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I. Introduction  

It is well documented that federal and state funding in support of university research and 

development have played a vital role in generating long term social returns that are not 

available from private sector research (Alston and Pardey 1996; Chavas, Aliber, and Cox, 

1997; Jones and Williams, 1998; Taylor, 2001). Yet, in recent years, as budget crises 

have beset virtually every state in the union, one of the first places state legislatures have 

looked to cut expenditures has been their Land Grant universities (LGUs) as well as other 

public universities.  These cuts represent historic reductions in the long-term 

commitments of states to higher education and indirectly to public financing of research 

and development.  In addition, it appears likely that federal funds at least for agricultural 

research and perhaps for public research in general are also likely to stagnate under the 

burden of mounting fiscal deficits, which would affect both public and private research-

oriented universities.  As a result, universities across the country find themselves in an 

austere era, searching for both alternative funding sources and ways to improve their 

efficiency.  But, if they are already quite efficient, and there proves to be little in the way 

of “free” cost savings, cuts in state and federal funding could have profound long term 

effects on the economy.  Alternatively, if efficiency improvements are possible, and/or 

technological progress is rapid, then universities might be able to mitigate if not 

substitute for declining state and federal resources.   

This work uses non-parametric efficiency analysis and a unique panel data set on 

scientific research inputs and outputs at 96 U.S. universities from 1981-1998 to answer 

the following key questions:   
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- Are LGUs, other public, and private universities efficient in producing research 

 outputs?  How do they compare? 

- What is the rate of technological progress at different types of universities?  

- What are the factors influencing efficiency and technological progress in 

university production? 

 - What do the efficiency and technological progress estimates suggest for the  

capacity of universities to overcome declining public support for research?  

- How does federal and state funding affect efficiency and rates of technological 

progress? 

 

The analysis specifies the primal production problem of a university using the 

Luenberger (1995) shortage function.  University scientific production outputs are 

measured by trained graduate and undergraduate students (doctorates and bachelor 

degrees), journal articles, and patent counts.  These output measures are more complete 

than most previous analyses of university research production. Inputs to university 

scientific production are measured by numbers of faculty, doctoral students, and post-

doctorates.2  The shortage function approach measures technical efficiency by the number 

of faculty members that can be saved by moving to the current scientific production 

frontier.  Technological progress, as exemplified by movements in the frontier, is 

measured for universities in terms of their change relative to a baseline technological 

frontier.   

                                                 
2 This analysis focuses on variable inputs (faculty, post-docs, etc.).  We make the implicit assumption that 
physical capital use such as lab space is in constant proportion to the variable inputs used as would be the 
case in a Leontief type production function.  To the extent this assumption might be violated, the panel 
nature of the data does partially control for university specific differences in such labor to capital ratios.   
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This analysis is innovative in its use of the Luenberger shortage function which 

heretofore has been used almost entirely for theoretical explorations.  As mentioned 

above, the approach also incorporates patent counts into an analysis of efficiency and 

technical change of university research production.  In addition, the panel data allows not 

only for the creation of university-specific measures of technical efficiency and 

technological progress for each time period, but also for the specification of dynamic 

regression models that help to control for the inherent dynamics involved in university 

research efforts. 

The key empirical steps of the paper are as follows.  First is the non-parametric 

frontier analysis of the 1981-1998 input and output data to generate a panel of university-

specific estimates of technical efficiency and technological progress.  Second is a 

descriptive analysis of these estimates that helps to answer some basic questions on the 

degree of technical efficiency and rate of technological progress at different types of 

universities.  Third is an econometric analysis of the determinants of efficiency and 

technological progress that combines the non-parametric estimates with supplementary 

panel data on university funding sources and other university-specific characteristics. As 

a lead-up to the empirical analysis, the next two sections describe the data and the 

shortage function approach. 

 

 

II. Data 

The panel dataset combines information on research inputs and outputs in the sciences 

and engineering for 98 top US universities, including 38 land grant universities, 26? other 
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public universities, and 34 private universities from 1981-1998.  The panel is complete 

and contains for all 98 universities the following data:  

1) Total patent counts and patent citations from all science and engineering fields 

(U.S. Patent Office; and Hall et al. 2003),  

2) Article counts from all science and engineering fields (ISI Web of Science),  

3) Total number of doctorates and bachelor degrees granted in the sciences as 

well as the number of graduate students, faculty, and post-docs (NSF Webcaspar),  

4) Levels of research funding from federal, state, industrial, and other institutional 

sources for the university (NSF Webcaspar), and, 

5) Information on technology transfer offices (AUTM).   

 

 Further details on the sources of the data and key choices in the construction of 

the dataset can be found in the appendix.  One key aspect of the dataset warrants 

discussion here.  The dataset is limited to scientific inputs and outputs, in part to focus the 

analysis on the parts of the university producing research that generates technological 

change and partially due to the difficulties of measuring output in the humanities.  In 

addition our measures of scientific inputs and outputs relates well to one of the key 

research outputs of interest, patents which are almost entirely produced by the sciences.   

 In order to proceed with the empirical analysis we divide the university 

production process in the following way.  Universities are measured as producing the 

following outputs: journal articles, patents, and trained students; using the following 

inputs: faculty, post-doctoral researchers, and PhD graduate students.  Table 1 provides 

summary statistics across the data set years for the inputs and outputs.  In the case of 
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student training, we measure undergraduate bachelor’s degrees in the sciences and the 

number of continuing graduate students.  In dividing out which graduate students are 

inputs and which are outputs, we make the assumption that a graduate student is being 

trained (output) up until their final year at which point they become an input.3  Thus we 

measure both continuing graduate students (outputs) and PhD’s granted (inputs).   

 

Table 1 Average Science Inputs and Outputs 
 

Year Patents Articles Faculty Undergrads PhD’s Grad stds Postdoc
1984 5.7  1326 471.9 1360 148.8 1482 177.6
1985 5.7  1413 480.1 1388 150.1 1508 185.6
1986 6.4  1465 476.4 1376 152.9 1564 198.2
1987 8.3  1503 474.4 1354 156.3 1574 205.8
1988 10.0  1549 467.8 1321 165.1 1596 216.3
1989 11.1  1617 470.7 1325 171.8 1633 232.2
1990 11.9  1674 474.8 1364 177.0 1681 246.4
1991 12.1  1771 488.2 1374 187.7 1729 257.8
1992 14.5  1892 475.3 1434 192.0 1811 272.5
1993 17.1  1893 494.1 1480 196.6 1839 285.4
1994 21.6  1976 502.9 1510 204.0 1824 302.9
1995 28.3  2082 514.3 1529 206.0 1786 301.1
1996 22.6  2082 531.4 1547 210.0 1753 309.3
1997 24.9  2100 528.9 1537 208.7 1721 320.2
1998 23.5  2132 518.7 1568 209.6 1720 329.9

Average 14.9  1765 491.3 1431 182.4 1681 256.1
 
*Note PhD’s represents completed doctorates while “Grad stds” represents continuing graduate 
students.   
 
 A first look at the data reveals major increases in university scientific research 

production in spite of relatively minor changes in faculty numbers.  Table 1 demonstrates 

                                                 
3 Since graduate students are both inputs and outputs, we need to make some assumption in order to 
identify what is an input and what is an output.  We assume that in their final year when we can measure 
their existence they are an input.  Since there is a one or two year delay between when research is done and 
when a graduate student worked on it, we think that this assumption reasonably closely matches the output 
data we have. 
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this burst in research production during the 1984-98 period by presenting the average 

output and faculty input levels for the universities in the sample for each year.  Patent 

production grew most over this fifteen-year time span with a 312% increase in the 

average annual level of production, followed by articles and doctorates with 60% and 

47% increases, respectively.  Meanwhile, the number of science faculty only grew by 

10% over this time period.  However, postdoctoral numbers grew by close to 86% over 

this same period. The fact that all of these scientific outputs grew much more 

substantively than faculty numbers may suggest the presence of major technological 

progress during this era, but it could also be true that the growing importance of 

postdoctoral inputs explains much of the increased research production.  Little more can 

be said without a more careful analysis of the efficiency and technical progress properties 

of the university production process.  The empirical analysis pursued below builds on a 

non-parametric analysis of the production process, which is described next.   

   

III. Shortage Function Theory 

1. Introduction 

One can think of a university as a single firm producing multiple outputs: patents, journal 

articles, trained students, etc.  The standard method in the literature of analyzing multiple 

outputs from a single production process is to formulate the problem in terms of 

production possibility frontiers and firm expansion paths, vis. movements to higher 

production possibility frontiers (e.g. Baumol, Panzar, and Willig).  Such an analysis of a 

multi-product production process allows one to investigate efficiency of production as 

well as technological progress. 
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 The modeling strategy employed here is to specify the university production 

process using the shortage function suggested by Luenberger (1995), which is similar to 

the directional distance function of Chambers, Chung, and Fare (1996).  The shortage 

function framework allows a description of the primal production problem with multiple 

outputs and avoids a number of the measurement problems associated with the dual, cost 

function, formulation (e.g., Gertler and Waldman, 1992).  

 

2. The Model 

Consider a production process involving the production of y ∈ Rm, a m-vector of 

outputs, using x ∈ Rn, a n-vector of inputs. Using netput notation (where outputs are 

positive and inputs are taken to be negative), let F ⊂ Rn+m represent the production 

possibility set, where (-x, y) ∈ F means that outputs y can be produced from inputs x. 

Throughout, we assume that the set F is closed. Let g ∈ R n
+ , g ≠ 0, be some reference 

input vector. And denote the prices for inputs x by p ∈ R n
+ . Consider the shortage 

function: 

S(x, y, g, F) = minβ {β: (-x - β g, y) ∈ F} if (-x - β g, y) ∈ F for some scalar β,(1) 

= +∞ otherwise. 

The shortage function S(x, y, g, F) in (1) measures how far the point (x, y) is from 

the frontier technology, expressed in units of the reference bundle g. The properties of the 

shortage function S(x, y, g, F) have been investigated by Luenburger. They are 

summarized next. First, (-x, y) ∈ F implies S(x, y, g, F) ≤ 0 (since S(x, y, g, F) > 0 

implies (-x, y) ∉ F). Second, if the set F is convex, the shortage function S(x, y, g, F) is 

convex in (x, y). Third, under free disposal (where (-x, y) ∈ F and (-x’, y’) ≤ (-x, y) 
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implies that (-x’, y’) ∈ F), the production possibility set F can be written as F = {(-x, y): 

S(x, y, g, F) ≤ 0} (Luenberger, p. 20). Then, the boundary of the production technology is 

represented by the implicit equation S(x, y, g, F) = 0.  

 

3. Technical Efficiency 

Under technology F, considering a firm observed to be at point (x, y). The 

shortage function S(x, y, g, F) in (1) provides a general way of assessing technical 

efficiency and productivity. And the choice of the reference bundle g in (1) provides 

some flexibility.  

First, consider the case where g = x. Then, the shortage function becomes S(x, y, 

x, F) = D(x, y, F) - 1, where D(x, y, F) = minβ {β: (β x, y) ∈ F} is the Farrell input 

distance function (Chambers, Chung, and Fare, 1996).  In this context, D(x, y, F) ≤ 1 if 

(x, y) is feasible, D(x, y, F) = 1 if (x, y) is on the upper boundary of the technology, and 

[1 – D(x, y, F)] measures the proportional reduction in all inputs that can be obtained by 

moving to the frontier technology. Much research has used the Farrell input distance 

function D(x, y, F) as a measure of technical efficiency and productivity. A drawback of 

the Farrell distance function is that it cannot deal easily with aggregation across firms. 

The reason is that proportions cannot be meaningfully added across firms.  

Second, the shortage function S(x, y, g, F) measures the quantity of inputs g that 

can be saved by moving to the frontier technology. When the same bundle g is used 

across all firms, this quantity can be meaningfully added across firms. It means that the 

shortage function can deal easily with aggregation issues. This is the main motivation for 

its use below in our analysis of technical efficiency and productivity.  
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We have seen that S(x, y, g, F) ≤ 0 under technological feasibility, and that S(x, y, 

g, F) = 0 implies that point (x, y) is necessarily on the frontier of the production 

technology F. It means that S(x, y, g, F) < 0 necessarily implies that point (x, y) is below 

the production frontier. In this case, outputs y could be produced by using inputs [x + 

S(x, y, g, F) g], i.e. with a cost reduction of [-S(x, y, g, F) p ⋅ g] (where p denote the price 

vector for inputs x).  

This suggests the following measure of technical efficiency  

E(x, y, g, F) = -S(x, y, g). 

E(x, y, g, F) has a simple and intuitive interpretation. First, technical feasibility of 

point (x, y) implies that E(x, y, g, F) ≥ 0. Second, finding that E(x, y, g, F) = 0 means that 

point (x, y) is on the frontier of the production technology F. Third, finding E(x, y, g, F) 

> 0 implies the firm is technically inefficient at (x, y), i.e. that point (x, y) is below the 

frontier of technology F. In this case, E(x, y, g, F) is the number of units of the input 

bundle g that the firm can save by becoming technically efficient. As noted above, for a 

given reference bundle g, this measure can be meaningfully summed across firms and/or 

across time periods. This additivity property makes E(x, y, g, F) a convenient measure in 

the investigation of technical efficiency for a group of firms or for an aggregate industry.   

 

4. Productivity-Technological Progress 

Consider a change in technology from F to F’. Under technological progress, F ⊂ 

F’ as the feasible set expands. Since the shortage function involves a minimization 

problem, this implies that S(x, y, g, F’) ≤ S(x, y, g, F). Noting that the cost of producing 

outputs y under technology F is [p ⋅ [x + S(x, y, F) g]], it follows that the change in 
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production cost from technology F to F’ is [p ⋅ [S(x, y, F) - S(x, y, F’)] g]. Thus, if 

positive, [p ⋅ [S(x, y, F) - S(x, y, F’)] g] measures the benefit (in terms of reduction in 

production cost) of technological progress from F to F’. Evaluated at point (x, y), this 

suggests the following measure of technological progress  

A(x, y, F, F’) = S(x, y, F) - S(x, y, F’).  

A(x, y, F, F’) has a simple and intuitive interpretation. First, A(x, y, F, F’) = 0 in 

the absence of technological progress. Second, evaluated at point (x, y), finding A(x, y, F, 

F’) > 0 implies technological progress from F to F’. In this case, A(x, y, F, F’) is the 

number of units of the input bundle g that can be saved by switching from technology F 

to F’. As noted above, for a given reference bundle g, this measure can be meaningfully 

summed across firms and/or across time periods. This additivity property makes A(x, y, 

F, F’) a convenient measure in the investigation of technological change for a group of 

firms or for an aggregate industry.   

 

5. Nonparametric Implementation 

Estimating the Shortage Function  

 The shortage function is estimated with non-parametric programming methods 

that use input and output data to identify the frontier production technology and the 

distance that individual universities are from that frontier.  University outputs are 

measured as research articles, patents, and doctoral students in labs, and bachelor 

degrees, while the inputs are measured as post-docs, doctorates in their final year of 

study, and faculty.  Faculty numbers are used as the numeraire good, g, to provide a 

logical measure for the distance from the frontier: the number of faculty that could be 
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saved if the university were fully efficient.  A key strength of this approach, as opposed 

to a cost function approach, is that the major inputs and outputs of a university can be 

measured accurately.   

The estimation of the non-parametric frontier, to be done using GAMS, finds the 

outer envelope of the production frontier and produces measures of the distance to that 

frontier.  Estimation proceeds as follows. Consider a set of T observations on S 

universities. For the s-th university at time t, we observe the inputs-outputs ( t
sx , t

sy ), s = 

1, …, S and t = 1, …, T. Assuming non-regressive technical change and variable returns 

to scale, a nonparametric representation of the technology at time τ is4 

Fτ
v = {(-x, y): ∑ S

1s=  ∑ τ
1t=  λ t

s  x t
s  ≤ x, ∑ S

1s=  ∑ τ
1t= λ

t
s  y t

s  ≥ y, ∑ S
1s=  ∑ τ

1t=  λ t
s  = 1, t

sλ ≥ 0,  

s = 1, …, S, and t = 1, …, T}. (2) 

Then, a nonparametric estimate of the shortage function is: 

Sv(x, y, g, Fτ) = minβ,λ {β: ∑ S
1s=  ∑ τ

1t=  λ t
s  x t

s  ≤ x + β g, ∑ S
1s=  ∑ τ

1t= λ
t
s  y t

s  ≥ y,  

∑ S
1s=  ∑ τ

1t=  λ t
s  = 1, t

sλ ≥ 0, s = 1, …, S, and t = 1, …, T}.  (3) 

This is a straight forward linear programming problem in which the location of 

the frontier is estimated across all universities up to time τ. This allows measurements of 

technological progress (movements of the frontier overtime) and efficiency changes 

(university movements toward the frontier at a given time τ).   

 

 Estimating the Determinants of Efficiency and Technical Progress  

                                                 
4 Comparisons between variable returns to scale and constant returns to scale can also be performed to 
investigate scale efficiency.   
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 The shortage function programs produce two measures of the production process 

at individual universities: 1) efficiency, E(x,y,g,Fτ); and 2) university specific 

technological progress measured by, A(x,y,g,Fτ,Fτ’).  These measures are estimated for 

each university for each year in the data set, generating a panel that can be used to 

examine the levels, rates, and determinants of efficiency and technological progress.   

 In order to examine the determinants of these outcome measures (i.e., efficiency 

and technological progress), we specify a panel data econometric equation that describes 

them as a function of university characteristics and time specific measures.   The 

estimation procedure will be complicated by censoring in both of the dependent 

variables.  In the case of efficiency fully efficient universities will have E(x,y,g,Fτ)=0. In 

the case of technological change, in any given year a number of universities will not 

show any technological change from the baseline point, implying that A(x,y,g,Fτ,Fτ’) =0.  

Such a censoring of the dependent variable suggests that a random effects Tobit model is 

appropriate.  Rewriting all the right hand side variables as zit the equation to be estimated 

becomes: 

πit = max( 0, zitδ + νi + uit ),    

where uit is, conditional on πit, νi and zi , distributed N(0, σu
2

 ).  The above equation can be 

estimated using a likelihood function given in Wooldridge (2002).  The procedure is run 

in STATA, which uses the Gauss-Hermite quadrature procedure to approximate the 

double integral. 

 The university characteristics hypothesized to influence these outcomes will 

include: total number of science faculty, percent of funding from federal and industry 

sources, whether they have an office of technology transfer, whether they have a medical 
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school.  In order to capture interaction effects we also include the cross-product term 

between percent federal and percent industry funding. The technology transfer office 

variable is measured with two dummy variables one designating whether the university 

had a technology transfer office before the Bayh-Dole act in 1980 (tto_1980) and the 

other for whether they had a technology transfer office with more than 0.5 of an FTE 

working there.  In addition we include dummy variables for public universities and for 

land grant universities.  We also include a time trend variable along with its square to 

capture secular time trends.    

 

IV. Empirical Results 

A. Descriptive statistics from the shortage function output. 

Technical efficiency of U.S. Universities 

 One way of examining the technical efficiency of U.S. universities is to identify 

which ones tend most often to be at the frontier of the scientific research production 

process.  In general Land Grant universities are more likely to be at the frontier than non-

LGUs, with 36% of all the LGU observations at the frontier compared to 25% of the 

other universities.  Among the 38 LGUs, there are four (Texas A&M, UC-Berkeley, U. of 

Minnesota, and U. of Wisconsin)  which are estimated to be at the frontier in every time 

period, and five that are at the frontier in all but one time period.  However, two these 

latter LGUs (U. of Alaska and U. of New Hampshire) help to define the frontier of the 

technology at very low levels of science research output, while the others (Penn State, U. 

of Florida, and U. of Illinois) are at higher levels.    
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 A second way of examining the technical efficiency is shown in Figure 1 which 

shows the average distance from the frontier across different university types.  In the 

1980’s Land Grant universities were significantly more efficient than either private or 

non-Land Grant public universities.  This situation changed in the late 1980’s with the 

rise in average efficiency of private universities, although by the end of the 1990’s the 

average efficiency level of all university types had converged to similar values.   

 

Figure 1: Average Efficiency Across University Types 
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Describing Technological Change 

 In order to describe technological change we measure the resources that could be 

saved in subsequent years producing our baseline year’s (1984) outputs over the actual 
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inputs used.  We fix the inputs used and the outputs produced at our baseline year (1984) 

level, then measure how many fewer resources would be needed in a subsequent year to 

produce those outputs.  Since we have designated science faculty as our numeraire good, 

all measurements are made in the number of faculty members that could be saved. 

 We measure technological change over two periods: from 1984 to 1989 and from 

1990 to 1998.  These time periods allow us to focus on the differences between 

universities rather than the time series aspect of the data.  Table 2 shows technological 

change across the two time periods with universities divided by type: Land Grant, Public 

non-LGU, and Private.  Overall technological change was much faster in the 1980s and 

especially so at public universities, both Land Grants and non-LGUs.  By the 1990s both 

types of public universities had levels of technological change that were just about half of 

what they had been in the previous decade. 

 
Table 2: Technology Change by University Type (1980s vs. 1990s) 
 
  LGU Private Non-LGU Public MEAN
1980s 76.6  57.2 62.3 65.9 
1990s 34.5  48.7 36.5 40.0 

 
 Table 3 shows the top 5 universities in each time period.  Especially noteworthy is 

that in the 1980s, 4 of the top 5 were public of which 3 were Land Grant universities.  

However, by the 1990’s only one of the top 5 was a Land Grant university and only one 

other was a non-LGU public university.   

 Figure 2 shows a histogram and kernel density distribution for the two time 

periods showing the dispersion of technological change across universities.  One of the 

key differences is the much higher portion of universities in the 1990s that saw no 

technological change during that period.   
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Table 3: Technological Change: The Top 5 Universities 
 
1980s     

University Land 
Grant Public Private Technology Change 

U. of Illinois  1 1 0 228.6  
U. of Washington  0 1 0 271.0  

Virginia Tech 1 1 0 282.7  
MIT 0 0 1 315.8  

U. of Florida  1 1 0 503.5  
    

1990s     

University
Land 
Grant Public Private Technology Change 

Harvard 0 0 1 176.3  
U. of Washington  0 1 0 185.0  

Cornell 1 1 0 188.5  
Stanford 0 0 1 257.3  

MIT 0 0 1 263.3  
 
Figure 2: Technological Change Dispersion in the 1980s and 1990s 
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B. Determinants of Efficiency and Technological Progress 

 In order to understand the determinants of efficiency and technological progress 

we specify them as functions of some key variables hypothesized to make a difference to 

efficiency and technological progress.  A panel data Tobit model is estimated using the 

measure of distance from the frontier, E(x, y, g, F), normalized on a per faculty member 

basis as the dependent variable.  The second regression estimates a Tobit model using the 

measure of technological progress, A(x, y, F, F’), as a dependent variable.  In this case 

since there are only two periods, 1984-1989 and 1990-1998, we estimate a pooled 

regression model.  We use the same basic set of explanatory variables in both regressions.  

The variables and their hypothesized effects are described below and their descriptive 

statistics are shown in Table 4. 

 First among the independent variables describing efficiency and technological 

progress are the sources of research funding and the pressures for certain types of work 

that come with that funding.  We measure some of these differences using dummy 

variables for public versus private universities and for Land Grant universities versus 

non-Land Grants.  We hypothesize that the additional outreach missions of public 

universities, especially Land Grant universities, would make them less efficient and result 

in slower technological progress than the default value of private universities. 

 A large literature on university research production has also shown the 

importance of federal funding to the research process (see e.g., Alston and Pardey) and at 

the same time worried about the influence of industry funding (see e.g., ???).  The 

literature suggests and we hypothesize that higher percentages of federal funds in the 
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university budget will increase both efficiency and technological progress.  At the same 

time the literature worries and we hypothesize that a higher percent of industry funding 

will divert resources away from the typical university outputs we measure and lead to 

lower levels of efficiency.  We also include a cross product term for these funding 

percentages to capture any interaction effect between them.   

 In order to capture any scale effects we also include a measure of the number of 

science faculty at the university.  We hypothesize that, having controlled for other effects, 

larger universities will be less efficient and have lower rates of technological change. 

 Since the existence and experience of a technology transfer office will influence 

the production of one of our measured outputs, patents, we also include two variables to 

measure the level of technology transfer infrastructure at the universities.  We use two 

dummy variables; the first measures whether or not they have more than 0.5 of an FTE 

working in their technology transfer office, the second measures whether the university 

had a technology transfer office before 1980, which is the date of the Bayh-Dole act that 

changed technology transfer.  It is hypothesized that having a technology transfer office 

will increase efficiency.  A technology transfer office’s existence as an initial condition is 

thought to reduce technological progress since most universities that did not have one 

would have added one in the sample period and therefore gotten a technological boost.  

We hypothesize similar effects for having a technology transfer office before 1980 which 

we see as a proxy for the experience or quality of the technology transfer office. 

 We also include two variables to control for what we think are important 

differences between universities.  One measures whether the university has a medical 
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school (0 – 1) and the other measures the number of post-doctoral researchers per faculty.  

We expect universities with more post-docs per faculty to have higher efficiency levels. 

 

Table 4  Descriptive Statistics 

Variable  Mean Std. Dev. Min Max 
Pct. Federal Funds 0.610 0.15 0.24 0.96  
Pct. Industry Fund 0.066 0.05 0.00 0.29  
Pct. Fed X Pct. Ind 0.039 0.03 0.00 0.16  

Public University 0.646 0.48 0.00 1.00  
Land Grant U. 0.365 0.48 0.00 1.00  

Science Faculty 501.432 249.38 98.50 2162.21  
Tech Transfer Y/N 0.751 0.43 0.00 1.00  

Tech Transfer 1980 0.292 0.45 0.00 1.00  
Medical School Y/N 0.645 0.48 0.00 1.00  

Postdoc / faculty 0.522 0.58 0.00 5.30  
E(x, y, g, F) per faculty 0.369 0.30 0.00 0.91  

 
 
 The estimation results from the panel data tobit on efficiency are reported in 

Table 5.  As a reminder, efficiency, E(x, y, g, F), is measured as the distance from the 

frontier, so that a negative coefficient estimate indicates a variable that helps to increase 

efficiency, while a positive estimate reflects the opposite.  For example, then, the 

descriptive finding above that efficiency fell in the 1990s relative to the 1980s is reflected 

in the positive and significant coefficient estimate on the time trend variable.   

 All but one of the estimates on the explanatory variables is statistically significant.  

Only the coefficient estimate on the percent of funds coming from federal sources is 

insignificant.  We highlight the following results from Table 5: 

• Land Grant Universities are more efficient than other public and private 

universities in terms of science research production.   
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• Other public universities are less efficient than private universities in terms of 

science research production.   

• More science faculty and more post-docs per faculty member are associated 

with increased efficiency.  Both of these results suggest the presence of 

agglomeration, with higher efficiency resulting from more faculty and more 

post-docs per faculty member.  This latter result is consistent with work by 

Buccola and Xia. 

• Contrary to the main hypotheses in the literature, a higher percent of research 

funds coming from industry sources is significantly associated with more 

efficient science research production relative to other sources of funding, 

while a higher percent of research funds from federal sources is not 

significantly associated with higher efficiency.  Perhaps most striking is the 

negative and significant impact on efficiency of universities that are more 

highly dependent on both federal and industry funding. 

• Universities that have had a technological transfer office since 1980 are more 

efficient than those that added tech transfer offices later.  Surprisingly, the 

presence of a technological transfer office appears to have a negative impact 

on the efficiency of scientific research production. 
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Table 5 Efficiency Regressions: Panel Data Tobit    
Dep. Var. = E(x, y, g, F) per faculty 
 
Variables coeff. std. err. Z 
Constant 0.445 0.057 7.740 
Time 0.010 0.005 1.980 
Time^2 -0. 00005 0. 0003 -0.160 
Pct. Federal Funds -0.069 0.077 -0.900 
Pct. Industry Fund -1.092 0.550 -1.980 
Pct. Fed X Pct. Ind 2.947 0.902 3.270 
Public University 0.040 0.023 1.740 
Land Grant U. -0.128 0.018 -6.960 
Science Faculty  -0.00023  0.00003  -8.140 
Tech Transfer Y/N  0.068 0.016 4.190 
Tech Transfer 1980 -0.158 0.025 -6.440 
Medical School 
Y/N  0.038 0.013 2.820 

Postdoc / faculty -0.094 0.015 -6.140 
    
sigma_u  0.268 0.006 41.380 
sigma_e 0.157 0.004 42.000 
rho 0.743 0.011 

 
Wald chi2(12)      =    460.94 
Log likelihood  =  97.998943           Prob > chi2          =    0.0000 
Observation summary:       941     uncensored observations 
                                           405     left-censored observations 
                                               0     right-censored observations 
 
 The determinants of technological progress are reported in Table 6.  A Tobit 

model is estimated which analyzes technological change in the 1990 across universities 

as a function of the independent variables described above using their 1990 values.  We 

chose to focus on the 1990’s in order to be able to capture persistence effects.5  We add 

                                                 
5 We ran the technological change Tobit using the technological change data from both 1980 and 1990 and 
found only two significant parameters to describe the rate of technological change.  The dummy variable 
for the 1990’s was negative and significant demonstrating lower technological change in the 1990s and the 
parameter for the number of science faculty was positive and significant suggesting that larger universities 
have higher rates of technological change.  Results are available from the authors. 
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two additional variables: the lagged technological change from the 1980s and the 

measure of university efficiency E(x, y, g, F).  The first of these measures persistence in 

technological change while the second measures the relationship between technological 

change and efficiency as a way to measure whether “inefficient” universities can catch up 

through faster technological change.   

 The regression results show significant persistence in technological change 

between periods with universities that experienced high technological change in the 

1980s also experiencing it in the 1990s.  In addition universities that were more efficient, 

closer to the frontier, in 1990 tend to experience greater technological change in the 

decade.  Taken together these results suggest a great deal of persistence and little 

opportunity for less efficient universities to catch up with their more efficient and 

technologically advanced counterparts. 

 The regressions also show that larger universities (as measured by the number of 

faculty) have higher technological growth rates than smaller ones.  The coefficient on the 

public university dummy variable is negative and significant at a 10% level suggesting 

that they had lower rates of technological change, although no significant effect is 

observed in either direction for Land Grant universities.   Universities with long 

established technology transfer offices had higher rates of technological growth.  In 

addition, just as having more post-docs per faculty raised efficiency, it also had the effect 

of increasing technological change.  
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Table 6  Technological Change in the 1990s, Tobit Regression 
 
Variable coeff. std. err. t-value
Constant -27.72 0.07 -0.63 
tech_change_lag    0.29 0.03 4.25 
E(x, y, g, F)      -0.07 58.81 -2.13 
Pct. Federal Funds 34.19 430.29 0.58 
Pct. Industry Fund -139.96 697.54 -0.33 
Pct. Fed X Pct. Ind 187.72 13.64 0.27 
Public University  -24.12 13.33 -1.77 
Land Grant U.      -7.47 0.02 -0.56 
Science Faculty    0.11 12.55 4.45 
Tech Transfer Y/N  -3.74 12.29 -0.30 
Tech Transfer 1980 27.76 10.47 2.26 
Medical School Y/N -11.29 7.80 -1.08 
Postdoc / faculty  15.07 43.84 1.93 

 
Obs. summary:          12     left-censored observations at techch~e<=0 
                         78     uncensored observations 
LR chi2(12)     =      75.51 
Prob > chi2     =     0.0000 
Log likelihood = -413.44735 
 
 
Conclusions 

This work has estimated a production frontier for the university research process 

for science articles, patents, and students and then estimated the determinants of 

efficiency and technological change using a panel of 98 universities over 15 years.  The 

shortage function methodology allows a calibration of the primal production problem in a 

multi-output world.  Estimates of efficiency and technological change were then 

regressed on some potential determinants to demonstrate what contributes to differences 

between universities. 

The results show that LGUs across the size spectrum operate more efficiently than 

the overall sample of universities even when one controls for other effects.  Among the 
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large LGUs efficient in all the study years are U. of Wisconsin and U. of California-

Berkeley, while the U. of Alaska appears to be one of the efficient small universities.  

Given that LGUs are already relatively more efficient, one has to wonder whether the 

current round of budget cuts at LGUs will have a negative effect.  While in the 1980s 

LGUs also had higher levels of technological change than other universities, in the 1990s 

the fell back to the same level as other universities potentially due to budget cuts in the 

early 1990s.   

This analysis demonstrates the success of the Land Grant system in being an 

efficient and cutting edge institution for generating research and development.  The 

results, however, also suggest that state budget cuts in the 1990s and potentially those 

happening currently at LGUs may have a significantly negative effect on the research 

outputs (journal articles, trained students, and patents) of US Land Grant universities.  

The combination of already efficient production, but declining rates of technological 

change at LGUs does not bode well for a future with significant budget cuts. 

This line of investigation can be extended in several ways. First, our analysis can 

produce more conclusive implications if quality-adjusted data are used in the estimation. 

It has been documented elsewhere that in the investigation of university production, both 

outputs and inputs can be adjusted using appropriate quality adjustment factors. Second, 

by measuring additional mission of the Land Grant system, i.e., extension of technology 

and research, a future study can increase the quality of analysis on the dynamics of 

efficiency and technical change in Land Grant universities compared to private and non-

Land Grant pubic universities.  
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