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SELECTING FUNCTIONAL FORMS FOR COST FUNCTIONS: BACKGROUND*

Introduction

'[Eﬂe goal in input demand analysis is to generate a system of equations

relating factor shares and possibly total expenditures to input prices and

- output. Regression can then be used to produce estimates of elasticities or

- test hypotheses of interest. Generally, consideration is 11m1ted to systems

derlved from either production functions or the dual cost or proflt functions,
and the problem of specifying the functional form is that of approx1mat1ng
these unknown functions.

This paper considers the choice of functional form for cost functions.
Advantages over the production function approach are well known, and it is
anticipated that particular functional forms would perform the same for
production or profit functions, should other considerations lead to their
use. Comparison of functional forms is, therefore, limited to cost functions
for U. S. agricultural production.:] |

It is assumed that the relevant data for four input categories are
correctly measured. The problems of upward-sloping factor supplies,
endogenous output, and bias due to the aggregation of inputs are sét aside.
The remaining problem is then to select a functional form to approximate the
unknown cost function; Shephard's Lemma then can be used to provide
expressions for factor shares by differentiation and a seemingly unrelated
regressions framework for estimation (Zellner). |

The focus will be on flexible functional forms and on attempts to
generalize commonly used functional forms. Specifically, the generalized
Box-Cox (Berndt and Khaled) and logarithmic Fourier flexible form (Gallant,

1982) are used in the estimation of a demand system for four agricultural
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inputs: capital, intermediate inputs, labor, and land. The'paper proceeds as
follows: First, the flexible functional forms are reviewed, focusing on the
two alternative definitions of flexibility; experience to date with these
flexible forms is then summarized; the application is presented; and, finally,

the paper concludes with some observations and suggestions for further study.

. Flexible Functional Forms

From the neoclassical production function and the assumption of cost

minimization, factor demands are based on the necessary conditions for
optimization. These are readily obtained for simple production functions such
as the Cobb-Douglas; however, factor demands are difficult to determine when
the production technology is complex. It is preferable, therefore, to attack
the problem of obtaining an expenditure system for factors of'productioh in a
manner which preserves the complexity of the structure of input decisions yet
simplifies the derivation. The use of duality théory and cost or profit
functions has provided this alternative.

In the context of production studies, duality refers to the result that
optimal input levels implied by a production function and necessary conditions
are equivalently obtained by the minimization of a (dual) total cost

function. According to Shepard's Lemma, these optimal input levels are
obtained by differentiation of the cost function with respect to the input
prices. This produces a set of factor demands with all of the propertiés of
the technology underlying the cost function. Use of the dual cost function
approach thus avoids the complexity of the primal problem; yet, it does not
involve the sacrifice of consistency with the production technology inherent
in ad hoc specifications of demand sysfems.

The ‘theory of the firm is sufficient to indicate the relevant explanatory

variables (prices of inputs and the level of output); the remaining problem is




-3-

to choose a functional form; Varian, Diewert (1974),'and McFadden illustrate
that the cost function contains all of the information about the production
. technology present in the conventioﬁal production function. Furthermore;
every cost function implies a well-behaved production technology; the logical
approach in demand analysis is then to proceed directly to the cost function
without prior regard to a functional form for the production technology.
,: 'B¢cause of the ease in generating the expenditure system, the cost function is
a aesirable starting point; one hopes to avoid restricting the types of
‘technologies bracketed by the factor demands through generality in
specification.

Generality has involved a pérticular attribute, flexibility, or the
ability to approximate any unknown cost function. .Specifically, flexibility

is based in approximation theory, most often with a Taylor series

interpretation. The idea in that case wpuld be to provide the first- and
'second-order partial derivatives of an unknown function at some point. Let us
designate this property "local flexibility," following Barnett (1983), and
introduce the locally flexible functional forms for cost functions. We then'
examine the argument proviaed by Diewert (1974) for the‘flexibility of the
generalized Leontief cost function. Finally, this section of the paper
concludes with some criticisms of the empirical usefulness of locally flexible

functional forms and the alternative approach by Gallant (1981, 1982).

The Translog

Christensen, Jorgensen, and Lau propose the translog aé an approximation to
unknown cost or productién functions. Expressed as a second-order polynomial
in logarithms of input prices and output, it is a generalization of the

Cobb-Douglas (which is linear in logarithms). While it is not "self-dual" as
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is the Cobb-Douglas, the translog cost function which satisfies certain

regularity conditions (Diewert, 1974) does correspond to a well-behaved

production technology.

As is the case with all of the flexible functional forms, the advantage of
the translog is that arbitrary configurations for the matrix of elasticities
of substitution are possible. The translog generalizes the Cobb—Douglas'case

of elasticities of substitution equal to one by adding the second-order terms

so that -
_ Yis
- J TR R
Uij—l'f'sz—-sJ—. 1 =]
and
Yii 1
G.o=1+_"—-——_,
o ii . S?' ~Si .

where Yij is the coefficient of 1/2 1n P, In Pj and Si is the fitted
share of input i. Clearly, the translog allows variation in these
elasticities across input pairs or prices; and, unlike the Cobb-Douglas or
constant elasticity of substitution (CES), it permits complementarities.

The ‘translog is expressed as

1n C . 3 p.+1 31 % InP.InP.+81nY
nC=a5+ I o, 1InP. + I I v::InP.1nP.+ n
R U i°72.5 jop 1 i j
0% 2 n n
+ (-Zg(lnY) + 2 8. InP. InY+ 1t +t X 7. 1n P.
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é - i=l i=1

vhere 1n C is the log of total costs, 1n P, is the log of the ith input

. . . . 1
price, In Y is the log of output, t is time, and n is the number of inputs.
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In order for the translog to satisfy linear homogeneity in input prices,

the following restrictions are imposed on the estimated parémeters:

n
T a. =1
i=1 1 ’
n
I v.:=0,
=1 *
n
I 6.=0
and _ i=1 ! ’
n
I T1.=0.
=1 ?

Symmetry in the matrix of elasticities of substitution is generally imposed as

... well, involving the additional restrictions_
Yij = 'in:

for each (i, j) combination.

Factor shares are obtained by differentiating with respect to each logged

input price so that

n
S: =a. + I vy..1n Pj + Gi InY + ;b i=1, ..., n.

i 150 1)

) The appearance of output introduces nonhomotheticity; restricting each 83
to equal zero produces the linear expansion path of the homothetic case.
Further restricting 6 to equal zero produces a technology which is
homogeneous of degree (1/8). Setting B equal to one would then yield

constant returns to scale.
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The terms involving timé ére meaﬁt to capturé the presenée of technical
change. If there is a sufficient number of observations, variation in
. expenditures and factor shares can be explained not only by relative prices
and scale effects but by technical change (Lopez, Berndt and Khaled)--this is
assumed- to occur throdgh reiating the dependenf variables to time. The term
T indicates technical change bias; as T4 is greater than (equals or

is less than) zero, technical change is said to be factor i-using (i-neutral,

i-saving). Hicks-neutral technical change (at rate 1) occurred if each

T equals zero.

Binswanger (1974a, 1974b) applied thé translog cost function in his study
of technical change although he included time effects only in the absence of
scale effects. Other examples in agricultural economics include Ray, who

__considered two_outputs (crops and livestock);. Brown and Christensen, who

compare short-run and long-run subst1tut1on possibilities by 1ntroduc1ng fixed
- factors; and Ball and Chambers, who examine the structure of the

meat-processing sector in the United States.

The. Generalized Box-Cox

Of the class of second-order polynomial flexible functional forms,’the
generalized Box-Cox is the most general to date. It includes the generalized
Léontief and generélized square-root quadratic forms as special cases, and the
translog appears-as a limiting case. In various forms it has been applied by
Denny, Kiefer, and Berndt and Khaled. The presentation.here is taken from
Berndt and Khaled.

The expression for total costs is

C= 1+ GRI/A LR
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the vector of input prices,
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With the restriction that the cost function is linearly homogeneous in input

~prices, the following restrictions are introduced:

The cost function then reduces to

1/x
[ {2y § % pA/2 P\ \/2’3 y(Y,P)
_.‘ %A‘f i=1 j= 1 13 }1 °

The term B(Y, P) involves interactions between prices and ouﬁput, therefore
producing a nonhomothetic technology. Homotheticity requiresthat'eaﬁ:h_éi
be zero as in the translog case, and homogeneity of degree (1/5) again
follows when 6 equals zero.

To introduce technical change into the genéralized_Box-Cox cost function,

Berndt and Khaled multiply by the term
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The analogy to the translqg‘specification is evident; T; Trepresents
technical change bias and so on.
Special cases of the generalized Box-Cox are obtained by fixing the
Box-Cox parameter A. When A equals one, the Berndt and Khaled
specification reduces to the generalized Leontief. The generalized
' square-root quadratic is obtained by setting A equal to two. Finally, the
translog ié a limiting case as A approaches zero.
Expressions for factor shares in the generalized Box-Cox cost function are

produced by differentiation according to Shephard's Lemma. The share of

factor i is given by

b1 13T
n n )
2 /2%
JRONE (¥ P?/ P§/
11=1 J= .

-

Pg/zg.g Y - PK/{K

i InY + T t.

Substitution elasticities given by Berndt and Khaled (page 1225) can be

obtained by differentiating once more and rescaling:

S.
i




elasticities of substitution.

and
PX b ' -
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where
E - C
YB(Y,P) er(t,P)
and

: Fi(Y’ t) = §; InY + 1y t.

Setting A equal to zero, these reduce to the translog expressions for

The generalized Box-Cox has not been applied in agricultural production
studies except for an earlier version of the present study reported in

Chalfant. The special case of the generalized Leontief has been used by Lopéz

“in a study of technical change in Canadian agriculture. Chambers and Vasavada

also applied the generalized Leontief to test for asset fixity in U. S.

agriculture.

Local Flexibility

Most applications of flexible functional forms have involved either the

translog or generalized Leontief. Since each permits unrestricted estimation

of elasticities, it is evident that some other criterion is required to select
a functional form for empirical applications. Several studies have considered

this question using a variety of techniques.
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Caves and Christensen use numerical analysis to examine the cases in which

each‘of these two flexible forms can be expected to satisfy the theoretical
restrictions from consumer behavior. Prior expectations about likely vélues
for elasticities then can be used to suggest which form might be most
successful in satisfyiﬁg the theoretical restrictions. Taking demand theory
as a maintained hyppthesis permits the choice of functional form to be based
“on the ability of each to satisfy the implied restrictions.

Bayesian techniques were used by Berndt, Darrough, and Diewert in their
study of Canadian expenditure data This involved the comparison of
11ke11hoods for the translog,. generalized Leontief, and generallzed
Cobb-Douglas. They concluded that the translog performed best of the forms
considered. |

-i~F1naI1y-Monte~€ario—experrments~of-the sort presented by Wales; Guilkey -
and Lovell' and Gu11key, Lovell, and S1ck1es can be used. These have produced
mixed results. Wales flnds that both the translog,and generalized Leontief
successfully approximate a two-good CES expenditure system. The papers by
Guilkey and Lovell and Guilkey, Lovell, and Sickles consider approximation of
a more general functional form with results less favorable. Guilkéy, Lovell,
and Sickles suggeét that the translog may be the best of a bad lot.

The generalized Box-Cox is of particular interest in that it allows the
choice among functional forms to be made by statistical inference. Subject to
the ‘validity of the generalized Bcx-Cox specification as é maintained
hypothesis, tests for the more common flexible forms are constructed as tests
for specific values for X. This would seem to solve thg problem of model

selection since each commonly used form is nested in the generalized Box-Cox.
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If, in fact, the unknown model is of the generalized Box-Cox form, then

inferences concerning the parameter are valid; and any of the tests from

- nonlinear regression can be used. All of the flexible functional forms,

including the generalized Box-Cox, can be thought of as possible functional

forms for cost functions rather than approximations. However, there is reason

- to suspect the validity of such inferences when flexible functional forms are

taken to be only approximations (the more common case). In recent papers

White (1980, 1981) has questioned the practice of treating regression

~ coefficients as local approximations of arbitrary functions.,2 This has led

to an alternative approach to approximation, suggested by Gallant (1981,
1982). To introduce these results, it is worth reviewing Diewert's (1974)

discussion of the properties of local approximations.

~4;;:-The.essénce_of_the_cost_ﬁunction~approach:has-already been pointed out.

Any function of input priceé which meets certain regularity conditions
(Diewert, 1974) corresponds to some well-behaved production technology and
contains all of the information about returns-to-scale and substitution
possibilities. A twice-differentiable function for total costs is then
suggested to approximaté the true cost function; Diewert suggests a criterion
for the approximation—-second—order’local approximation.

Diewert's definition of a second-order local approximation g to the true

function g* is that, at some price vector P*,

g(P*) = g*(P*),
M2 g(MXy | 2 g*(P) ¥,
LOF: dlpe 00 a1
and 2 2
3~ g(pP) _ 3% gx(P)
P, 0P|, 9P, aPp.
i jip* 1 p*

J
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for each (i,>j) combination. Barnett (1983) has established that this is
equivalent to the definition used in mathematics.3
It is instructive to consider the theorem and-probf provided by Diewert
(1974) to establish the flexibility of the generalized Leontief (unit) cost
function.4‘ The theorem (Diewert, 1974, page 115) may be stated as follows:
Given an arbitrary unit cost function C* which satisfies the conditions of

a well behaved technology and in addition is twice continuously differentiable

at P> > 0 n? where

C* = a,C*(p*)

) Pi
for all i and
C* - 82 C*(p=)
i e ij P Pifa.ijmq,

for all i, j, then there exists a generalized Leontief unit cost function C(P)

defined by

n
CP)= £ I b, 1/2 Pl/2
i=1 j=1 1J

which provides a second-order approximation to C* at the point

x X % *
P" = (P}, Pp, +.rs PL).

By exploiting Euler's theorem, it can be shown (Diewert, page 159) that
unit costs C#(P*) plus the derivatives CJ (for 1 <i<'j<n)and

Cli (for 1 =1, 2, ..., n) are completely determined by the n first-order

*
partial derivatives Ci and the n(n - 1)/2 second-order partial
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s . * . . . s
derivatives Cij’ for 1 < i < j < n. Differentiating the

approximating generalized-Leontief form and equating the results produces _

R 3 %1/2
n FP. %
z bij t-—% o= C: i=1,2, ..., n
j=1 AP s
\. 1;{
- and
-1/2
1 * % Lk L
2Py Py) =Gy lsi<ism,

a system of n plus n(n - 1)/2 equatipns in as many unknowns. The bij's

(i 4 j) are determined by the latter set; these, in turn, impiy the b,.'s
through the first n equations. As Diewert concludes, "at the point
P#©>0 ., C(P*)=C#(P*) and the first and secon. order partial derivatives of
C and C* will coincide." .

Local flexibility is, therefore, established by verifying that, for any
price vector P* and arbitrary cost function C*, the system of equations
described.by Diewert can be solved. For the system of equations to be
satisfied for any C*, it should be poésible to solve these equations when each
is independent. This allows approximation of cost functions with any
configuration of second derivatives and translates into a statement about the
number of parameters required in the approximating function. That is, local
flexibility is satisfied if the approximating function has enough parameters
to permit all possible values of second derivatives--enough parameters td make
each equation (derivative) independent. - |

VPerhaps this is best iliustrafed by example--the Cobb-Douglas is not
locally flexible as the elasticity of substitution must be one; second

derivatives are implied by the first derivatives. The translog generalization



-14-

of the Cobb-Douglas achieves local flexibiiity by the additién of the
second-order terms--any values for substitution elasticities can be obtained
in the translog form.

It is important to note that, while the translog features additional
parameters by extending the Cobb-Douglas to the second-order and that this
produces the second-order Taylor series interpretation, Diewert's definition
of flexibility does not require a quadratic form or a Taylor
approximation--only a twice-differentiabie expression. Also, Diewert's proof
does not require that there be the same number of parameters in the
approximating form C(P) as derivatives of interest in the '"true'" form C*(P).

That is, while the second derivatives turn out to be

-1/2
1 oo
7 b;5(P; Py)

Yij

for the generalized Leontief and translog, respectively, it does not change

Diewert's result if they are of a more general form such as

1 % %.-1/2
7 b;5(P; P3) 777 + o

A second-order local approximation can still be obtained.
One never actually solves the system of equations, so these expressions
would simply permit more generality in the specificatioh. The statistical

formulation must be such that a unique set of parameters for the flexible
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functional form is produced in estimation. If so, then we can conclude that

any expression with enough parameters to allow independent estimation of each

- element in the matrix of second-order partial derivatives qualifies as a

(locally) flexible functional form. |

Refiecting on Diewert's proof of local flexibility, it is evident that to
repeat such a process in applied work requires knowledge of the true function,
in which case approximation is unnecessary. Empirical practice is instead to
use regression techniques to estimate the parameters of the flexible form, and
local flexibility then represents a criterion to select a specification for
regression. Since it involves only a statement about the number of
parametérs, it is, unfortunately, not a very selective criterion. Perhaps

this explains the focus on the locally flexible form as a Taylor approximation.

- - -Essentiatly;s—the-commonty-used—tocallyflexible functional forms are

quadratic forms expressed in ferms of some transformation of priée-—logged
prices in the case of the translog, square roots of prices in the generalized
Leontief, and‘so on. Treating the terms in the remainder as third- and highef;
order derivatives, the coefficients can, of course, be related to the unknown
fuhction's.derivatives. In the case of the translog, at the point;of scaling

it is believed that

In C is estimated by ags

9 InC _
aInp; 51T
9 InC _
3 In P, by S; = oy,

and so on. The flexible form is in this fashion interpreted as a Taylor

series approximation.
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By focusing on the error term, Barnett (1983) points out that the Taylor

interpretation provides little in the way of support for the locally flexible
. functional forms. The approximation is valid only within some neighborhood
which may not include all of the data. Furthermore, the results he presents
from the mathematics literature do not apply to the fixed-order (second;order)
approximations used in the common locally flexible functional forms. This
leads Barnett to accept Diewert's approach to local flexibility, being the’
same as the mathematical aefinition of a second-order local approximation, but
to take issue with the common practice of "further limiting the definition of
the class of second-order approximations to include only second-ordef Taylor
series expansions." |
Of a more crucial nature for the interpretation of the results from

standard demand analysis are the findings'congerning'the actual behavior of a _ |

Taylor serieé approximation in a regression setting. References include
Gallant (1979), Kumm, and Barnett (1983); but the first to draw the
implications for flexible functional forms appears to be White (1980).
Standard practice is to regress factor shares and possibly total expenditure§
on logged prices and output; regression coefficients are then interpreted as
‘the coefficients in the Taylor series--the derivatives of the unknown function
at the point of approximation. Furthermore, the point of approximation is
assumed to be the point of scaling which is generally either the sample mean
or a particular observation. |
However, White (1980) showed that regreésion does not produce the
coefficients of the Taylor series unless the true function is of that form.
This is evident, considering the nature of the remainder terms; these can

become quite large away from the point of approximation in a Taylor series
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~ but approach zero as that point is reached Regression, on the other hand,

attempts to make errors of approx1mat10n small over the range of the data

What does this imply for demand analysis? Essentially, it implies that
the estimated parameters of locally flexible functional forms do not
coﬁsistently estimate parameters of the true function unless the latter is of
the approximating class. Elasticities obtained are, therefore, also |
inconsistent. Diewert's proof then indicates that lecally flexible functional
forms could take on arbitrary configurations of elasticities--not that they
will do so in practice. |

The Taylor series interpretation seemed tolrestrict the class of flexible
forms to quadratic forms, with the empirical task remaining being simply to

determine the appropriate transformation of the independent variables.

However, the observations of White (1980), Barnett (1983), and others indicate

that the Taylor approximations have no apparent advantage over any functional
form with a sufficientbnumber of parameters to satisfy the definition of local
flexibility. Furthermore, the model specification remains as a joint
hypothesis in any inferences about elasticities. Whether one should prefer A
Taylor approximation or some other locally flexible functional form as a
maintained hypothesis is not clear.

White (1981) extends his results to nonlinear models and shows that the
least-squares estimator converges to a least-squares approximation to the true
model. This approximation is the parameter vector 6* which minimizes the

prediction mean squared error
2 | 2
s“(e) = f[g(z) - h(z, 6)1° dF(z),

where g(z) is the correct model; h(z, 6) is the approximating form; F(z) is

the distribution function of the vectors z; and integration is over the range



-18-~

of z. That the derlvatlves of h(+) evaluated at e and a partlcular 'z
need not resemble those of g(- ) at z; is evident; least squares weights

. errors in predicting the response but not the derivatives of the unknown
response function. Furthermore, it weights errors throughout the data rather
than only at a point'of approximation. As a result, fitted residuals may
differ from zero at every point including the point at which the data are
scaled. 'This is in contrast to the Taylor series approximation, which places

a large cost on being wrong at the point of approximation, but zero cost of

errors elsewhere in the data space.

The Fourier Flexible Form
Each of the flexible forms mentioned thus far presumably satisfies the

conditions set forth by White (1980, 1981); given those regularity conditions

~and"the absefice of SUCH €TTOrs as the improper aggregation of inputs, the
estimated parameter vectors are strongly consistent for some asymptotic
léaSt-squares‘approximation of the unknown model. ‘The asymptotic
approximation, according to White (1981, page 420), minimizes the prediction'x
mean squared error. Hoﬁever; optimal properties for the estimation of the
derivatives of the unknown model (elasticities) do not follow. Eséentially,
this is due to the fact that the Taylor approximation criterion, which does
produce derivatives of the unknown function at the point of approximation,
does not requiré an approximating functional form to emulate the unknown
response surface. While Taylor approximations do hold in local neighborhoods,
White (1980, 1981) has established that the least-squares technique is
inconsistent with such an approximation. Regression with a second-order

specification, therefore, cannot be given a Taylor approximation

interpretation; the model specification must be a maintained hypothesis.
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The problem is that the measure of aﬁproximating error used té link ﬁhe
Taylor approximation to the true function is irrelevant in empirical
- practice. Statistical techniques do not place all the emphasis on not being
wrong at one point. However, that is the Taylor criterion for approximation;
éee_Barnett (1983) for a discussion of the details. |

An alternative measure df épproximating error is suggested by these
observations-fone which is large when the relevant errofs of apprpXimating a
cost function are also large. Gallant (1981) suggests the Sobolev norm as. the
apprdpriate'measure. The Sobolev measure of the distance of an approximating

function g(x) from the true g*(x) is

' 1
i lg* i gl I - r T I Du g* _ Du P dw(x) ? l/P 1 <P« w,
- m,P,uw i lut<m g i A :

where m denotes the largest order derivative of g* which is 'of interest,
DM denotes partial differentiation, w(x) is a distribution function, and
U is the region of approximation.

Why is the Sobolev norm relevant for demand analysis? Our interest is in
approximating not only the unknown function but first and second deérivatives;
accordingly, one should seek out a measure of errors of approximatioﬁ which
emphasizes derivatives as well as errors in approximating the function. The
Sobolev norm does exactly that. To make the Sobolev norm useful for
applications, however, requires a flexible functional form which can make it
small in empirical applications; |

Gallant (1981) shows that an expansion in a Fourier series will
approximate closely an arbitrary function, with '"close" being measured by the

Sobolev norm. Based on this finding; it can be assumed that every unknown
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¢ost function has a representation as é Fourier series. The representation
improves in quality as more terms are added to the Fourier séries so that

‘ asymptotically the Sobolev measure of approximation error can be made
arbitrarily small. The derivatives of the Fourier series répresentation then

represent the derivatives of the unknown function.

The task of empirical demand analysis can then be shifted to finding the

appropriate vector of parameters of the Fourier series approximation. Some

vector 6% exists which makes the Sobolev norm,

s(6*) = ||g* - g[]>

arbitrarily small; perhaps, this requires an infinite number of parameters.
With a limited number of parameters K, some 60 would be available to

minimize SK(G), where

0 < S(6%) < S (6?)

because 60 represents the parameters of a truncated Fourier series. It
follows that applying least squares or some other estimation criterion

produces an estimate IE}O such that
0
0 < S(6%) < 8,(6%) < 5, (8.

The gstimateﬁgb is consistent for 60 as long as the estimation

procedure is a good one; consistent estimation of elasticities has been shown

by El1 Badawi, Gallant, and Souza to follow.>
Let us summarize the distinction between the polynomial approximation

approach and the Fourier approximation. The goal in demand analysié is to
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~ approximate the derivatives of a function as well as the function itself, and

a local approximation exists in the form of a second-order Taylor series. The

- parameters of the Taylor series are the derivatives of the unknown function at

thg point of approximation. However, because the apprbximation is local,
estimation of the parameters using a global approximafion method, such as
ieast squares, generally leads to biased and inconsistent estimates of the
derivatives of the unknown function.;

| Barnett (1983) argues convincingly that there is nothing in the definition
of second-order approximation to suggest limiting attentibn to the class of
second-order Taylor series,approiimatibns. However, the use of other
approximating forms which are locally flexible, such as the generalized

Cobb-Douglas (Diewert, 1973), does not improve matters of approximating

~hderivaEiMQ§Augl§§§.ih§_£QLIﬁCL_funcxional_iorm_is”used; The problem is one of

focusing on a local apprdximation criterion in obtaining the specification,
but estimating its paraﬁeters based on a global technique (least squares).6
Unless the least-squares estimator converges to the true paraﬁeter vector,
rather than a least-squares approximation, the derivatives of the function,
even at the point of approximation, need not be consistently estimated by the
derivatives of the 1oca11y>f1exib1e functional form.”

It does not seem promising to focus on estimation techniques which do not
emphasize a good fit throughout the data. Rather than '"throwing away"
information away from the point of approximation, we can focus ihstead on é
global approximation technique consistent with least squares or other
estimation procedures. It is not so much that global approximation is
preferred to local, although that seems obviously so if‘global approximation

imposes no additional cost in estimation. Instead, the situation is one in

which no estimation technique can produce the local approximation.
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A global approximation to a function and its derivatives exists in the

form of a Fourier series with the quality of approximation improving with

. additional terms in such a way that approximation errors can be made

arbitrarily small over the entire range of the sample. To within irrelevant
approximatioh errors, fherefore,-unknown functions can be expressed as a
Fourier series throughout their domain rather than at a particular point,
i.e., all of the information relevant for demand analysis (the function,
together with its first and second derivatives) is preserved.

The upshot is that one can fit the unknown model. or ifs identical (for our
purposes in demand analysis) Fourier series representation. Not all cost
functions can be expressed as a translog; they can be expressed as a Fourier

series. Following Barnett's terminology, we can designate this property

. _global flexibility. Of course, the vector of parameters of the Fourier series ..

is unknown. Estimation based on a Fourief series, however, produces a
cdnsistent estimator of that parameter vector.

This is no different than what estimation.accomplishes in the presence of -
misspecification according to White--consistent estimation of an approximating
function. waever, because both the Fourier series approximation.and the
least-squares estimation procedure attempt'to'fit the unknown function
throughout its domain, the derivatives (and, hence, elasticities) of the
Fourier series appfoximation do resemble those of the unknown function. While

the estimated vector of parameters of the approximation need not produce the

'global minimum for SK(GO), the'e0 which does so is consistently

estimated. This is all that is ever hoped for in regression settings even
when the functional form is not at issue.
The reader is referred to El Badawi, Gallant, and Souza for details

concerning the requirements of the estimation procedure and the proof of



-23-

v con51stency in estimation of elasticities; we now present the 1ogar1thm1c
version of the Fourier flexible form introduced in Gallant (1982). The
- discussion is a review, and the reader may wish to consult Gallant (1982) for
the complete development or Chalfant and Gallant for an example expressed
~ without the simplifying notation.
Let Ka denote a vector of integers or a multi-index. These can be
used to denote partial differentiation so that
kel
'k

Q
g(x) = — n
ax kl

g(x)

kn

n

2.
1 ax2 3X

is the norm of a multi-index of length n. Multi-indexes are also used to
represent the Fourier flexible form.
Let KT denote the number of parameters, possibly a function of sample

 size T. The logarithmic version of the Fourier flexible form is

gKT(xle) =up +b' x+ %-x' Cx

A J | | 1
2 . ix k! - V. in(J\ k! -
+ afl-g-oa + jzl [uJa cos(j s a_x) Vig 51n(3xs ka X)lj

with



and scaling factor Ag defined below,

_ A

Y ',
C= "XS I Ugq ka ka’
a=1

A, the number of multi-indexes; and J, a positive integer.

Choice of A and J determinesAthe number of parameters, K- A reasonable
choice for four inputs is to set the largest norm of the included multi-
indexes at 3; then'A = 19. WithJ =1, this produces a parameter vector with
length 63. Howgver, due to the homogeneity restriction, 10 of these are not
free parameters. Nine are redundant terms in the maérix C, and one is the
element in the vector b corresponding to.the'deleted input share.

Gallant (1982) proves that it is sufficient to consider only those multi-

indexes involving contrasts among the input prices when using gKi(~)vto ’
H

" “approxinmate @ Iinearly homogeneous cost function. The 19 multi-indexes for

the Fourier flexible form estimated in this paper are illustrated in table 1.

Prior to estimation, it is necessary to rescale the data--the Fourier cost

function is periodic, so data must fall within (0, 2r). Rescaling is
accomplished by the following procedure.

First, from each member of the logged series of exogenoUs»variébles,
subtract the minimum of that series and then add some e, say,,lO'S. The
reﬁult is a rescaled set of exogenous vériables, between € and «. Next,

rescale any covariates such as output by the scalar

log (maximum rescaled price) + e
1o /maximum value of the covariatey
g\ﬁinimum value of the covariatelf

Finally, all data are rescaled by

_ 6
As ~ Tog (maximum rescaled price) + e °
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Scaling Factors and Multi-indéxes for the Fourier Flexible Form
(Kt = 63) : A
51 =1n P, - 1n(0.69108) + =
52 = In P, - 1n(0.89755) + e
P, = In P, - 1n(0.69348) + ¢
54 = 1n P, - 1n(0.40279) + ¢
Y = ac[1n Y - 1n(0.69880) + €]
_ 1n(2.36809) - 1n(0.40279) + ¢ _
e A S IS —Int0:69880) €~ 272007
Ao = 6 = 3.38709
S = In(Z.36809) - In(0.40279) v ¢ _ °°
€= 10'5
Multi-indexes (1ki# < 3)
@« 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
kk, 0 0 0 1 01 100 00 0 1 0 1 1 1 1 1
'kz 0 1 0-1 1 0 0 0 1 0 1 1 -1 1-1 0 0 0 o0
kg, 0 -1 1 0.0 0-1 1-1 1-1 00 0 0 -1 0 -1 0
k4‘ o 0 -1 0 -1-1 0-1 0-1 0-1 0-1 0 0 -1 0 -1
ke 1. 0 0 0 0 0 0 1 -1 -1.1.-1 1 1 -1 1 -1 -1 1
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The resulting time series of exogenous variables is restricted to the (O,

2r) interval. This is the vector x described previously. Scaling factors
V for the agricultural production data are also presented in table 1.
Pifferentiation of the logarithmic Fourier flexible form produces share
equations of the form
A | J

-Vgxr(x”’) =b - g az dugy Ag kg X + 2 5

jlu. sin(j xq k! x)
-1 (v} =1 ja S Ta

-

+ Vig cos(j Ag k& X )]‘? K,»

S/

where V denotes the gradienﬁ vector formed by differentiating with respect
to the'logged input prices. An expenditure system is then formed, for
estimation with the seemingly unrelated regressions technique, with the cost
function and n - 1 of the share equations. This system is linear in the
parameters. U;ing eStimated parameters, elasticities of substitution are

obtained from expressions for second derivatives contained in Gallant‘(1982).:f

Prior Experience With the Generalized
Box-Cox and Fourier Flexible Forms

The generalized Box-Cox was used by Berndt and Khaled in their study of the
U. S. manufacturing sector. They apply the cost function to the capital,
labor, energy, and.materials (KLEM) data of Berndt and Wood to reconsider the
question of energy-capital complementarity'without the translog assumption.
The complementarity finding is supported still; the translog is not. They
find that models near the translog case of A = 0 are rejected as is the
generalized square-root quadratic. The generalized Leoﬁtief cannot be

rejected.
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In the production context; prior experiencéiwith'tﬁe Fourier flexible form
consists of an application by Gallant (1982) to the same data and a Monte
. Carlo experiment by Chalfant and Gallant.8 Géllant's application to the
Berﬁdt and Wood data permits a comparisbn‘of the logarithmic Fourier flexible
form with fﬁe generalized Box-Cox; the findings do not permit the
energy-capital complementarity conclusion. In the case of a homothetic
technology, the estiﬁated elasticity of substitution between energy and
capital for 1959 is -4.2067, but the standard error is 3.4998. In the
nonhomothetic case, this elasticity is estimated as 0.6613. Finally, Gallant
and.Golub present a case in which the cost function is restricted to be
quasi-convex at the 1959 prices--the elasticity becomes 1.1704.9

The Monte Carlo results of Chalfant and Gallant indicate that the
logarithmic Fburier'form succeeds in obtaining an unbiased estimate of the
partial elasticity of substitution. This finding holds for hypothetical
technoldgies throughout the range of the generalized Box-Cox parameter from 0
to 2. Because it approximates the,entife range of the generalized Box-Cox
with negligible bias, the Fourier flexible can, therefore, be expected to
| approximate any unknown function which would be well approximated by the
locally flexible funétional forms. Given the less favorable results obtained
by Guilkey and Lovell and Guilkey, Lovell, and Sickles, these results suggest
that the Fourier flexible form offers an attractive alternative for cost
func;ion studieé.

Of course, the utility function of the hypothetical researcher Chalfant
and Gallant have in mind includes only one argument--unbiasedness. In
applications it is likely that stable estimates of the elasticities of
substitution will also be desirable. Given thé possible variability of the

Fourier flexible form estimates, due to the increased number of parameters, one
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would prefer further experience with'specific data sets to obtain some notion

10

of the extent of variability. If there appears to be a trade-off between

- unbiasedness and stability for fixed data sets, further research along the

lines of Gallant and Golub is suggested concerning restrictions on the

curvature of flexible forms. Gallant (1982) also suggests using the approach

of smoothness penalties (Wahba).

For the Monte Carlo experiment of Chalfant and Gallant, the produétion
technology is known to exist since it was used to generate the data.
Elasticities were evaluated only at the mean price vector; it will be useful
in Monte Carlo contexts to consider the behavior of estimatéd elasticities
throughout the data. This will indicate the extent to which unstable
elasticitiés are due to the specification and the extent to which the data

simply were not.generated from a well-behaved technology.

Application to U. S. Agricultural Production

The fleiible functional forms described previously are now applied to the
estimation of elasticities of substitution for U. S. agricultural production;,
Specifically, we consider the extent to which it matters which flexible form
is used. This section includes a description of the estimation précedure and
the data followed by empirical results. We conclude with some obserQations

and suggestibns for further study.

Estimation

The estimation procedures used are iterative versions of seemingly unrelated
regressions [Zellner, Gallant (1975)]. The SYSNLIN procedure of the
Statistical Anaiysis System (SAS) was used for the generalized Box-Cox in an

iterative version of the seemingly unrelated nonlinear regressions estimation
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technique described by Gallant (1975). FORTRAN code ‘was used for the Fourier

form which is linear in the unknown parameters. The seemingly unrelated

- regressions technique is preferred because contemporaneous correlation is

likely among the residuals in demand equations and because it permits
convenient imposition of across-equation restrictions.
In demand systems with n goods, it is well known that the covariance

matrix is singular, requiring deletion of one equation from the system. In

'order that results be invariant to the choice of equation for deletion, the

contemporaneous covariances across equations are recalculated and the
parameter vector updated until convergence.

Capps provides an excelient description of the estimation of demand
systems, comparing the itérative seemingly unrelated regressions and
maximum-likelihood methods in an application of the linear expenditure
system. Barnett (1976) discusses the conditions under which iterative
seemingly unrelated regressions is equivalent to maximum likelihood in the
nonlinear case; for the linear case, equivalence of the two approaches was

established by Kmenta and Gilbert.

The Data
Four inputs are used in this study--capital, intermediate inputs, labor, and
land. While the U. S. Department of Agriculture reports expenditures for a

large number of inputs, it would require an extremely long time series to fit

~ an expenditure system to more than four or five inputs. Therefore, it is

necessary to aggregate. A brief description of the data follows. For a

complete description and listing of the variables, see Appendix A.
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Expenditufes on capital services are the sum of reported expenditures for
. repairs and operatibn of all motor vehicles and machinery, total depreciation
on motor vehicles and other machinery and equipment, petroleum fuéi and oils,
machine hire and custom work, electricity, estimated taxes on farm capital,

and estimated interest expense.11

An index of the rental rate for capital
was constructed by dividing expenditures by an index of the quantity of

capital used.

. . Y . f"‘ , .[)-',,‘
‘Mb”/}’?’w’ 2ol by o""-]'q Ll e

The expenditures on this class consist of feed, seed, and livestock purchases
| plus.expenditures on agricultural chemicals (fertilizer, lime, and
pesticides). A price index for intermediate inputs was constructed. Since a
pesticide price index is only available for a part of the sample period, it
could not be used. Instead, expenditures.bnvagricultural chemicalsvwere

divided by an index of agricultural chemicals used to produce a price index

for that portion of the intermediate ihputs expenditures. A Tornquist price .

index for intermediate inputs was then constructed using the four categories
and associated price indexes. A base year of 1967 was used.

C%a:Libﬁﬁb%J

‘Expenditures on labor services consist of total farm wages including contract
labor and the value of perquisites. The index of wage rates provides the
corresponding input price.

aﬁga/?”zzf{/'

Expenditures on land consist of repairs, maintenance, and depreciation of -
service buildings and structures, estimated tax payments, and estimated
interest payments. The corresponding rental fate for land is obtained by

dividing by the number of acres in farms.

.
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The Generalized Box-Cox Cost Function
The generalized Box-Cox cost function was estimated using the SYSNLIN
procedure of SAS (Release 82.3). The estimated parameters are.reported in
table 2. The weighted error sum of squares is 144, indicating convergence of
the estimated parameters.12

One interesting finding is that the estimated X is approximately 2.4.
This is far from the translog case (A + 0) as well as the generalized
Leontief. In fact, this application of the generaliied Box-Cox suggests that
the generalized squareQroot quadratic would be more ?ppropriate for this
agricultural production example.

The generalized Box-COX'was‘reestimated subject to three restriétions on
the parameter . These were A = 0.1 (a case near the translog), X = 1
(generalized Leontief), and A = 2 (generalized square-root quadratic);
weighted error sums of squares weré~161.92; 197.75, and 150:51, respectively.
Using the likelihood ratio test (Burgueté, Gallant, and Souza), all three
restrictions are rejected by comparing the differences in weighted error sum ,
of squares from 144 (the unrestricted result) with the 5 percent critical
. value, xi = 3,84,

Homotheticity was also imposed, by restricting each b; to equal zero.
For the homothetic generalized Box-Cox, the weighted error sum of squares
.rises to 335.39. The homotheticity restriction, therefore, is rejected by the
data. It turns out that, if homotheticity is imposed, the generalized
squére—root quadratic fits better than in the nonhomothetic case, as the
estimated A is now 1.993972, with standard error 0.1072029.

Elasticities of substitution in the generalized Box-Cox were calculated

for each pair of goods at each data point. These are reported, for the 1967
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Estimates--Generalized Box-Cox

Free

Standard
parameters Estimate, error
A 2.383083 0.162252%
111 -0.108727 0.0300246%
Y12 0.179068 0.0182710%
Y13 0.094014 0.0151879%
Y14 0.125590 0.0164128*
Y22 ~0.011709 0.0111982
Y23 0.043064 0.0113066%
Y24 0.146048 0.0140102%
Y33 -0.098169 0.0102197*
Y34 0.060593 0.0055438*
Y44 0.027934 0.0043416% -
B 0.694451 0.0261009%
0 0.135344 0.2284396
61 0.138634 0.0508670%
02 0.208051 0.0488330%
63 -0.176970 0.0263920%

*Significant at the S percent level.
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observation, in table 3.1% Estimated elasticities for the various
restricted cases are also reported.

The effect of imposing the various restrictions on the generalized Box-Cox
can be seen in the table. First of all, the own-elasticities take on the
expecfed negative sign in each case. This is true for all years except for
011 in two yearsvin the casé of A = 0.1. All signs appear stable at the
point of approximation, w;th only 012> 013 and Oo4 in the case where X =
0.1 and Oy in the homothetic case changing sign from the maintained model.

On balance, the generalized Box-Cox appears to.fit well. Plots of
predicted values against the observed data suggest that the.estimated
parameter vector is a global minimum. Furthermore, the results are
plausible-che model satisfies the theoretical restriction of negative
own-elasticities at all data points. Inpgts appear to $ubstitute for each
other, although 0,4 is negative for the yéars prior to 1956, and 023
is negative after 1974; see Appendix B for the unrestricted generalized

Box-Cox results for all observations.

Unfestricted Fits‘of the Special Cases

We have presented elasticities of substitution estimated from varisus special
cases of the generalized Box-Cox. These are obtained by using the covariance
matrix from the generalized Box-Cox to estimate each restricted version and
then using parameter estimates and predicted shares and expenditures to
calculate elasticities. Referral to table 3 indicates that, at least for the
generalized Leontief and generalized Square-root quadratic, while we reject
“the restriction on A, elasticities seem somewhat unaffected. The translog

and homothetic generalized Box-Cox appear a little less similar to the

unrestricted generalized Box-Cox.
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Table 3. ~Estimated Elasticities of Substitution: Generalized Box-Cox

‘Homothetic _ o Generalized
generalized Generalized square-root Near -
Generalized Box-Cox Leontief quadratic | translog
Box-Cox (6 =0%i) (1 =1) O =2) (A = 0.1)
011 - 2.366 - 1.220 - 2.728 - 2.590 -0.266
012 0.889 0.179 1.601 1.166 -0.085
013 2.745 1.589 1.835 2.562 -0.222
014 10.216 7 0.414 0.106 0.177 ~0.365
o2z - 0.911 - 1.316 - 1.645 - 1.172 -0.409
023 | 0.308 2.016 0.274 0.208 ; 1.757
024 - 0.109 0.564 0.250 0.175 -0.030
033 -11.303 -10.616 -11.93z2  ~  -11.729 -8.755
034 0.759 - 0.352 1.686 o 1.128 _ 0.959

044 - 0.503 - 0.796 - 0.827 - 0.648 -0.543
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in practice, one dqes not fit the speciallcases fér A as restrictions§
rather, they are maintained hypotheses. For comparison of the performance of
flexible forms, then it is of interest to estimate them using the same
iterative technique as for the generaliied Box—Cox.14 Table 4 contains the
results for the three flexible forms which are special cases of the
generalized Box-Cox as well as the case near the translog with A = 0.1.

As unrestricted models, the translog and near-translog cases no longer
feature negative own-elasticities of substitution at all observations. The
translog does not produce negative own-elasticities of substitution at all
observations. Positive signs are obtained for 18 of 36 years for 013 and.

23 of 36 years for 097¢ A éimilar result occurs with the case A = 0.1.

“Also evident from table 4 is that the flexible forms do not appear as
similar as when they were estimated as restrictions in the generalized
Box-Cox. The difference is quite evident in the generalized Leontief and
generalizéd square-root quadratic which had very similar elasticities in
table 2. Now they differ by more. Each has negative own-elasticities at eagﬁf
observation. However, cross-elasticities vary between the forms. The
elasticity of substitution between capital and labor, 0135 does not even
have the same sign in the two models.

Should we consider this variation large? Of course, it depends on the
context; perhaps it would not matter in some contexts which flexible form is
used. However, we have little to tell us whether we should expect more or
less variation in other examplés. Clearly, we should consider this question
further.

Each of the locally flexible forms is able to attain arbitrary values at a
particular obser?ation. The fact that they can vary in the values produced

suggests we should seek some criterion to determine which form is appropriate.
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Table 4. Estimated Elasticities from Unrestricted Fits of Special Cases of

the Generalized Box-Cox

Generalized
square-root Generalized
Translog A=0.1 quadratic - Leontief.
011 -0.026 0.492 - 2.800 -0.741
012 -0.850 -0.782 1.252 0.308
013 0.603 -0.783 : 2.661 -0.390
014 C 0.681 0.581 - 0.221 ‘ 0.425
022  0.088 ~0.045 - 1.189 -0.746
023 2.356  2.497 0.038 | 1.563
024 -0.048 -0.020 0.176 0.023
033 -9.956 © -7.405 -11.006 . "_8.506
034 | 0.017 0.320 1.034 1.290

044 -0.522 -0.553 - 0.658 -0.751
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Prior expectations about elasticities will help. Also, the generalized

Box-Cox can be used to select among the various forms. In our example, it

rejects each; but as it qualifies as a functional form in its own right,

perhaps this is of no consequence.

On the other hahd, the generalized Box-Cox can only select from among the

locally flexible forms which have a Taylor series interpretation. As was

pointed out above, Barnett (1983) has shown that restriction to the Taylor
class is inéppropriate. Hence, we would.be unable to rule out forms such as
the generalized Cobb-Douglas or Barnett's Laurént series approach. The
generalized ﬁox-Cox‘then only partially solves the functional form problem--we

must restrict attention to the forms based on a Taylor series.

The Fourier Flexible Form

~wGa1iantls={;9824—;oga;ithmié—Eou;ie;+£lexib}ewform represents a different

approach to'determining the.appropriate functional form. Rather than choosing
from among a set of locally flexible forms which is potentially large, the
Fourier form is a means of minimizing the average specification bias
throughout the data. With a sufficient number of parameters in the Fourier
series, average bias can be made arbitrarily small.

In this application, a 63-parameter specification has been»used. No
attempt has been made to test alternative specifications with the exception of
a restriction to homotheticity. The estimated parameters and standard errors
are reported in table 5.
| These parameters are of little interest unless one is attempting to choose
alternative parameter settings. Then significance of included parameters is
of interest in the same fashion as when choosing a lag length. However,

having our estimated parameters, we can compute elasticities of substitution.

These are given for the 1967 prices in table 6 and for all years in Appendix B.
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Table 5. Estimated Parameters and Standard Errors of the Fourier Flexible Form
Standard - Standard
Parameter Estimate error . Parameter Estimate error
81 -0.75904 0.034883 6z, 0.00049 0.00052811
8, 0.22832 0.037517 64+ -0.00167 0.00043620
65 0.34590 0.022486 614 0.0 0.0 |
0, 0.17784 0.034405 63c 0.00064 0.00036469
6g 0.24794 0.013070 B¢ 0.00068 0.00039540
' CPS 0.38069 0.086536 647 0.0 0.0
6 0.00466 0.010040 B¢ 0.00292 0.00123047
bg -0.00680 0.00845208 B39 0.00081 0.00093552
B9 -0.00686 0.00505149 840 0.0 0.0
810 0.00131 0.00650290 641 0.00034 0.00022040
611 -0.00326 0.00125019 842 -5.119 x 10-5 0.00022878
812 -0.00057 0.00046882 0,43 - -0.00253 0.00394332
813 0.00374 0.00348896 644 - -0.00222 0.00063494
614 0.00096 0.00053991 645 -O.OQ§Q}A_ ;. I9599Q60255;3.
T -0.00121 0.00071969 046 0.0 0.0
916 -0.00743 0.00712296 6,47 -0.00060 0.00078168
817 - 0.00153 0.00168230 6,48 0.00169 0.00117018
618 -0.00226 0.00085437 849 0.0 0.0 p
819 -0.00410 0.00220881 B¢ -0.00015 0.00174626
820 0.00043 0.00027217 6y 0.00053 0.00149652
0,9 0.00238 0.00054193 6, 0.0 0.0
0,, -0.00799 0.00390264 02 -0.00032 0.00055076
0,3 -0.00088 -0.00067876 Oy 0.00261 0.00057660
624 0.00047 0.00151142 655 0.0 0.0
0,0  -0.07054 0.040590 Bce 6.173 x 10> 0.00048091
06 0.03550 0.020780 6 0.00062 0.00050166
6,7 -0.00597 0.00363282 6cg 0.0 0.0
'628 2.509 x 10-5 0.00253177 bcq 0.00224 0.00083477
8.9 -0.00204 0.00066215 860 -0.00022 0.00084061
0z 0.00275 0.00152127 061 0.0 0.0
83, 0.00615 0.00450607 062 0.00275 0.0012379S
-0.00162 0.00135416




-39-

Table 6. Estimated Elasticities of Substitution from the

Fourier Flexible Form

Nonhomothetic ~ Homothetic
011 - 40.632 -0.688
012 0.081 . 0.889
- 03 -0.026 .. . -0.39
014 | 0.412 -0.229
022 -0.705 =1.775
023 0.753 10.578
a24 0.454 0.892
033 0.962 ' -2.871
034 -1.075 | 0.685

o44 | -0.470 -0.938
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‘As was the case with the translog, the logarithmic Fourier flexible form

does not produce uniformly negative estimates of own-elasticities of

. substitution. In this case, for the-year 1967, the own-elasticity of

substitution for labor, Oz3, 1S positive. At least, this estimate has a
relatiﬁély large standard efror of 2.21148 so that we would not reject the
hypothesis that this value is nonpositive.

| Referral to Appendix B indicates a number of positive own-elasticities.
As this was also the‘case with the translog, perhaps this is not unexpected.

The Fourier form includes the translog as a special case with the sine/cosine

'terms added. As evidence from the generalized Box-Cox rejects the

logged-price specification, it may require additional sine/cosine terms to

reduce specification bias to an acceptable level.

- Of “course;—the-estimationprocedure—camr-be-modified to impose curvature

restrictions with the same number of parameters. When those are correct
restrictions, there is a-géin in efficiency.

As was pointed out above, we should perhaps not be too surprised if -
microeconomic restrictions do not appear to hold for aggregate data. If the
goal is to determine whether a well-behaved aggregate technology exists or is
to compare functional forms, the unrestricted model seems of interest. For
applied work, it is.probably more apprdpriate to impose the restrictions,
although the example provided by Gallant and Golub indicafes that the
programming task is formidable. |

The.homotheticity restriction is imposed by reestimatihg the model with no
interaction between dutput and the input prices. This involves deleting the
last 12 multi-indexes. The Fourier -form with homotheticity imposed features a

weighted error sum of squares of 978.937 or an increase over the unrestricted
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"model of 834.940.15

Comparison with the Xi,value of 3.84 indicates that,
again, the restriction to homotheticity is rejected.

Elasticities of substitution were calculated for the homothetic case. For
1967 prices, these are presented in table 3;va negative value is obtained for

Ozze The restriction does not avoid the problem of positive own-elasticities--

there are 18 out of 144.

Summéry and Conclusions

Thié paper has reviewed the literature on flexible functional forms.
Specifically, interest has centered on the model selection problem. Two
- approaches to choosing among functional forms were outlined.

The generalized Box-Cox of Berndt and Khaled nests some of the previously

_used locally flexible forms in a more general specification. Tests for

special cases are easily cohstructed‘by‘réstricting the Box-Cox parameter
A.. Also, the generalized Box-Cox qualifies as-a functional form in its own
right. | A v _ ' g
The application to agricultural production data indicates that plausible
results are obtained for elasticities and that special cases previeusly used
in agricultural production studies (the translog and generalized Leontief) are
rejected; While this did not affect estimated elasticities as much in the
case where the genefalized Box-Cox was maintained, unconstrained estimates
using the other locally flexible forms produced fairly wide variation in those
elasticities. The practical implication appears to be.that changes in A,
with a fixed variance matrix, do not affect elasticities much but that, when
the variance matrix is reestimated iteratively, variatibns in A do lead to

different conclusions about substitution possibilities. Further experience is
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required to indicate the extent of variation one should expect--both Monte
~ Carlo studies and comparisons with specific applications will be useful.

The logarithmic Fourier flexible form was suggested by Gallant (1982) as
an alternative approach to model selection. All cost functions can be
expressed in Fourier series form, allowing specification bias to decrease to
arbitrarily small levels as additional parameters are included. This is in
contrast to the generalized Box-Cox which is usually taken as an
approximation. White's (1980, 1981) results indicate that, when the true cost
function is not of the generalized Box-Cox class, estimated elasticities are
biased, even asymptotically. |

The application of fhe Fourier flexible form to the agricultural

producLlon example 1nd1cated that it falls to satlsfy the de51red curvature

restrlctlons on the cost function. Estlmated own-elasticities of SUbStltUthﬂJﬂ

were positive roughly one-fourth of the time.

There is no reason to expect these restrictions to hold--the aggregate
technology could simply fail to satisfy these restrictions. This raises a
question: Why is there such a different result for the generalized Box-Cox?

I believe that specification tests will help answer this question.
Essentially, we would like to know whether the Fourier form is "overfitting"
the data or the generalized Box-Cox is "underfitting."

However, even with the aggregate data, for most purposes, elasticities are
useiess without being consistent with theory. Since the whole point of a cost
function approach is to maintain the connection with the theory of the firm,

it will be fruitful to explore estimation procedures with the Fourier form

which produce the desired signs. Whether this is best accomplished through
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~ the Gallant and Golub approach of imposing appropriate.restrictions on

parameters or by some alternative to the seemingly unrelated regressions

- technique remains to be seen.

It is beyond the scope of this comparison of flexible forms to take on
these questions; but to summarize, it appears that there are a number bf
questions which remain. A useful way to view these problems is to add at
least one argument to the researcher's utility function. Along with unbiased

estimates of elasticities, the properties of precision or stability in

~elasticities are desirable. Neither the appropriate-marginal rate of

substitution between these two goods nor the extent to which the "market' in
flexible forms allows trade-offs to be made has been established. Monte Carlo

results have established that unbiasedness does follow with the Fourier

_Jflexiblqﬁform but_not with the locally flexible forms; each of these results

is consistent with theoretical findings.by White (1980, 1981) and Gallant
(1981, 1982).

The application presented in this paper{indicates that the
bias-ihstability trade-offs can be substantial. The Fourier form, with
desirable properties concerning bias, features much greater oscillation in
estimated elasticities than does the generaliéed Box-Cox. As El Badawi,
Gallant, and Souza point out, bias minimization and accurate estimation are
conflicting objecti?es.

.The usual bias-variance trade-off involves the deletion of variables to
reduce variances. A similar effect appears to be present in the variation of
estimated elasticities from year to year. The degree of vériability will vary
from application to application as will-the'appropriatetlevels of bias and-
instability. Further research is called for to-adjust estimation procedurés

and model specification to improve the attainable levels of each.



..‘44-

APPENDIX A _
VARIABLE NAMES AND DEFINITIONS

~calendar year, 1945-1980.
consumer price index, 1967 = 100 (ECIFS 1-1, page 86).
index of agricultural output, 1967 = 100 (ECIFS 1-3, pages 8
and 9). | |
QC = index of agricultural crops output, 1967 = 100-(ECIFS 1-3, pages 8
and 9).

QL = index of agricultural livestock output, 1967 = 100 (ECIFS 1-3,

pagés 8 and 9).
QCHEM = index of agricultural chemical inputs, 1967 = 100 (ECIFS 1-3,
pages 60 and 61). |
—“wvﬁ“=-:QCAPH=~index—of—meehanieal—powet-andfmachinery-inputs, 1967 = 100 (ECIES
1-3, pages 60 ahd 61).

Annual Farm Production Expenses

(millions of dollars)

feed purchased.

livestock purchased:

seed purchased (includes bulbs, plants, and trees).

fertilizer and lime.

repairs and operation of capital items (excluding fuel and operator

dwellings; the sum of K1 and K2).

X9 = petroleum fuel and oils (for farm business use only).




X14

X15

X30
K1

- K2

K4

]

1]

il
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total farm wages, including contract 1abor-5nd.the value of
?erquisifes (including Social Security taxes paid by employers under
the old-age éurvivor's insurance provision of the Social Security -
Act beginning 1951).

machine hire and custom work (excluding contract labor--not

~available for the years prior to 1950 and assumed to be zero).

pesticides.

electricity.

other operating expenses (excluding operator dwellings).
interest on nonreal esfate debt.

interest on real estate debt (excluding operator dwellings).

taxes (excluding operator dwellings).

adepreciation_ﬁexcluding~operatorwdwellings; the sum of K4, KS, and

K6, plus accidental damage, not available until 1959 as a separate
component). |

net rent to all landlords. |

repairs and maintenénce of service buildings, other structures, and
land improvements (includes fences,.windmills, wells, dains and
ponds, terraces, drainage ditches, tile lines, other soil
conservation facilities, and dwellings not occupied by the farm
operatorsj.

repairs and operation of all motor vehicles and machinery (for farm
business use).

farm depreciation and other capital consumption of service buildings
and other structures (in terms of current repiacémentvcost, not
original cost; includes fences, windmills, wells and dwellings not

occupied by the farm operators).
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K6

KDEBT

LDEBT

L2

L6
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total deﬁreciatibn on motor vehicles (for farm business use; in
terms of current replacement cost, not original cost).

total Depreciation on Other Machinery and Equipment [in terms of
current replacement cost, not original cost; excludes minor types
of equipment charged to the "other operating expense'" category

(x19)].

= total nonreal estate farm debt outstanding (excluding farm

households and CCC loans; ECIFS 1-1, page 116).

totai real estate farm debt outstanding (ECIFS 1-1, page 114).
land in farms, thousands of acres (ECIFS 1-1, page 105).

farm real estate value, includes land and service structures

(ECIFS 101, page 105).

KTAX
KINT
LTAX
LINT

INTER

LABOR

SUM

S1

I

il

i

I

n

» Constructed Variables’

X24 * [CAPSTK/(CAPSTK + L6)].
X21 * {CAPSTK/KDEBT).

X24 * [L6/(CAPSTK + L6)].

X22 * (L6/LDEBT).
expenditures on capital services (KZ, K5, K6, X9, X15, X18, KTAX,
KINT). |

“expenditures on intermediate inputs (X1, X2, X3, X6, X17).

wages paid (X14). 7

expenditures on land services (K1, K4, LTAX, LINT).
nominal production expenditures (CAP, INTER, LABOR, LAND).
real production expenditbres (suM/cPI). |

capital's share (CAP/SUM).
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intermediate inputs' share (INTER/SUM).

S2 =
S3 = labor's share (LABOR/SUM)..
S4 = land's sharé (LAND/SUM) .
P1 = PCAP (an estimated Qser cost of.capital‘index (CAP/QCAP).
- PCHEM = estimated chemical price index‘[(Xé + Xl7)/QCHEM].
| P2 = PINTER (Tornquist index of PFEED, PSEED, PLVSTK; and PCHEM).
* P3 = PLABOR.
P4 = estimated land rent index (LAND/LZ2).

Prices Paid by Farmers (1967 = 100)

(Source: Various numbers in the agricultural statistics series)

PFEED = feed price index.
PSEED = seed price index.
PLVSTK = livestock price index.
PLABOR = index of wage rates (the simple average of seasonally adjusted
quarterly indexes).
Scaling

Having constructed the four factor shares and prices, plus total expenditures,
the data were rescaled for estimation. This usually invdlveé division by _

either the sample means of eaéh time. series or by_a particular bbservation; in-
this case, 1967 values were used. Réal prices and expenditures (deflated by
the Consumer Price Index) and output were divided by théir 1967 values. The

original variables and the final data appear in the following pages.
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