By Ito’s Lemma (time subscript is suppressed for simplicity): 

𝑑𝑑 = 𝜕𝜕
𝜕𝜕
𝑑𝑑 + 𝜕𝜕

𝜕𝜕
𝑑𝑑 + 𝜕𝐶

𝜕𝜕
𝑑𝑑 + 1

2
𝑉𝑆2 𝜕

2𝐶
𝜕𝜕2

𝑑𝑑 + 1
2
𝑉2𝜀2 𝜕

2𝐶
𝜕𝜕2

𝑑𝑑    (F1) 

Substituting: 

𝑑𝑑 = 𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎 and, 

𝑑𝑑 = 𝜑𝜑𝜑𝜑 + 𝜀𝜀𝜀𝜀  

in (F1) and taking expectations leads to: 
𝜕𝜕
𝜕𝜕

+ (𝑟 + 𝛿)𝑆 𝜕𝜕
𝜕𝜕

+ 𝜑𝜑 𝜕𝜕
𝜕𝜕

+ 1
2
𝜎2𝑆2 𝜕

2𝐶
𝜕𝜕2

+ 1
2
𝜀2𝑉2 𝜕

2𝐶
𝜕𝜕2

= (𝑟 + 𝛿 + 𝐴)𝐶                 (F2) 

 

Appendix D 

By following a very similar argument as in appendix C, and using Ito’s lemma for the continuous 

part and an analogous Lemma for the discontinuous part, the following is obtained: 

𝜕𝜕
𝜕𝜕

+ (𝑟 + 𝛿)𝑆
𝜕𝜕
𝜕𝜕

+
1
2
𝜎2𝑆2

𝜕2𝐶
𝜕𝑆2

+ 𝛾𝛾[𝐶(𝑆𝑆, 𝑡) − 𝐶(𝑆, 𝑡)] = (𝑟 + 𝛿 + 𝐴)𝐶 

 

Appendix E 

Following Coval and Shumway (2001) and some algebraic manipulations, the return from a zero-

beta-straddle can be written as: 

𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
−Ω𝑐𝐶 + 𝑆

Ω𝑐𝑃 − Ω𝑐𝐶 + 𝑆
∙ 𝑟𝑐𝑐𝑐𝑐 +

Ω𝑐𝑃 + 𝑆
Ω𝑐𝑃 − Ω𝑐𝐶 + 𝑆

∙ 𝑟𝑝𝑝𝑝 

Where 𝐶 and 𝑃 denote call and put prices respectively, 𝑟𝑐𝑐𝑐𝑐 is expected call return, 𝑟𝑝𝑝𝑝 is expected 

put return, and Ω𝑐 is call price elasticity w.r.t the underlying stock price. 

Under anchoring: 

𝑟𝑐𝑐𝑐𝑐 = 𝜇 + 𝐴 

𝑟𝑝𝑝𝑝 =
(𝜇 + 𝐴)𝐶 − 𝜇𝜇 + 𝑟𝑟𝑟(𝐾)

𝑃
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Substituting 𝑟𝑐𝑐𝑐𝑐 and 𝑟𝑝𝑝𝑝 in the expression for 𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and simplifying implies that as long as the 

risk premium on the underlying is positive, it follows that: 

𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 < 𝑟 

Appendix F 

Note that for a put option, if the underlying stock has a positive risk premium, then the expected 

put payoff must be less than its price. That is, expected put return is negative. The proof follows 

directly from realizing that if the risk premium on the underlying stock is positive, the price of a put 

option under anchoring is larger than the price of a put option in the Black Scholes model.  
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