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SELECTING FUNCTIONAL FORMS FOR COST FUNCTIONS: BACKGROUND*

Introduction

Eile goal in input demand analysis is to generate a system of equations

relating factor shares and possibly total expenditures to input prices and

output. Regression can then be used to produce estimates of elasticities or

• test hypotheses of interest. Generally, consideration is limited to systems

derived from either production functions or the dual cost or profit functions,

and the problem of specifying the functional form is that of approximating

these unknown functions.

This paper considers the choice of functional form for cost functions.

Advantages over the production function approach are well known, and it is

anticipated that particular functional forms would perform the same for

production or profit functions, should other considerations lead to their

use. Comparison of functional forms is, therefore limited to cost functions

for U. S. agricultural production.D

It is assumed that the relevant data for four input categories are

correctly measured. The problems of upward-sloping factor supplies,

endogenous output, and bias due to the aggregation of inputs are set aside.

The remaining problem is then to select a functional form to approximate the

unknown cost function., Shephard's Lemma then can be used to provide

expressions for factor shares by differentiation and a seemingly unrelated

regressions framework for estimation (Zellner).

The focus will be on flexible functional forms and on attempts to

generalize commonly used functional forms. Specifically, the generalized

Box-Cox (Berndt and Khaled) and logarithmic Fourier flexible form (Gallant,

1982) are used in the estimation of a demand system for four agricultural
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inputs: capital, intermediate inputs, labor, and land. The paper proceeds as

follows: First, the flexible functional forms are reviewed, focusing on the

two alternative definitions of flexibility, experience to date with these

flexible forms is then summarized., the application is presented, and, finally,

the paper concludes with some observations and suggestions for further study.

Flexible Functional Forms

From the neoclassical production function and the assumption of cost

minimization, factor demands are based on the necessary conditions for

optimization. These are readily obtained for simple production functions such

as the Cobb-Douglas, however, factor demands are difficult to determine when

the production technology is complex. It is preferable, therefore, to attack

the problem of obtaining an expenditure system for factors of production in a

manner which preserves the complexity of the structure of input decisions yet

simplifies the derivation. The use of duality theory and cost or profit

functions has provided this alternative.

In the context of production studies, duality refers to the result that '

optimal input levels implied by a production function and necessary conditions

are equivalently obtained by the minimization of a (dual) total cost

function. According to Shepard's Lemma, these optimal input levels are

obtained by differentiation of the cost function with respect to the input

prices. This produces a set of factor demands with all of the properties of

the 'technology underlying the cost function. Use of the dual cost function

approach thus avoids the complexity of the primal problem; yet, it does not

involve the sacrifice of consistency with the production technology inherent

in ad hoc specifications of demand systems.

The theory of the firm is sufficient to indicate the relevant explanatory

variables (prices of inputs and the level of output); the remaining problem is



to choose a functional form. Varian, Diewert (1974), and McFadden illustrate

that the cost function contains all of the information about the production

technology present in the conventional production function. Furthermore,

every cost function implies a well-behaved production technology, the logical

approach in demand analysis is then to proceed directly to the cost function

without prior regard to a functional form for the production technology.

Because of the ease in generating the expenditure system, the cost function is

a desirable starting point; one hopes to avoid restricting the types of

technologies bracketed by the factor demands through generality in

specification.

Generality has involved a particular attribute, flexibility, or the

ability to approximate any unknown cost function. Specifically, flexibility

is based in approximation theory, most often with a Taylor series_

interpretation. The idea in that case would be to provide the first- and

second-order partial derivatives of an unknown function at some point. Let us

designate this property "local flexibility," following Barnett (1983), and

introduce the locally flexible functional forms for cost functions. We then

examine the argument provided by Diewert (1974) for the flexibility of the

generalized Leontief cost function. Finally, this section of the paper

concludes with some criticisms of the empirical usefulness of locally flexible

functional forms and the alternative approach by Gallant (1981, 1982).

The Translog

Christensen, Jorgensen, and Lau propose the translog as an approximation to

unknown cost or production functions. Expressed as a second-order polynomial

in logarithms of input prices and output, it is a generalization of the

Cobb-Douglas (which is linear in logarithms). While it is not "self-dual" as
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is the Cobb-Douglas, the translog cost function which satisfies certain

regularity conditions (Diewert, 1974) does correspond to a well-behaved

production technology.

As is the case with all of the flexible functional forms, the advantage of

the translog is that arbitrary configurations for the matrix of elasticities

of substitution are possible. •The translog generalizes the Cobb-Douglas case

of elasticities of substitution equal to one by adding the second-order terms

so that

and

1

Yii 1a.. = 1 + 2 -11 S. 1  1_

where yij is the coefficient of 1/2 in Pi in Pi and Si is the fitted

share of input i. Clearly, the translog allows variation in these

elasticities across input pairs or prices; and, unlike the Cobb-Douglas or

constant elasticity of substitution (CES), it permits complementarities.

The translog is expressed as

n 1 n n
ln C = a

0 + E a. n P. + E E y.. ln P.
2. j1=1 i=1 j=1 1

n P. + a in Y

n + E S. ln P. n Y + Tt + t E 1 1 Ti n P .
i=1 i=1 3.

where in C is the log of total costs, in Pi is the log of the ith input

price, In Y is the log of output t is time, and n is the number of inputs.
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In order for the translog to satisfy linear homogeneity in input prices,

the following restrictions are imposed on the estimated parameters:

•

Z a. = 1,
i=1 1

E
j=1

E
i=1

E Ti =

i=1

Symmetry in the matrix of elasticities of substitution is generally imposed as

well, _involving the  additional restrictions

for each (i j) combination.

Factor shares are obtained by differentiating with respect to each logged

input price so that

Si
 
= a.

1 
+ in P. + S. in Y + T

1 
t

• 1
j=1 1 

The appearance of output introduces nonhomotheticity, restricting each Si

to equal zero produces the linear expansion path of the homothetic case.

Further restricting 0 to equal zero produces a technology which is

homogeneous of degree WO. Setting 0 equal to one would then yield

constant returns to scale.
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The terms involving time are meant to capture the Presence of technical

change. If there is a sufficient number of observations, variation in

expenditures and factor shares can be explained not only by relative prices

and scale effects but by technical change (Lopez, Berndt and Khaled)--this is

assumed to occur through relating the dependent variables to time. The term

Ti indicates technical change bias, as Ti is greater than (equals or

is less than) zero, technical change is said to be factor i-using (i-neutral,

i-saving). Hicks-neutral technical change (at rate T) occurred if each

T. equals zero.

Binswanger (1974a, 1974b) applied the translog cost function in his study

of technical change although he included time effects only in the absence of

scale effects. Other examples in agricultural economics include Ray, who

considered two outputs (crops and livestock) ;Brown. and Christensen, who

compare short-run and long-run substitution possibilities by introducing fixed

factors, and Ball and Chambers, who examine the structure of the

meat-processing sector in the United States.

The Generalized Box-Cox

Of the class of second-order polynomial flexible functional forms, the

generalized Box-Cox is the most general to date. It includes the generalized

Leontief and generalized square-root quadratic forms as special cases, and the

translog appears as a limiting case. In various forms it has been applied by

Denny, Kiefer, and Berndt and Khaled. The presentation here is taken from

Berndt and Khaled.

The expression for total costs is

= [1 4- x G(p)]lix yKY,P)
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with
n n

G(P) = a + E a. P.(X) + E E y P(x) P.(0,
i=1 " i=1 j=1 

ij 3

P = the vector of input prices,

II,
P) = B + Y + E

i=1V

n P. ,1

101/2

Pi(x). vz

With the restriction that the cost function is linearly homogeneous in input

prices, the following restrictions are introduced:

E y
j=1 

;

= 1 + X a0,

-I
tX 

•
4 .5

'\

E (Si =
i=1

The cost function then reduces to

n n
E E yi

• L\3:) i=1 i=1

1A`
X/2 pX/2 yBLY"'i.

J

The term B(Y, P) involves interactions between prices and output, therefore

producing a nonhomothetic technology. Homotheticity requires that each Si

be zero as in the translog case, and homogeneity of degree (l/B) again
•

follows when 0 equals zero.

To introduce technical change into the generalized Box-Cox cost function,

Berndt and Khaled multiply by the term
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eT(t'P)

n
T(t, P) = IT + E Ti ln Pi ! t.

1=1

The analogy to the translog specification is evident; Ti represents

technical change bias and so on.

Special cases of the generalized Box-Cox are obtained by fixing the

Box-Cox parameter A. When A equals one, the Berndt and Khaled

specification reduces to the generalized Leontief. The generalized

square-root quadratic is obtained by setting A equal to two. Finally, the

translog is a limiting case as A approaches zero.

Expressions for factor shares in the generalized Box-Cox cost function are

produced by differentiation according to Shephard s Lemma. ,The share of

factor i is given by

W2r n
/ E 

P1/1

1i j 

r n n
E E y. plY2

1?:=1 j=1 
13 1 rj .1

Substitution elasticities given by Berndt and Khaled (page 1225) can be

obtained by differentiating once more and rescaling:

(p P .)
x/2

a = 1 -ij A 

1

Fi(Y, t)
+•x  J -

Si

Fi(Y, • F.(Y' ,ifj

•,...111111111.1/11111gA
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and

Fi(Y, t)

aii = 1 - 2 +  S.Si 1

where

and

F F. , tx+ -  S. Sr
1 1

c
ya(Y,P) et(t,P)

F.(Y, t) Fi(Y, t)

F( Y, t . Y + Ti t.

S. S.1 1

Setting X equal to zero, these reduce to the translog expressions for

elasticities of substitution.

The generalized Box-Cox has not been applied in agricultural production

studies except for an earlier version of the present study reported in

Chalfant. The special case of the generalized Leontief has been used by Lopez

in a study of technical change in Canadian agriculture. Chambers and Vasavada

also applied the generalized Leontief to test for asset fixity in U. S.

agriculture.

Local Flexibility

Most applications of flexible functional forms have involved either the

translog or generalized Leontief. Since each permits unrestricted estimation

of elasticities, it is evident that some other criterion is required to select

a functional form for empirical applications. Several studies have considered

this question using a variety of techniques.
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Caves and Christensen use numerical analysis to examine the cases in which

each of these two flexible forms can be expected to satisfy the theoretical

restrictions from consumer behavior. Prior expectations about likely values

for elasticities then can be used to suggest which form might be most

successful in satisfying the theoretical restrictions. Taking demand theory

as a maintained hypothesis permits the choice of functional form to be based

on the ability of each to satisfy the implied restrictions.

Bayesian techniques were used by Berndt, Darrough and Diewert in their

study of Canadian expenditure data. This involved the comparison of

likelihoods for the translog, generalized Leontief, and generalized

Cobb-Douglas. They concluded that the translog performed best of the forms

considered.

-Finally--Monte Carlo-experiments-of-the-sort presented by Wales; Guilkey

and Lovell; and Guilkey,. Lovell, and Sickles can be used. These have produced

mixed results. Wales finds that both the translog and generalized Leontief

successfully approximate a two-good CBS expenditure system. The papers by

Guilkey and Lovell and Guilkey, Lovell, and Sickles consider approximation of

a more general functional form with results less favorable. Guilkey, Lovell,

and Sickles suggest that the translog may be the best of a bad lot.

The generalized Box-Cox is of particular interest in that it allows the

choice among functional forms to be made by statistical inference. Subject to

the validity of the generalized Box-Cox specification as a maintained

hypothesis, tests for the more common flexible forms are constructed as tests

for specific values for X. This would seem to solve the problem of model

selection since each commonly used form is nested in the generalized Box-Cox.
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•

If, in fact, the unknown model is of the generalized Box-Cox form, then

inferences concerning the parameter are valid; and any of the tests from

• nonlinear regression can be used. All of the flexible functional forms,

including the generalized Box-Cox, can be thought of as possible functional

forms for cost functions rather than approximations. However, there is reason

to suspect the validity of such inferences when flexible functional forms are

taken to be only approximations (the more common case). In recent papers

White (1980, 1981) has questioned the practice of treating regression

coefficients as local approximations of arbitrary functions.2 This has led

to an alternative approach to approximation, suggested by Gallant (1981,
•

1982). To introduce these results, it is worth reviewing Diewert's (1974)

discussion of the properties of local approximations.

The ..essence_of_the__cast function-approach-has already been pointed out.

Any function of input prices which meets. certain regularity conditions

(Diewert, 1974) corresponds to some well-behaved production technology and

contains all of the information about returns-to-scale and substitution

possibilities. Atwice-differentiable function for total costs is then

suggested to approximate the true cost function; Diewert suggests a criterion

for the approximation--second-order local approximation.

Diewertts definition of a second-order local approximation g o the true

function g* is that, at some price vector P*,

and

g(P*) = g*(P*),

I:a 

Pi 

g(Pll

.1 

a g*(P)i
a . P. P*

2 2
g(P) 1  g*(P)
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for each (i, j) combination. Barnett (1983) has established that this is

equivalent to the definition used in mathematics.3

It is instructive to consider the theorem and proof provided by Diewert

(1974) to establish the flexibility of the generalized Leontief (unit) cost

function. The theorem (Diewert, 1974, page 115) may be stated as follows:

Given an arbitrary unit cost function C* which satisfies the conditions of

a well-behaved technology and in addition is twice continuously differentiable

at P* > > On, where

* _ a c*(P*) c.3. 8 P.

for all i and

for all i,

defined by

2
_ a c*(P*) 

a P.i

then there exists a generalized Leontief unit cost function C(P)

n n 1 2 1/2CC?) = E E b. P. P.
i=1 j=1 1j 1

which provides a second-order approximation to C* at the point

* 
P
* 

P ).1'

By exploiting Euler's theorem, it can be shown (Diewert, page 159) that

• -
unit costs C*(P*) plus the derivatives C

i 
(for 1 < 1 < < n) and

j 
C.. (for 1 = 1, 2, n) are completely determined by the n first-order11

partial derivativesC . and the n.(n - 1)/2 second-order partiall

•



derivatives C,for 1 < i < j < n. Differentiating the13 

approximating generalized-Leontief form and equating the results produces

* 1/2

E b.
j=1 1

-1121 r * *
i j ij

i = 1,1

10.1M.

i < j < n,

a system of n plus n(n - 1)/2 equations in as many unknowns. The b..'s

(i j) are determined by the latter set; these, in turn, imply the bf s

through the first n equations. As Diewert concludes, "at the point

P*>>0n C(P*)=C*(P*) and the first and seconu order partial derivatives of

C and C* will coincide."

Local flexibility is, therefore, established by verifying that, for any

price vector P* and arbitrary cost function C*, the system of equations

described by Diewert can be solved. For the system of equations to be

satisfied for any C*, it should be possible to solve these equations when each

is independent. This allows approximation of cost functions with any

configuration of second derivatives and translates into a statement about the

number of parameters required in the approximating function. That is, local

flexibility is satisfied if the approximating function has enough parameters

to permit all possible values of second derivatives--enough parameters to make

each equation (derivative) independent.

Perhaps this is best illustrated by example--the Cobb-Douglas is not

locally flexible as the elasticity of substitution must be one; second

derivatives are implied by the first derivatives. The translog generalization
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of the Cobb-Douglas achieves local flexibility by the addition of the

second-order terms--any values for substitution elasticities can be obtained

in the translog form.

It is important to note that, while the translog features additional

parameters by extending the Cobb-Douglas to the second-order and that this

produces the second-order Taylor series interpretation, Diewert's definition

of flexibility does not require a quadratic form or a Taylor

approximation--only a twice-differentiable expression. Also, Diewert's proof

does not require that there be the same number of parameters in the

approximating form C(P) as derivatives of interest in the "true" form C*(P).

That is, while the second derivatives turn out to be

* * -1/2
b .(P. P.)i 1

for the generalized Leontief and translog, respectively, it does not change

Diewert's result if they are of a more general form such as

or

Y13

* 
P1)-'112 + pY

Asecond-order local approximation can still be obtained.

One never actually solves the system of equations, so these expressions

would simply permit more generality in the specification. The statistical

formulation must be such that a unique set of parameters for the flexible
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functional form is produced in estimation. If so, then we can conclude that

any expression with enough parameters to allow independent estimation of each

element in the matrix of second-order partial derivatives qualifies as a

(locally) flexible functional form.

Reflecting on Diewert's proof of local flexibility, it is evident that to

repeat such a process in applied work requires knowledge of the true function,

in which case approximation is unnecessary. Empirical practice is instead to

use regression techniques to estimate the parameters of the flexible form and

local flexibility then represents a criterion to select a specification for

regression. Since it involves only a statement about the number of

parameters, it is unfortunately, not a very selective criterion. Perhaps

this explains the focus on the locally flexible form as a Taylor approximation.

- -Essemially--i-the-commord-r-used-locally-frexible functional forms are

quadratic forms expressed in terms of some transformation of price--logged

prices in the case of the translog, square roots of prices in the generalized

Leontief, and so on.• Treating the terms in the remainder as third- and higher

order derivatives the coefficients can, of course be related to the unknown

function's derivatives. In the case of the translog, at the point'of scaling

it is believed that

in C is estimated by ao,

8  in C 
8P by S11

in C 
ln P by S22

and so on. The flexible form is in this fashion interpreted as a Taylor

series approximation.
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By focusing on the error* term, Barnett (1983) points out that the Taylor

interpretation provides little in the way of support for the locally flexible

functional forms. The approximation is valid only within some neighborhood

which may not include all of the data. Furthermore, the results he presents

from the mathematics literature do not apply to the fixed-order (second-order)

approximations used in the common locally flexible functional forms. This

leads Barnett to accept Diewert's approach to local flexibility, being the

same as the mathematical definition of a second-order local approximation, but

to take issue with the common practice of "further limiting the definition of

the class of second-order approximations to include only second-order Taylor 

series expansions."

Of a more crucial nature for the interpretation of the results from

standard demand analysis are the findings concerning the actual behavior of a

Taylor series approximation in a regression setting. References include

Gallant (1979), Kumm, and Barnett (1983); but the first to draw the

implications for flexible functional forms appears to be White (1980).

Standard practice is to regress factor shares and possibly total expenditures

on logged prices and output; regression coefficients are then interpreted as

the coefficients in the Taylor series--the derivatives of the unknown function

at the point of approximation. Furthermore the point of approximation is

assumed to be the point of scaling which is generally either the sample mean

or a particular observation.

However, White (1980) showed that regression does not produce the

coefficients of the Taylor series unless the true function is of that form.

This is evident, considering the nature of the remainder terms, these can

become quite large away from the point of approximation in a Taylor series
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but approach zero as that point is reached. Regression, on the other hand,

attempts to make errors of approximation small over the range of the data.

What does this imply for demand analysis? Essentially, it implies that

the estimated parameters of locally flexible functional forms do not

consistently estimate parameters of the true function unless the latter is of

the approximating class. Elasticities obtained are, therefore, also

inconsistent. Diewert's proof then indicates that locally flexible functional

forms could take on arbitrary configurations of elasticities--not that they

will do so in practice.

The Taylor series interpretation seemed to restrict the class of flexible

forms to quadratic forms with the empirical task remaining being simply to

determine the appropriate transformation of the independent variables.

However, the observations of White (1980), Barnett (1983), and others indicate

that the Taylor approximations have no apparent advantage over any functional

form with a sufficient number of parameters to satisfy the definition of local

flexibility. Furthermore, the model specification remains as a joint

hypothesis in any inferences about elasticities. Whether one should prefer a

Taylor approximation or some other locally flexible functional form as a

maintained hypothesis is not clear.

White (1981) extends his results to nonlinear models and shows that the

least-squares estimator converges to a least-squares approximation to the true

model. This approximation is the parameter vector 0* which minimizes the

prediction mean squared error

S ( ) = 5[g(z) h(z dF(z),

where g(z) is the correct model, h(z, 0) is the approximating form; F(z) is

the distribution function of the vectors z, and integration is over the range
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of z. That the derivatives of h(-) evaluated at 0 and a particular zo

need not resemble those of g(-) at zo is evident; least squares weights

errors in predicting the response but not the derivatives of the unknown

response function. Furthermore, it weights errors throughout the data rather

than only at a point of approximation. As a result, fitted residuals may

differ from zero at every point including the point at which the data are

scaled. •This is in contrast to the Taylor series approximation, which places

a large cost on being wrong at the point of approximation, but zero cost of

errors elsewhere in the data space.

The Fourier Flexible Form

Each of the flexible forms mentioned thus far presumably satisfies the

conditions set forth by Mite (1980, 1981); given those regularity' conditions

---and-the—dhseiceTuf—sidth errors as the—Imi5Foper aggregation of inputs, the

estimated parameter vectors are strongly consistent for some asymptotic

least-squares approximation of the unknown model. •The asymptotic

approximation, according to White (1981 page 420) minimizes the prediction

mean squared error. However, optimal properties for the estimation of the

derivatives of the unknown model (elasticities) do not follow. Essentially,

this is due to the fact that the Taylor approximation criterion, which does

produce derivatives of the unknown function at the point of approximation,

does not require an approximating functional form to emulate the unknown

response surface. While Taylor approximations do hold in local neighborhoods,

White (1980, 1981) has established that the least-squares technique is

inconsistent with such an approximation. Regression with a second-order

specification, therefore, cannot be given a Taylor approximation

interpretation; the model specification must be a maintained hypothesis.
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The problem is that the measure of approximating error used to link the

Taylor approximation to the true function is irrelevant in empirical

practice. Statistical techniques do not place all the emphasis on not being

wrong at one point. However, that is the Taylor criterion for approximation,

see Barnett (1983) for a discussion of the details.

An alternative measure of approximating error is suggested by these

observations--one which is large when the relevant errors of approximating a

cost function are also large. Gallant (1981) suggests the Sobolev norm as the

appropriate measure. The Sobolev measure of the distance of an approximating

function g(x) from the true g*(x) is

iig* glim,P w =
P

E 1101 g* - D-1 dw(x)
IU1*<111

1 < P < co

where m denotes the largest order derivative of g which is'of interest,

EP denotes partial differentiation, w(x) is a distribution function, and

IP is the region of approximation.

Why is the Sobolev norm relevant for demand analysis? Our interest is in

approximating not only the unknown function but first and second derivatives;

accordingly, one should seek out a measure of errors of approximation which

emphasizes derivatives as well as errors in approximating the function. The

Sobolev norm does exactly that. To make the Sobolev norm useful for

applications, however, requires a flexible functional form which can make it

small in empirical applications.

Gallant (1981) shows that an expansion in a Fourier series will

approximate closely an arbitrary function, with "close" being measured by the

Sobolev norm. Based on this finding, it can be assumed that every unknown
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•

eost function has a representation as a Fourier series. The representation

improves in quality as more terms are added to the Fourier series so that

asymptotically the Sobolev measure of approximation error can be made

arbitrarily small. The derivatives of the Fourier series representation then

represent the derivatives of the unknown function.

The task of empirical demand analysis can then be shifted to finding the

appropriate vector of parameters of the Fourier series approximation. Some

vector 0* exists which makes the Sobolev norm,

s(o*) = ilg*

arbitrarily small; perhaps this requires an infinite number of parameters.

With a limited number of parameters K, some 00 would be available to

minimize SK(0) where

0 < S(o*) < SK (0 )

because 0
0
 represents the parameters of a truncated Fourier series. It

follows that applying least squares or some other estimation criterion

produces an estimate 00 such that

0 < S(o*) < S
• •••••••

The estimate 00 is consistent for 8° as long as the estimation

procedure is a good one., consistent estimation of elasticities has been shown

by El Badawi, Gallant, and Souza to follow.5

Let us summarize the distinction between the polynomial approximation

approach and the Fourier approximation. The goal in demand analysis is to
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approximate the derivatives of a function as well as the function itself, and

a local approximation exists in the form of a second-order Taylor series. The

• parameters of the Taylor series are the derivatives of the unknown function at

the point of approximation. However, because the approximation is local,

estimation of the parameters using a global approximation method, such as

least squares, generally leads to biased and inconsistent estimates of the

derivatives of the unknown function.

Barnett (1983) argues convincingly that there is nothing in the definition

of second-order approximation to suggest limiting attention to the class of

second-order Taylor series approximations. However, the use of other

approximating forms which are locally flexible, such as the generalized

Cobb-Douglas (Diewert, 1973), does not improve matters of approximating

derivatiyes vniess the correct_functional_form_is used. The problem is one of

focusing on a local approximation criterion in obtaining the specification,

but estimating its parameters based on a global technique (least squares).6

Unless the least-squares estimator converges to the true parameter vector,

rather than a least-squares approximation, the derivatives of the function,

even at the point of approximation, need not be consistently estimated by the

derivatives of the locally flexible functional form.7

It does not seem promising to focus on estimation techniques which do not

emphasize a good fit throughout the data. Rather than "throwing away"

information away from the point of approximation, we can focus instead on a

global approximation technique consistent with least squares or other

estimation procedures. It is not so much that global approximation is

preferred to local, although that seems obviously so if global approximation

imposes no additional cost in estimation. Instead, the situation is one in

which no estimation technique can produce the local approximation.
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A global approximation to a function and its derivatives exists in the

form of a Fourier series with the quality of approximation improving with

additional terms in such a way that approximation errors can be made

arbitrarily small over the entire range of the sample. To within irrelevant

approximation errors, therefore unknown functions can be expressed as a

Fourier series throughout their domain rather than at a particular point,

i.e., all of the information relevant for demand analysis (the function,

together with its first and second derivatives) is preserved.

The upshot is that one can fit the unknown model. or its identical (for our

purposes in demand analysis) Fourier series representation. Not all cost

functions can be expressed as a translog; they can be expressed as a Fourier

series. Following Barnett's terminology, we can designate this property

__global flexibility. Of course, the vector of parameters of the Fourier serie,s.

is unknown. Estimation based on a Fourier series, however, produces a

consistent estimator of that parameter vector.

This is no different than what estimation accomplishes in the presence of

misspecification according to White—consistent estimation of an approximating

function. However, because both the Fourier series approximation.and the

least-squares estimation procedure attempt to fit the unknown function

throughout its domain, the derivatives (and, hence, elasticities) of the

Fourier series approximation do resemble those of the unknown function. While

the estimated vector of parameters of the approximation need not produce the

global minimum for SK(0°), the 00 which does so is consistently

estimated. This is all that is ever hoped for in regression settings even

when the functional form is not at issue.

The reader is referred to El Badawi, Gallant, and Souza for details

concerning the requirements of the estimation procedure and the proof of
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consistency in estimation of elasticities, we now present the logarithmic

version of the Fourier flexible form introduced in Gallant (1982). The

discussion is a review, and the reader may wish to consult Gallant (1982) for

the complete development or Chalfant and Gallant for an example expressed

without the simplifying notation.

Let ka denote a vector of integers or a multi-index. These can be

used to denote partial differentiation so that

where

n

Iiti=1

is the norm of a multi-index of length n. Multi-indexes are also used to

represent the Fourier flexible form.

Let KT denote the number of parameters, possibly a function of sample

size T. The logarithmic version of the Fourier flexible form is

with

1(x10) = u + b' x + -z x' Cx

A
- 
vja sin(jX k' x ]UOa 2E uj cos(jX k' x

a=1 j=1 a s a s a

x
AP PIP
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and scaling factor Xs defined below,

2 A
C = -Xs E u

a=1 a a a'

A, the number of multi-indexes; and J, a positive integer.

Choice of A and J determines the number of parameters, KT. A reasonable

choice for four inputs is to set the largest norm of the included multi

indexes at 3; then A = 19. With J = 1, this produces a parameter vector with

length 63. However, due to the homogeneity restriction, 10 of these are not

free parameters. Nine are redundant terms in the matrix C, and one is the

element in the vector b corresponding to the deleted input share.

Gallant (1982) proves that it is sufficient to consider only those multi-

indexes involving contrasts among the input prices when using gv (-) to

-algptoxiiriaie—a-riffearly homogeneous cost function. The 19 multi-indexes for

the Fourier flexible form estimated in this paper are illustrated in table 1.

Prior to estimation, it is necessary to rescale the data--the Fourier cost

function is periodic, so data must fall within (0, 27). Rescaling is

accomplished by the following procedure.

First, from each member of the logged series of exogenous variables,

subtract the minimum of that series and then add some c, say, 10-5. The

result is a rescaled set of exogenous variables, between c and ... Next,

rescale any covariates such as output by the scalar

log (maximum rescaled price) + r A =
l maximum value of the covariate og/ 'l •(

\.-iiarliimum value of the covariatel

Finally, all data are rescaled by

XS 1og (maximum rescaled price)
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Table 1. Scaling Factors and Multi-Indexes for the Fourier Flexible Form
(KT = 63

in P1 ln(0.69108) +

= in P2 • 
- ln(0 8975S)

n P3 - 
ln(0.69348) + c-

P4 = in P
4 

- ln(0.40279)

= 
A[ifl Y - ln(0.69880) +

ln(2.36809) - ln(0.40279) + e 2.72907 C-2—int17337351----Int0:698801 -+ c

ln(2.368-09) - ln(0.40279) + E - 3.38709

= 10-5

Multi-indexes Old* < 3

3 4 6 7 9 10 11 12 13 14 15 16 17 18 19

0

-1

0 -1
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The resulting time series of exogenous variables is restricted to the (0,

21-0 interval. This is the vector x described previously. Scaling factors

for the agricultural production data are also presented in table 1.

Differentiation of the logarithmic Fourier flexible form produces share

equations of the form

A J
Vg ( le)= b -x -111Uoa AS k' x + 2 E j[u. sin0 A k' )s , a a

a=1 '!.-

+ • ot cos(j A kc't x )]*-)]'çn 

where V denotes the gradient vector formed by differentiating with respect

to the logged input prices. An expenditure system is then formed, for

estimation with the seemingly unrelated regressions technique with the cost

function and n - 1 of the share equations. This system is linear in the

parameters. Using estimated parameters, elasticities of substitution are

obtained from expressions for second derivatives contained in Gallant (1982)7

Prior Experience With the Generalized
Box-Cox and Fourier Flexible Forms

The generalized Box-Cox was used by Berndt and Khaled in their study of the

U. S. manufacturing sector. They apply the cost function to the capital,

labor, energy, and materials (KLEM) data of Berndt and Wood to reconsider the
•

question of energy-capital complementarity without the translog assumption.

The complementarity finding is supported still; the translog is not. They

find that models near the translog case of A = 0 are rejected as is the

generalized square-root quadratic. The generalized Leontief cannot be

rejected.
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In the production context; prior experience with the Fourier flexible form

consists of an application by Gallant (1982) to the same data and a Monte

Carlo experiment by Chalfant and Gallant.8 Gallant's application to the

Berndt and Wood data permits a comparison of the logarithmic Fourier flexible

form with the generalized Box-Cox; the findings do not permit the

energy-capital complementarity conclusion. In the case of a homothetic

technology, the estimated elasticity of substitution between energy and

capital for 1959 is -4.2067, but the standard error is 3.4998. In the

nonhomothetic case, this elasticity is estimated as (1.6613. Finally, Gallant

and Golub present a case in which the cost function is restricted to be

quasi-convex at the 1959 prices--the elasticity becomes 1.1704.9

The Monte Carlo results of Chalfant and Gallant indicate that the

logarithmic Fourier form succeeds in obtaining an unbiased estimate of the

partial elasticity of substitution. This finding holds for hypothetical

technologies throughout the range of the generalized Box-Cox parameter from 0

to 2. Because it approximates the entire range of the generalized Box-Cox

with negligible bias, the Fourier flexible can, therefore, be expected to

approximate any unknown function which would be well approximated by the

locally flexible functional forms. Given the less favorable results obtained

by Guilkey and Lovell and Guilkey, Lovell, and Sickles, these results suggest

that the Fourier flexible form offers an attractive alternative for cost

function studies.

Of course, the utility function of the hypothetical researcher Chalfant

and Gallant have in mind includes only one argument--unbiasedness. In

applications it is likely that stable estimates of the elasticities of

substitution will also be desirable. Given the possible variability of the

Fourier flexible form estimates, due to the increased number of parameters, one
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would prefer further experience with specific data sets to obtain some notion

of the extent of variability.10 If there appears to be a trade-off between

• unbiasedness and stability for fixed data sets, further research along the

lines of Gallant and Golub is suggested concerning restrictions on the

curvature of flexible forms. Gallant (1982) also suggests using the approach

of smoothness penalties (Wahba).

For the Monte Carlo experiment of Chalfant and Gallant, the production

technology is known to exist since it was used to generate the data.

Elasticities were evaluated only at the mean price vector; it will be useful

in Monte Carlo contexts to consider the behavior of estimated elasticities

throughout the data. This will indicate the extent to which unstable

elasticities are due to the specification and the extent to which the data

simply were not generated from a well-behaved technology.

Application to U. S. Agricultural Production

The flexible functional forms described previously are now applied to the

estimation of elasticities of substitution for U. S. agricultural production;

Specifically, we consider the extent to which it matters which flexible form

is used. This section includes a description of the estimation procedure and

the data followed by empirical results. We conclude with some observations

and suggestions for further study.

Estimation

The estimation procedures used are iterative versions of seemingly unrelated

regressions [Zellner, Gallant (1975)]. The SYSNLIN procedure of the

Statistical Analysis System (SAS) was used for the generalized Box-Cox in an

iterative version of the seemingly unrelated nonlinear regressions estimation
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technique described by Gallant (1975). FORTRAN code was used for the Fourier

form which is linear in the unknown parameters. The seemingly unrelated

regressions technique is preferred because contemporaneous correlation is

likely among the residuals in demand equations and because it permits

convenient imposition of across-equation restrictions.

In demand systems with n goods, it is well known that the covariance

matrix is singular, requiring deletion of one equation from the system. In

order that results be invariant to the choice of equation for deletion, the

contemporaneous covariances across equations are recalculated and the

parameter vector updated until convergence.

Capps provides an excellent description of the estimation of demand

systems, comparing the iterative seemingly unrelated regressions and

maximum-likelihood methods in an application of the linear expenditure

system. Barnett (1976) discusses the conditions under which iterative

seemingly unrelated regressions is equivalent to maximum likelihood in the

nonlinear case, for the linear case, equivalence of the two approaches was

established by Kmenta and Gilbert.

• The Data

Four inputs are used in this study--capital, intermediate inputs, labor, and

land. While the U. S. Department of Agriculture reports expenditures for a

large number of inputs, it would require an extremely long time series to fit

an expenditure system to more than four or five inputs. Therefore, it is

necessary to aggregate. A brief description of the data follows. For a

complete description and listing of the variables, see Appendix A.
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Expenditures on capital services are the sum of reported expenditures for

repairs and operation of all motor vehicles and machinery, total depreciation

on motor vehicles and other machinery and equipment, petroleum fuel and oils,

machine hire and custom work, electricity, estimated taxes on farm capital,

and estimated interest expense.11 An index of the rental rate for capital

was constructed by dividing expenditures by an index of the quantity of

capital used.

The expenditures on this class consist of feed; seed, and livestock purchases

plus expenditures on agricultural chemicals (fertilizer, lime, and

pesticides). A price index for intermediate inputs was constructed. Since a

pesticide price index is only available for a part of the sample period, it

could not be used. Instead, expenditures on agricultural chemicals were

divided by an index of agricultural chemicals used to produce a price index

for that portion of the intermediate inputs expenditures. A Tornquist price

index for intermediate inputs was then constructed using the four categories

and associated price indexes. Abase year of 1967 was used.

Expenditures on labor services consist of total farm wages including contract

labor and the value of perquisites. The index of wage rates provides the

corresponding input price.

Expenditures on land consist of repairs, maintenance, and depreciation of

service buildings and structures, estimated tax payments, and estimated

interest payments. The corresponding rental rate for land is obtained by

dividing by the number of acres in farms.
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The Generalized Box-Cox Cost Function

The generalized Box-Cox cost function was estimated using the SYSNLIN

procedure of SAS (Release 82.3). The estimated parameters are reported in

table 2. The weighted error sum of squares is 144, indicating convergence of

the estimated parameters 12.

One interesting finding is that the estimated X is approximately 2.4.

This is far from the translog case (X 0) as well as the generalized

Leontief. In fact, this application of the generalized Box-Cox suggests that

the generalized square-root quadratic would be more appropriate for this

agricultural production example.

The generalized Box-Cox was reestimated subject to three restrictions on

the parameter X. These were X = 0.1 (a case near the translog), X = 1

(generalized Leontief), and X = 2 (generalized square-root quadratic);

weighted error sums of squares were 161.92, 197.75 and 150.,51, respectively.

Using the likelihood ratio test (Burguete, Gallant and Souza), all three

restrictions are rejected by comparing the differences in weighted error sum

of squares from 144 (the unrestricted result) with the 5 percent critical
2value, yi = 3.84.

Homotheticity was also imposed, by restricting each (bi to equal zero.

For the homothetic generalized Box-Cox, the weighted error sum of squares

rises to 335.39. The homotheticity restriction, therefore, is rejected by the

data. It turns out that, if homotheticity is imposed, the generalized

square-root quadratic fits better than in the nonhomothetic case as the

estimated X is now 1.993972, with standard error 0.1072029.

Elasticities of substitution in the generalized Box-Cox were calculated

for each pair of goods at each data point. These are reported, for the 1967



Table 2. 2. Nonlinear Iterative Seemingly Unrelated Regressions

Estimates--Generalized Box-Cox

Free Standard

parameters Estimate error

X 2.383083 0.162252*

Yll -0.108727 . 0.0300246*

Y12 0.179068 0.0182710*

Y13 0.094014 0.0151879*

Y14 0.125590 0.0164128*

Y22 -0.011709 0.0111982

Y23 0.048004 0.0113066*

Y24 0.146048 0.0140102*

133 -0.098169 0.0102197*

134 \ 0.060593 0.0055438*

Y44 0.027934 0.0043416*

6 0.694451 0.0261009*

0 0.135344 0.2284396

4)1 0.138634 0.0508670*

4)2 0.208051 0.0488330*

.4)3 -0.176970 0.0263920*

*Significant at the 5 percent level. •
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observation, in table 3.13 Estimated elasticities for the various

restricted cases are also reported.

The effect of imposing the various restrictions on the generalized Box-Cox

can be seen in the table. First of all, the own-elasticities take on the

expected negative sign in each case. This is true for all years except for

a
11 in two years in the case of X = 0.1. All signs appear stable at the

point of approximation, with only a12, G13' and a24 in the case where X =

0.1 and a34 in the homothetic case changing sign from the maintained model.

On balance, the generalized Box-Cox appears to fit well. Plots of

predicted values against the observed data suggest that the estimated

parameter vector is a global minimum. Furthermore the results are

plausible--the model satisfies the theoretical •restriction of negative

own-elasticities at all data points. Inputs appear to substitute for each

other, although a14 is negative for the years prior to 1956, and an

is negative after 1974; see Appendix B for the unrestricted generalized

Box-Cox results for all observations.

Unrestricted Fits of the Special Cases

We have presented elasticities of substitution estimated from various special

cases of the generalized Box-Cox. These are obtained by using the covariance

matrix from the generalized Box-Cox to estimate each restricted version and

then using parameter estimates and predicted shares and expenditures to

calculate elasticities. Referral to table 3 indicates that, at least for the

generalized Leontief and generalized square-root quadratic, while we reject

the restriction on X, elasticities seem somewhat unaffected. The translog

and homothetic generalized Box-Cox appear a little less similar to the

unrestricted generalized Box-Cox.



-34-

Table 3. Estimated Elasticities of Substitution: Generalized Box-Cox

Homothetic Generalized

generalized Generalized square-root Near-

Generalized Box-Cox Leontief quadratic translog

Box-Cox = 0 Vi.) (X = 1) (X = 2) (x = 0.1)

all - 2.366

al2 0.889

al3 2.745

al4 0.216

Y22 0.911

a23 0.308

a24 0.109

133 -11.303

134 0.759

J44 - 0.503

- 1.220

0.179

1.589

0.414

- 1.316

2.016

0.564

-10.616

- 0.352

- 0.796

- 2.728

1.601

1.835

0.106

- 1.645

0.274

0.250

-11.932

1.686

- 0.827

2.590

1.166

2.562

0.177

- 1.172

0.208

0.175

-11.729

1.128

- 0.648

-0.266

-0.085

-0.222

0.365

-0.409

1.757

-0.030

-8.755

0.959

-0.543
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In practice, one does not fit the special cases for A as restrictions;

rather, they are maintained hypotheses. For comparison of the performance of

flexible forms then it is of interest to estimate them using the same

iterative technique as for the generalized Box-Cox.
14 

Table 4 contains the

results for the three flexible forms which are special cases of the

generalized Box-Cox as well as the case near the translog with A = 0.1.

As unrestricted models, the translog and near-translog cases no longer

feature negative own-elasticities of substitution at all observations. The

translog does not produce negative own-elasticities bf substitution at all

observations. Positive signs are obtained for 18 of 36 years for all and

23 of 36 years for 022. A similar result occurs with the case A = 0.1.

Also evident from table 4 is that the flexible forms do not appear as

similar as when they were estimated as restrictions in the generalized

Box-Cox. The difference is quite evident in the generalized Leontief and

generalized square-root quadratic which had very similar elasticities in

table 2. Now they differ by more. Each has negative own-elasticities at each

observation. However, cross-elasticities vary between the forms. The

elasticity of substitution between capital and labor, 013, does not even

have the same sign in the two models.

Should we consider this variation large? Of course, it depends on the

context, perhaps it would not matter in some contexts which flexible form is

used. However, we have little to tell us whether we should expect more or

less variation in other examples. Clearly, we should consider this question

further.

Each of the locally flexible forms is able to attain arbitrary values at a

particular observation. The fact that they can vary in the values produced

suggests we should seek some criterion to determine which form is appropriate.



Table 4. Estimated Elasticities from Unrestricted Fits of Special Cases of

the Generalized Box-Cox

Generalized

square-root Generalized

Translog A = 0.1 quadratic  Leontief

all

al2

013

al4

(122

a23

024

a33

a34

a44

-0.026

-0.850

0.603

• 0.681

0.088

2.356

-0.048

-9.956

0.017

-0.522

0.492

-0.782

-0.783

0.581

-0.045

2.497

-0.020

-7.405

0.320

-0.553

- 2.800

1.252

2.661

0.221

- 1.189

0.038

0.176

-11.006

1.034

- 0.658

-0.741

0.308

-0.390

0.425

-0.746

1.563

0.023

-8.596

1.290

-0.751
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Prior expectations about elasticities will help. Also, the generalized

Box-Cox can be used to select among the various forms. In our example, it

rejects each; but as it qualifies as a functional form in its own right,

perhaps this is of no consequence.

On the other hand the generalized Box-Cox can only select from among the

locally flexible forms which have a Taylor series interpretation. As was

pointed out above, Barnett (1983) has shown that restriction to the Taylor

class is inappropriate. Hence, we would be unable to rule out forms such as

the generalized Cobb-Douglas or Barnett's Laurent series approach. The

generalized Box-Cox then only partially solves the functional form problem--we

must restrict attention to the forms based on a Taylor series.

The Fourier Flexible Form

.Gallantls4-1,98-2)  logar-i-thmic----Fourler—f-1-e-xibie- form represents a different

approach to determining the appropriate functional form. Rather than choosing

from among a set of locally flexible forms which is potentially large, the

Fourier form is a means of minimizing the average specification bias

throughout the data. With a sufficient number of parameters in the Fourier

series, average bias can be made arbitrarily small.

In this application, a 63-parameter specification has been used. No

attempt has been made to test alternative specifications with the exception of

a restriction to homotheticity. The estimated parameters and standard errors

are reportedin table 5.

These parameters are of little interest unless one is attempting to choose

alternative parameter settings. Then significance of included parameters is

of interest in the same fashion as when choosing .a lag length. However,

having our estimated parameters, we can compute elasticities of substitution.

These are given for the 1967 prices in table 6 and for all years in, Appendix B.
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Table 5. Estimated Parameters and Standard Errors of .the Fourier Flexible Form

Parameter Estimate
Standard
error . Parameter Estimate

Standard
error

01
02

-0.75904

0.22832

0
3 . 0.34590

04 0.17784

e5 0.24794

06 0.38069

07 0.00466

08 -0.00680

09 -0.00686

010 0.00131

11 -0.00326

12 -0.00057

013 0.00374

014 0.00096
  _

e15 -000121 

016 -0.00743

017 0.00153

018 -0.00226

019 -0.00410

e20 0.00043

021 0.00238

022 -0.00799

023 -0.00088

024 0.00047

025 -0.07054

26 0.03550

027 -0.00597

028 2.509 x 10
-5

029 -0.00204

030 0.00275

031 0.00615

0.034883

0.037517

0.022486

0.034405

0.013070

0.086536

0.010040

0.00845208

0.00505149

0.00650290

0.00125019

0.00046882

0.00348896

0.00053991

-000071969

0.00712296

0.00168230

0.00085437

0.00220881

0.00027217

0.00054193

0.00390264

0.00067876

0.00151142

0.040590

0.020780

0.00363282

0.00253177

0.00066215

0.00152127

0.00450607

032
033
034
035

036

037
038

039
040
041
042
e43
044
e45

°46
047
e48
049
050
051

052
053
e54
e55
056
057
058
059
060
e61
062

063

0.00049 0.00052811

-0.00167 0.00043620

0.0 0.0

0.00064 0.00036469

0.00068 0.00039540

0.0 0.0

0.00292 0.00123047

0.00081 0.00093552

0.0 0.0

0.00034 0.00022040

-5.119 x 10
-5 

0.00022878

-0.00253 0.00394332

-0.00222 0.00063494

-0.00301 0.00060255

0.0 0.0

-0.00060 0.00078168

0.00169 0.00117018

0.0 • 0.0

-0.00015 0.00174626

0.00053 0.00149652

0.0 0.0

-0.00032 0.00055076

0.00261 0.00057660

0.0 0.0

6.173 x 10
-5 

0.00048091

0.00062 0.00050166

0.0 0.0

0.00224 0.00083477

-0.00022 0.00084061

0:0 0.0

0.00275 0.00123795

-0.00162 0.00135416
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Table 6. Estimated Elasticities of Substitution from the

Fourier Flexible Form

Nonhomothetic Homothetic

all

al2

al4

a22

a23

a24

033

a34

a44

-0.632

0.081

-0.026

0.412

-0.705

0.753

0.454

0.962

-1.075

-0.470

-0.688

0.889

-0.396

-0.229

-1.775

0.578

0.892

-2.871

0.685

-0.938
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As was the case with the translog, the logarithmic Fourier flexible form

does not produce uniformly negative estimates of own-elasticities of

substitution. In this case, for the year 1967, the own-elasticity Of

substitution for labor, a33, is positive. At least, this estimate has a

relatively large standard error of 2.21148 so that we would not reject the

hypothesis that this value is nonpositive.

Referral to Appendix B indicates a number of positive own-elasticities.

As this was also the case with the translog, perhaps this is not unexpected.

The Fourier form includes the translog as a special case with the sine/cosine

terms added. As evidence from the generalized Box-Cox rejects the

logged-price specification, it may require additional sine/cosine terms to

reduce specification bias to an acceptable level.

-01-co-urseifthe-estimatioir-procedure-can--ble-modified to impose curvature

restrictions with the same number of parameters. When those are correct

restrictions, there is a gain in efficiency.

As was pointed out above, we should perhaps not be too surprised if

microeconomic restrictions do not appear to hold for aggregate data. If the

goal is to determine whether a well-behaved aggregate. technology 6cists or is

to compare functional forms, the unrestricted model seems of interest. For

applied work, it is probably more appropriate to impose the restrictions,

although the example provided by Gallant and Golub indicates that the

programming task is formidable.

The homotheticity restriction is imposed by reestimating the model with no

interaction between output and the input prices. This involves deleting the

last 12 multi-indexes. The Fourier form with homotheticity imposed features a

weighted error sum of squares of 978.937 or an increase over the unrestricted
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2
model of 834.940.

1.5 Comparison with the x1 value 
of 3.84 indicates that,

again the restriction to homotheticity is rejected.

Elasticities of substitution were calculated for the homothetic case. For

1967 prices these are presented in table 3, a negative value is obtained for

(533. The restriction does not avoid the problem of positive own-elasticities--

there are 18 out of 144.

Summary and Conclusions

• This paper has reviewed the literature on flexible functional forms.

Specifically, interest has centered on the model selection problem. Two

approaches to choosing among functional forms were outlined.

The generalized Box-Cox of Berndt and Khaled nests some of the previously

used locally  flexible forms in a more  general specification. Tests for

special cases are easily constructed by restricting the Box-Cox parameter

A. Also, the generalized Box-Cox qualifies as a functional form in its own

right.

The application to agricultural production data indicates that plausible

results are obtained for elasticities and that special cases previously used

in agricultural production studies (the translog and generalized Leontief) are

rejected. While this did not affect estimated elasticities as much in the

case where the generalized Box-Cox was maintained unconstrained estimates

using the other locally flexible forms produced fairly wide variation in those

elasticities. The practical implication appears to be that changes in A,

with a fixed variance matrix do not affect elasticities much but that when

the variance matrix is reestimated iteratively, variations in A do lead to

different conclusions about substitution possibilities. Further experience is
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required to indicate the extent of variation one should expect--both Monte

. Carlo studies and comparisons with specific applications will be useful.

The logarithmic Fourier flexible form was suggested by Gallant (1982) as

an alternative approach to model selection. All cost functions can be

expressed in Fourier series form, allowing specification bias to decrease to

arbitrarily small levels as additional parameters are included. This is in

contrast to the generalized Box-Cox which is usually taken as an

approximation. White's (1980, 1981) results indicate that, when the true cost

function is not of the generalized Box-Cox class, estimated elasticities are

biased, even asymptotically.

The application of the Fourier flexible form to the agricultural

production example indicated that it fails to satisfy the desired curvature
•••••••••'-•••

restrictions on the cost function. Estimated own-elasticities of substitution

. were positive roughly one-fourth of the time.

There is no reason to expect these restrictions to hold--the aggregate

technology could simply fail to satisfy these restrictions. This raises a

question: Why is there such a different result for the generalized Box-Cox?

I believe that specification tests will help answer this question.

Essentially, we would like to know whether the Fourier form is "overfitting"

the data or the generalized Box-Cox is "underfitting."

However, even with the aggregate data, for most purposes, elasticities are

useless without being consistent with theory. Since the whole point of a cost

function approach is to maintain the connection with the theory of the firm,

it will be fruitful to explore estimation procedures with the Fourier form

which produce the desired signs. Whether this is best accomplished through
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the Gallant and Golub approach of imposing appropriate restrictions on

parameters or by some alternative to the seemingly unrelated regressions

technique remains to be seen.

It is beyond the scope of this comparison of flexible forms to take on

these questions, but to summarize, it appears that there are a number of

questions which remain. A useful way to view these problems is to add at

least one argument to the researcher's utility function. Along with unbiased

estimates of elasticities, the properties of precision or stability in

elasticities are desirable. Neither the appropriate.marginal rate of

substitution between these two goods nor the extent to which the "market" in

flexible forms allows trade-offs to be made has been established. Monte Carlo

results have established that unbiasedness does follow with the Fourier

flexib119rm but not with the locally_flexible forms; each of these results

is consistent with theoretical findings .by White (1980, 1981) and Gallant

(1981, 1982).

The application presented in this paper indicates that the

bias-instability trade-offs can be substantial. The Fourier form with

desirable properties concerning bias, features much greater oscillation in

estimated elasticities than does the generalized Box-Cox. As El Badawi,

Gallant, and Souza point out bias minimization and accurate estimation are

conflicting objectives.

The usual bias-variance trade-off involves the deletion of variables to

reduce variances. A similar effect appears to be present in the variation of

estimated elasticities from year to year. The degree of variability will vary

from application to application as will the appropriate levels of bias and.

instability. Further research is called for to adjust estimation procedures

and model specification to improve the attainable levels of each.
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APPENDIX A

VARIABLE NAMES AND DEFINITIONS

YEAR = calendar year, 1945-1980.

CPI = consumer price index, 1967 = 100 (ECIFS 1-1, page 86).

Q = index of agricultural output, 1967 = 100 (ECIFS 1-3, pages 8

and 9).

QC = index of agricultural crops output, 1967 = 100 (ECIFS 1-3, pages 8

and 9).

QL = index of agricultural livestock output, 1967 = 100 (ECIFS 1-3,

pages 8 and 9).

QCHEM = index of agricultural chemical inputs, 1967 = 100 (ECIFS 1-3,

pages 60 and 61).

CAP .-----index—of—mechanical----power-and-machinery inputs, 1967= 100 (ECIFS

1-3, pages 60 and 61).

Annual Farm Production Expenses

(millions of dollars)

X1 = feed purchased.

X2 = livestock purchased.

X3 = seed purchased (includes bulbs, plants, and trees).

X6 = fertilizer and lime.

X7 = repairs and operation of capital items (excluding fuel and operator

dwellings; the sum of Kl and K2).

X9 = petroleum fuel and oils (for farm business use only).

•
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X14 = total farm wages, including contract labor and the value of

perquisites (including Social Security taxes paid by employers under

the old-age survivor's insurance provision of the Social Security

Act beginning 1951).

X15 = machine hire and custom work (excluding contract labor--not

available for the years prior to 1950 and assumed to be zero)

X17 = pesticides.

X18 = electricity.

X19 = other operating expenses (excluding operator dwellings).

X21 = interest on nonreal estate debt.

X22 = interest on real estate debt (excluding operator dwellings).

X24 = taxes (excluding operator dwellings).

X26--_depreciation-texcluding-operator -dwellings; the sum of K4, KS, and

K6, plus accidental damage, not available until 1959 as a separate

component).

X30 = net rent to all landlords.

Kl = repairs and maintenance of service buildings, other structures, and

land improvements (includes fences, windmills, wells dams and

ponds, terraces, drainage ditches, tile lines, other soil

conservation facilities, and dwellings not occupied by the farm

operators).

. K2 = repairs and operation of all motor vehicles and machinery (for farm

• business use).

K4 = farm depreciation and other capital consumption of service buildings

and other structures (in terms of current replacement cost, not

original cost, includes fences, windmills, wells and dwellings not

occupied by the farm operators).
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KS = total depreciation on motor vehicles (for. farm business use; in

terms of current replacement cost, not original cost).

K6 = total Depreciation on Other Machinery and Equipment [in terms of

current replacement cost, not original cost; excludes minor types

of equipment charged to the "other operating expense" category

(X19)].

KDEBT = total nonreal estate farm debt outstanding (excluding farm

households and CCC loans; ECIFS 1-1, page 116).

LDEBT = total real estate farm debt outstanding (ECIFS 1-1, page 114).

L2 = land in farms, thousands of acres (ECIFS 1-1, page 105).

L6 = farm real estate value, includes land and service structures

(ECIFS 101, page 105).

Constructed Variables 

KTAX = X24 * [CAPSTKACAPSTK 1,6)].

KINT = X21 * (CAPSTK/KDEBT).

LTAX = X24 * [1,6/(CAPSTK L6)].

LINT = X22 * (136/LDEBT).

CAP = expenditures on capital services K2, KS, K6, X9, X15, X18 KTAX,

KINT).

INTER = expenditures on intermediate inputs (Xi, X2 X3, X6, X17).

JAM= wages paid (X14).

LAND = expenditures on land services (K1, K4, LTAX, LINT).

SUM = nominal production expenditures (CAP, INTER, LABOR, LAND).

C = real production expenditures (SUM/CPI).

Si = capital's share (CAP/SUM).
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• S2 = intermediate inputs' share (INTER/SUM).

S3 = labor's share (LABOR/SUM)—

S4 = land's share (LAND/SUM).

P1 = PCAP (an estimated user cost of capital index (CAP/QCAP).

PCHEM = estimated chemical price index [(X6 X17)/QCHEM].

P2 = PINTER (Tornquist index of PFEED, PSEED, PLVSTK, and PCHEM).

P3 = PLABOR.

P4 = estimated land rent index (LAND/L2).

Prices Paid by Farmers (1967 = 100) 

(Source: Various numbers in the agricultural statistics series)

PFEED = feed price index.

PSEED = seed price index.

PLVSTK = livestock price index.

PLABOR = index of wage rates (the simple average of seasonally adjusted

quarterly indexes).

Scaling

Having constructed the four factor shares and prices, plus total expenditures,

the data were rescaled for estimation. This usually involves division by

either the sample means of each time series or by a particular observation; in

this case, 1967 values were used. • Real prices and expenditures (deflated by

the Consumer Price Index) and output were divided by their 1967 values. The

original variables and the final data appear in the following pages.



Sources

U. U. S. Department of Agriculture. Agricultural Statistic. Washington, D. C.,

1967, 1972, 1977, 1980, and 1981.

 . Economic Indicators of the Farm Sector: Income and Balance Sheet 

Statistics (ECIFS 1-3). Washington, D. C., 1981 (1980).

 . Economic Indicators of the Farm Sector: Production and Efficiency 

Statistics (ECIFS 1-3). Washington, D. C. 1981 (1980).
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U. S. Aaricultural Production Data

CAP INTER LA60R

2628.1 4909 2299
2559.6 5380 2532
3082.0 6492 2783

...3938.6 7110'2990
4663,2 6130 2806
5202.3 6959 2811
5961.8 8391 2921
6520.3 8217_2857
6681.1 6974 2736.
6897,3 7370 2596
7092.2 7370 2615
1408.1 7456 2641
7834.3 7839; 2734
8155.5 9183 2842
856.1.3 9546 2906
8652.2 9211 3062
8535,9 9804 3192
8700.6 10768 3299

.8862.1 11326 3400
8919.9 10882 3483
9230,3 11774 3604
9735.4 13486 3683

10423,6 14111 . 3723
10962.1 14125 3920
11558.3 15414 4152
12015.5 16675 4340
12750.5 18041 4472
1321509 20268 4557
14961.5 27823 5167
18263.8 29151 6075
21917.1 28442 6586
25003.5 31196, 7510
28083,3 31990 .7953
31619.0 37529 8348
38157.8 44001 9429
44299.4 4574710411

LAND

2866.2
3412.2
3958.3

-4274,9
4463,1
4b14.2
5280.2
5652.1
5797.4
5754.0
6091.7
6448,4
6910.7
7258.5
8073,9
8486.2
8917.5
9454.3
9999.0

10633.5
11273.7
12044,8
12967.4
13935.0
14885.9
15702.5 .
16829.5
18709,5
21694.4
27277.1
29686.1
35026.4
42160.6
47805.4
59841.8
70323.5


