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Risk Aversion, Uncertainty Aversion, and Variation Aversion 
in Applied Commodity Price Analysis 

Practitioner's Abstract:  Standard models of hedging behavior assume that either hedgers wish 
to minimize net price variation or they wish to balance variation versus profits.  These models 
treat variation as risk and fail to distinguish between variation that is random and variation that 
is not random over time.  Newer models of decision making differentiate between random and 
nonrandom variation somewhat, but they inadequately distinguish variation from risk.  This 
paper reviews the distinctions among variation, uncertainty, and risk and calculates optimal 
hedge ratios for two models addressing the distinction.  Empirical optimal hedge ratios typically 
decline toward zero when variation aversion is included in the models.  These results may help 
explain why hedgers commonly hedge less than recommended by the standard models. 
 
Keywords:  Generalized expected utility, Hedging, Recursive utility, Risk Aversion 
 
Introduction 
 

Not every source of variation involves uncertainty, and not every source of uncertainty 
involves risk.  The distinctions among these three concepts have often been drawn, but their 
implications for risk management and price analysis have seldom been clear.  This paper reviews 
the distinctions and explains their relevance to commodity price hedging models. 

 
One way to account for the distinctions is known as recursive utility, which parameterizes 

aversion to temporal variation as distinct from risk and uncertainty.  Recursive utility was 
developed by Epstein and Zin (1989,  1991) and Weil (1990) based on the work of Kreps and 
Porteus (1978, 1979).  It has been used in agricultural contexts such as resource management 
(Knapp and Olson 1996) and farm finance (Lence 2000) and is also known as generalized 
expected utility.  Its usefulness relies upon knowledge of the elasticity of intertemporal 
substitution between payments separated by time.  Unfortunately, recursive utility inadequately 
distinguishes between risk and uncertainty.  This paper explains the flaws in recursive utility and 
proposes an alternative. 

 
After a thorough discussion of the issues involved, the paper turns to an empirical 

application to hedging.  Expected utility, recursive utility, and alternative objective functions are 
considered using a simple discrete-time framework with a short horizon.  Empirical examples 
demonstrate the differences among the approaches and highlight the distinctions among risk 
aversion, uncertainty aversion, and variation aversion with an eye toward practical applications. 

 
This work is important because the distinctions among risk, variation, and uncertainty are 

so very important to the agricultural sector.  Risk management education, in particular, must 
address these distinctions.  The particular mathematical form of the objective function may not 
be of long-standing interest to industry participants, but the insights garnered from an intensive 
dissection of temporal decision making can be critically important for making good decision in 
the future.  Therefore, the presentation of this work will focus on the distinctions among risk, 
variation, and uncertainty and on practical conclusions drawn from the empirical analysis. 
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Literature Review 
 

Static choice under uncertainty is typically modeled using a the von Neumann-
Morgenstern (1944) expected utility function or some variant (see Tuthill and Frechette (2002) 
for examples).   A single coefficient of risk aversion often measures attitudes toward risk, which 
is measured by variance at a point in time.  Intertemporal choice typically includes a discount 
factor to measure time preferences. 

 
Intertemporal choice under uncertainty, however, is more complicated since decision 

makers consider not only risk and time preferences, but also the timing of events.  Kreps and 
Porteus (1978, 1979) developed the foundation for representing the individual’s utility when 
timing matters.  Their preference functional is defined recursively by Ut = V[yt, EtUt+1], where 
V(.) is an aggregator function and yt a control vector.  Kreps and Porteus showed that the 
individual prefers the uncertainty to be resolved earlier rather than later (as most people do) if 
this utility function is convex in the second argument.   

 
The aggregator function need not be linear, which means that Ut is not separable in time.  

Payoffs in different times are treated as if they were separate goods.  Orange juice and housing 
are not additive, so why should income (or wealth) today be additive with income (or wealth) 
next June?  Surely after discounting the two are substitutes, but cash flow budgeting requires a 
steady stream of income.  It becomes more and more difficult to manage one’s money as 
variation in payments over time becomes severe.  Even when payments are deterministic and 
known in advance, there is an incentive to even-out the payments as much as possible and 
eliminate the variation.  Therefore, substitution between time periods is imperfect. 

 
Substitutability between periods is quantified using the elasticity of intertemporal 

substitution.  The elasticity measures the straightness (lack of curvature) of the indifference 
curve representing the tradeoff between income in consecutive periods.  It is the same concept as 
the elasticity of substitution from consumer theory and the elasticity of technical substitution in 
producer theory.   

 
The conventional time-additive expected utility function implies the restriction that the 

elasticity of intertemporal substitution is equal to the reciprocal of the coefficient of relative risk 
aversion.  That is, if agents are highly risk-averse, they must have low elasticity of intertemporal 
substitution.  Intertemporal variation and static uncertainty are erroneously equated. 

 
There is little evidence in favor of such a premise.  Hall (1988) estimated a representative 

consumer’s utility function, concentrating on the elasticity of intertemporal substitution.  He 
determined empirically that its value can be very close to zero.  His result implies that relative 
risk aversion can be nearly infinite!  

 
It was clear from Hall’s work that a new functional form for utility must be designed for 

modeling time preferences and uncertainty separately.  Weil (1989, 1990) and Epstein and Zin 
(1989, 1991) developed an isoelastic utility function to fit the need. Their utility function is a 
non-expected utility function with a constant coefficient of relative risk aversion, and a constant 
but (seemingly) unrelated elasticity of intertemporal substitution.  It is represented by 
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+tU  reflects random future utility and tE  is the conditional expectation given the information 
available to the agent at t.  The parameter β = 1 / (1+δ) where δ is the rate of time preference, 
and ρ is equal to one minus the reciprocal of the elasticity of intertemporal substitution.  
Attitudes toward risk are modeled by the parameter α, which equals one minus the coefficient of 
relative risk aversion.  Equation (1) is a specific example of a recursive utility function and has 
come to dominate the literature on the topic and to represent the entire class of recursive utility 
functions. 
 

Epstein and Zin (1991) derived first-order conditions (Euler Equations) from (1) that can 
be written in terms of observable variables and estimate them using the Generalized Method of 
Moments (GMM).  They use monthly U.S. data from 1959-86, which includes 4 different 
measures of consumption per capita, and returns for stocks and bonds. The empirical results 
show that the standard multi-period expected utility function is rejected; the elasticity of 
intertemporal substitution is less than 1, and the coefficient of risk aversion and around 1 for 
their data set. 

 
Recursive utility has also been used in agricultural contexts, such as resource 

management and farm finance.  Knapp and Olson (1996) used it to study rangeland and 
groundwater management under uncertainty.  The optimal decision rule will be “rotated” under 
imperfect elasticity of intertemporal substitution, and this rotation of optimal decision rules 
smoothes the evolution of state and control variables over time.  Lence (2000) applies recursive 
utility to U.S. aggregate annual farm data.  His results show that the empirical performance of 
the recursive utility model is better than that of the expected utility model. He estimates the rate 
of time preference between 2.9% and 5.1%, and rejects the hypothesis that the elasticity of 
intertemporal substitution is less than one. 

 
Barry, Robison, and Nartea (1996) relax time separability by allowing more general time 

patterns and developing explicit measures of changes in time attitudes.  They introduce the 
concept of constant, increasing, or decreasing absolute time aversion, which is analogous to 
Arrow-Pratt risk attitudes.  They address the same sort of issues that Kreps and Porteus (1978, 
1979) discussed, but they do not use recursive utility. 

 
Recursive is also widely used other areas, especially in solving consumption/ portfolio 

choice and asset-pricing problems.  Kandel and Stambaugh (1991) set different value of risk 
aversion and intertemporal substitution, and determine the separate roles for these parameters in 
determining the mean and volatility of equity returns in an equilibrium risk pricing model.  
Increasing risk aversion raises the equity premium, while equity volatility decreases in the level 
of intertemporal substitution.  Hung (1994) also uses the recursive utility model to determine the 
influence of preference parameters on the equity premium and risk-free rate.  He claims that the 
equity premium puzzle can be resolved if non-expected utility is combined with asymmetric 
market fundamentals.  
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Campbell and Viceira (2001) bring up an interesting question about who should buy 
long-term bonds. They develop a model in which an infinite-lived individual with non-expected 
utility must choose consumption and portfolio weights in each period. The demand for long-term 
bonds is decomposed into  “myopic” and “hedging” demand, and they conclude that when the 
level of risk averse increases, myopic demand decreases to zero and the demand for bonds is 
entirely for hedging purposes. They also suggest that inflation-indexed bonds are suitable for 
long-term conservative investors who seek a stable consumption path. 

 
Koskievic (1999) uses this model to estimate the parameters of a consumption-leisure 

dynamic choice model using GMM.  The empirical results indicate that the coefficient of relative 
risk aversion is very low (0.098) and the elasticity of intertemporal substitution is 3.17, which is 
significantly larger than Hall’s (1988) estimate.  

 
 Weil (1989, 1990) and Epstein and Zin (1991) have successfully developed a recursive, 
isoelastic utility function based on Kreps and Porteus’s (1978, 1979) insights that can be 
implemented empirically.  The utility function is useful to analyze problems involving 
intertemporal choice under uncertainty.  The advantage of this line of empirical work is that it 
distinguishes the elasticity of intertemporal substitution from the coefficient of relative risk 
aversion.   
 

Still, there are some issues left unresolved.  This line of research has done an excellent 
job of developing the elasticity of intertemporal substitution and identifying it as a variation-
aversion parameter.  It has not addressed the role of the so-called risk aversion parameter and its 
suitability to measure risk aversion over time.  The parameter α has been described as one minus 
the coefficient of relative risk aversion, but the concept of risk across time periods has not been 
adequately defined.  The next section starts from the simplest specification of an objective 
function and builds up an argument methodically to show that the literature has misinterpreted 
the role of α and that an alternative utility function is required to model intertemporal risk 
aversion properly. 
 
Discussion 
 

There are many different ways to specify objective functions for decision-making over 
time.  A simple one is  
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Equation (2) restricts the objective function to have perfect dollar-for-dollar intertemporal 
substitution.  The decision maker with this objective function is indifferent between income now 
and income later.  A more reasonable specification would be 
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Equation (3) is the Net Present Value rule with a constant discount rate, β = (1+r)-1.  Equation (3) 
improves over (2) because intertemporal substitution is no longer dollar-for-dollar.  Income now 
is valued more highly than income later.  However, the decision maker is now indifferent 
between income now and discounted income later.  Some periods he may expect very high 
income, and some other periods he may expect very low income, but there is no way in (3) to 
account for his preferences against such intertemporal variation in yt.   
 

We can use a concave function V(.) to add this feature: 
 

(4) ∑ β=
=
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If V(.) is concave, then the decision maker is averse to variation in yt over time and to 
uncertainty within a single period of time.  He would prefer two average income years to one 
high income year and one low income year.  He would also prefer an average income year to an 
equal chance of a high income year and a low income year.  Equation (4) is called discounted 
expected utility because V(.) is like a von Neumann-Morgenstern expected utility function.  The 
objective function can be rewritten to emphasize that it is the sum of discounted expected 
utilities into the future: 
 

(5)  ∑ β=
=
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If V(.) is concave, then the decision maker is averse to uncertainty in yt at each time t.  Unlike in 
(3), he would prefer to know the outcomes for certain than to wait for the uncertainty to be 
resolved. 
 
 The problem with (4) and (5) is that the function V(.) serves two roles – it embodies 
aversion to variation through time and to uncertainty at each time period.  It seems unlikely that a 
decision maker will feel equally averse to both phenomena.  Note also that V(.) is often said to 
embody risk aversion, but risk is harder to define in an intertemporal context.  It is a different 
concept than variation aversion and uncertainty aversion.   
 

One could easily imagine a decision maker facing known temporal variation and no 
uncertainty.  He would face no risk but would require a concave V(.) function.  The decision 
maker may face no real risk and yet V(.) may rightly be concave to capture his preferences 
toward temporal variation.  One could also imagine a decision maker facing uncertainty at each 
time period without any uncertainty on the whole, over the longer planning horizon.  He may feel 
that he faces no risk at all because losses in one period are matched by gains in another.  He 
would face no risk, yet a concave V(.) function may be appropriate if he is averse to period-by-
period uncertainty.  The three phenomena – variation aversion, period-by-period uncertainty 
aversion, and whole-horizon risk aversion – are different conceptually, and therefore (4) and (5) 
are oversimplifications that may fail to capture decision maker behavior in many situations. 
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 Many authors have tried to capture these effects using an objective function based on 
“recursive utility,” sometimes also known as “generalized expected utility.”  The terminology 
sometimes used for the objective function is a “dynamic utility aggregator functional” or some 
similar string of words.  The recursive utility objective function based on a static power utility 
(CRRA) function can be written as 
 

(6) ραρα
+

ρ β+= /1/
1tttt ])UE(y[U   . 

 
Utility is defined recursively with Ut depending on the expectation of future Ut+1.  The 
expression can be written more simply as 
 

(7) ρρ
+

ρ βχ+= /1
1ttt ])U(y[U , 

 
where χ(Ut+1) represents the certainty equivalent of future income.  For the power utility 
function, V(yt) = yt

α. 
 
 Equation (7) makes it clear that recursive utility does not depend on the power (CRRA) 
utility specification.  Utility can be specified as a negative exponential (CARA) or in any other 
desired form.  The discussion will continue using power utility because the literature has focused 
there exclusively to date, but the empirical application will use the negative exponential utility 
function to make the results more comparable to previous work on hedging, such as Frechette 
(2000, 2001). 
 
 From equation (7) it is clear that ρ measures the extent to which the decision maker 
abhors intertemporal variation, after discounting is applied.  (1-ρ)-1 is called the elasticity of 
intertemporal substitution.  If ρ = 1, then intertemporal substitution is infinite, or perfect.  If there 
is no uncertainty in this case, then the objective function reduces to equation (3).  However, if ρ 
= 1 and there is uncertainty, then recursive utility does not reduce to equations (4) or (5).  To see 
why more clearly, consider the two-period case. 
 
 In the two-period case, equation (6) becomes 
 

(8) ραραρραρρραρ β+=β+= /1/
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/1//1
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If y2 were known with certainty, then 
 

(9)  ρρρ β+= /1
21t )yy(U . 

 
If ρ = 1, then 
 
(10) 21t yyU β+= , 
 
which is the same as equation (3).  On the other hand, if ρ = 1 and y2 is uncertain, then 
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(11) )y(y)yE(yU 21
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the sum of discounted certainty equivalents for the power utility function.  A quick inspection 
reveals that (11) is not the same as (4) or (5).  (11) is the sum of discounted certainty equivalents, 
while (4) and (5) are the sum of discounted expected utilities.   
 

Recursive utility, in general, is the sum of discounted certainty equivalents with imperfect 
intertemporal substitution.  There are three parameters – β, α, and ρ – which correspond to the 
time discount rate, the period-by-period uncertainty aversion, and the aversion to intertemporal 
variation.  There are several other ways to write an intertemporal objective function with three 
parameters, and recursive utility is just the one most favored to-date. 

 
Another related objective function is 
 

(12)  ∑ β=
=

αραρ
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This function represents the certainty equivalent of the sum of the discounted values, with 
imperfect intertemporal substitution between values.  It also accounts for three different kinds of 
behavior, but the difference is somewhat subtle.  In (12), the discounted values are each raised to 
the power ρ and discounted, then summed.  The sum is raised to the power 1/ρ to capture 
intertemporal substitution effects.  This new value is uncertain, so it is raised to the power α and 
the expectation operator is applied.  Finally the expectation is raised to the power 1/α to capture 
whole-horizon risk aversion. 
 
 I make the distinction here between period-by-period uncertainty aversion and whole-
horizon risk aversion because the treatment of risk and uncertainty is the distinguishing 
difference between the two objective functions.  It can be shown that the two functions are the 
same if ρ = α or if there is no uncertainty, but optimization of the different functions will 
otherwise yield different results. 
 

To make the distinction clearer, consider a situation where the decision maker faces a set 
of uncertain payoffs, but he is guaranteed a known net present value – he is just not sure when he 
will be paid.  Recursive utility and the alternative (12) both capture the decision maker’s 
variation-aversion through the parameter ρ, so focus on what happens when ρ = 1 (perfect 
intertemporal substitution).  If there is no real risk involved over the whole planning horizon, 
then the decision maker is indifferent toward the timing of payments.  (12) captures this aspect of 
the decision maker’s behavior, but recursive utility does not.  In recursive utility, the uncertainty 
on a period-by-period drags down the value of the objective function.  Recursive utility is flawed 
in this way because it treats each period individually.  Total recursive utility will be lower if the 
timing is unknown, but the total alternative utility from (12) will not be. 

 
The core reason that recursive utility is flawed is that it does not recognize that future 

uncertain outcomes may be correlated.  A decision maker may be indifferent among sets of 
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uncertain outcomes that all yield the same net present value, but he may still behave in a risk 
averse manner when net present value over the whole horizon is uncertain.  These effects are not 
captured adequately in recursive utility because the parameter α is applied on a period-by-period 
basis and not over total net present value.  In recursive utility,  the parameter α drags along some 
of the decision maker’s variation aversion that ought to be captured entirely by ρ. 

 
The alternative utility function (12) does not suffer from this flaw.  It handles variation 

aversion and whole-horizon risk aversion separately by applying the parameter α to net present 
value over the whole planning horizon.  The two behaviors are conceptually distinct and ought 
properly to be distinguished in the objective function. 

 
It is possible, then, to develop the following taxonomy:  (i) Variation aversion is the 

desire to equalize the outcomes across time periods, for a given net present value.  (ii) Risk 
aversion is the preference for the distribution of stochastic net present value to be as narrow as 
possible over to the whole planning horizon.  (iii) Uncertainty aversion is the desire to know the 
timing of outcomes on a period-by-period basis in advance, holding variation and the distribution 
of net present value constant.  Recursive utility addresses (i) and (iii), and the alternative 
specification (11) addresses (i) and (ii). 

 
When these definitions are considered closely, (iii) is seen to be a preference for 

information over uncertainty.  It is an important motivation that induces decision makers to 
demand better forecasts of market conditions so that they can “time” the markets.  It measures 
the desire for decision makers to find ways to ride the market as it booms and bail out before it 
crashes.   

 
Undoubtedly uncertainty aversion is important, but it is not risk aversion.  It does not 

induce decision makers to hedge, and it does not make farmers buy crop insurance.  Therefore, 
recursive utility may be appropriate for models of speculative behavior, but it is unlikely to make 
a substantial contribution to the risk management literature.  The alternative specification (12) is 
the proper one to be used in studies of risk management, so next we shall turn to an empirical 
examination of its performance as a tool for managing risk in agricultural commodity markets. 
 
Empirical Performance 
 
Data 
 

The data set is the same one used by Frechette (2000, 2001) and consists of (i) weekly 
corn cash prices collected by the Pennsylvania Department of Agriculture (PDA); and (ii) the 
nearby corn futures price in Chicago.  Local cash prices were collected through surveys and 
phone calls for five regions:  Southeastern, Central, South Central, Western, and the Lehigh 
Valley.  Only the Southeastern region was used in this analysis.  The prices were collected and 
reported by PDA on Monday mornings before the market opened and the futures price that 
corresponds most closely is the previous Friday’s settlement price for the nearby futures contract.  
If the Chicago Board of Trade was closed due to a holiday, then the closest day was used, 
matching the information sets as closely as possible in each case.  All prices are reported in cents 
per bushel, for the years 1997-1998.  
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Procedures 
 

The example hedger is a livestock farmer purchasing corn for feed, which results in an 
input cost hedge.  The quantity of corn to be hedged is treated as predetermined by the number of 
animals in the herd/flock/etc.  The ratio of corn to other ingredients in the feed are assumed to be 
fixed and do not vary with market conditions.  These assumptions eliminate the need for 
modeling any additional sources of uncertainty. 

 
Estimates of basis risk and expected basis depend on the structural forecasting model 

chosen by the hedger.  There are many such models in use, such as naïve expectations, adaptive 
expectations, and rational expectations.  The results depend on the model chosen, and yet there is 
no clear consensus in the literature to guide this choice.  Fortunately, the results often are robust 
to any reasonable choice of forecasting method.  Moschini and Hennesy (2000) consider this 
issue and conclude that a constant covariance matrix “may not be a bad approximation” and that 
“conditional variance does not do much better than unconditional variance” for use in estimating 
producers’ responses to price risk.  Each hedger has a unique perception of market structure, and 
no single model has come to dominate the literature. 

 
To proceed, an adaptive expectations model is selected, as in Frechette (2000).  To 

illustrate, note that adaptive expectations models can be written in autoregressive form as 
 

(13) Etpt+1 = α0 + α1pt + α2pt-1 + … . 
 
In practice, (13) is truncated at a lag length sufficient to balance accuracy against degrees 

of freedom, and an error term is appended.  If the error term satisfies standard assumptions, then 
Ordinary Least Squares can be used to get estimates of the αi, which generate corresponding 
estimates of Etpt+1.  The lag length is chosen by maximizing the Adjusted R-squared statistic and 
testing the standard OLS assumptions.  The conditional covariance matrix is estimated by 
substituting expected local price minus expected futures price for expected basis.  The 
conditional covariance matrix is assumed to be constant and to represent a bivariate normal 
distribution.  These statistics represent actual results for the sample period, and therefore the 
results represent optimal ex post behavior in the sense that hedgers are assumed to have known 
the covariance matrix before the sample period began.  Individual hedgers’ expectations will 
depend on the sample period and available information. 

 
A range of coefficients of absolute risk aversion was selected to span a range of possible 

farmer risk preferences, as in Frechette (2000, 2001).  Reasonable values to span a range of risk 
preferences were chosen to be 2.00 for high risk aversion, 0.20 for moderate risk aversion, and 
0.02 for low risk aversion.  The elasticity of intertemporal risk aversion was allowed to vary 
indirectly by using a range of values for ρ from 0.1 through 1.0, which results in a range of 
elasticities from 1.11 through infinity (perfect substitution). 

 
The hedging model is the same as found in Frechette (2000).  The hedger faces futures 

price risk and basis risk and must pay a marginal transaction cost for hedging.  He must balance 
the benefits or efficacy of hedging with the costs by maximizing his utility.  In Frechette (2000) 
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each level of γ (CARA) yielded an optimal hedge ratio for each possible level of marginal 
transaction costs; however, simplistic intertemporal aggregation restricted the hedger’s 
preferences toward intertemporal substitution to be infinitely elastic.  

 
In the results to follow, this restriction is relaxed.  Each combination of γ and ρ yields an 

optimal hedge ratio for each level of marginal transaction costs and each discount rate.  Negative 
exponential utility is embedded within each specification, and the optimal hedge ratios under 
recursive utility are compared to those under the alternative utility function.  Specifically, the 
objective functions are 

(14)  Recursive:   
ρ

ρρ τγ
γ
β

/1

1 |)|()]}exp([log{ 
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(15)  Alternative:  ( ) γτβγ ρρρ /]}]|)|()([exp{log[ /1
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where )ff(hpm t1t1t1t −+−= +++ is the net gain in the spot and futures markets from procuring 
corn and hedging a fraction h of the amount to be procured.  The other notation in (14) - (15) is 
defined as follows 
 

β  discount factor, e.g. 1.000 or 0.985 
h hedge ratio 
τ marginal transaction cost of hedging 
Et mathematical expectations operator 
ρ intertemporal substitution parameter 
γ coefficient of absolute risk aversion 

  |.| absolute value operator 
 

Expressions (14) - (15) are maximized over the control variable, h.  Expectations over 
bivariate price risk are computed using trapezoidal integration in the Matlab computing 
language.  Optimization proceeds using the simplex method.  Further details of the optimization 
routine are available from the author.   
 
Results 
 

The results are shown in Tables I, II, and III.  In Table I, Recursive utility hedge ratios 
are shown to vary little for high levels of risk aversion, regardless of the value of ρ.  The highly 
risk averse hedger (γ = 2.00) faces an optimal hedge ratio of about 58% when ρ = 0.1 and 59% 
when ρ = 1.0.  Alternative utility hedge ratios are always equal to recursive utility hedge ratios 
when ρ = 1.0 because both objective functions reduce to simple expected utility when ρ = 1.0.  
However, the two objective functions prescribe substantially different optimal hedge ratios for 
the risk averse hedger if ρ is less than 1.0.  The alternative utility hedge ratio drops to 44% when 
ρ = 0.5 and then to zero for ρ = 0.4 or lower. 
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The moderately risk averse hedger (γ = 0.20) faces a different situation.  When ρ = 1.0, 
the optimal (expected utility) hedge ratio is 55%.  Both recursive utility and the alternative yield 
optimal hedge ratios then fall as r falls, with the alternative utility hedge ratios falling more 
dramatically than the recursive utility hedge ratios.  Both hedge ratios become zero for low 
values of ρ.  The effect is magnified further for low risk aversion hedgers (γ = 0.02).  Both hedge 
ratios are 18% for ρ = 1.0, but for ρ = 0.9 or lower both are zero. 

 
Experimentation with marginal transaction costs does not change the basic story.  As 

shown in Table II, hedge ratios are lower when marginal transaction costs are higher, but they 
still differ between recursive utility and the alternative.  Inelastic intertemporal substitution 
reduces hedge ratios and results in no hedging for low ρ − low γ combinations. 

 
Experimentation with discount rates also results in little change to the pattern of hedge 

ratios.  Increasing the discount rate from 0% to 10% per year (β = 1 to 0.9982 for weekly data) 
has very small effects on the optimal hedge ratios for both objective functions.  As shown in 
Table III, the effects are significant only in the 3rd and 4th decimal places throughout the range of 
parameters considered in the experiments.  
 
Conclusions 
 

The main conclusions of this research are two-fold.  The first conclusion is that optimal 
hedge ratios are lower when intertemporal substitution is inelastic, in some cases much lower.  
The alternative utility function yields hedge ratios that drop off considerably and fall all the way 
to zero for hedgers with low intertemporal substitution.  The recursive utility function prescribes 
higher hedge ratios that the alternative does, but its optimal hedge ratios also fall quickly in some 
cases.  Moderately risk averse and even highly risk averse hedgers may not hedge at all if they 
are averse to intertemporal variation. 

 
The effect does not work the other way around.  That is, hedgers who are nearly risk 

neutral will not hedge more than recommended by expected utility due to alterations of this sort 
in the objective function.  Expected utility represents one extreme for both recursive utility and 
the alternative.  Both reduce to expected utility when the elasticity of intertemporal substitution 
is infinite (ρ = 1). 

 
The result is that hedgers who are averse to intertemporal variation may hedge 

considerably less than the minimum variance hedge ratio or expected utility hedge ratio that 
recommended by agricultural economists.  Zero is an optimal hedge ratio for many people, 
according to the models discussed here.  We must not be quick to conclude that hedgers with a 
zero hedge ratio are somehow “uneducated,” “untrusting,” or “fearful” with respect to price risk 
management.  This research may help agricultural economists to understand hedgers’ seeming 
paradoxical behavior in this ever-changing and complex field of choice under uncertainty. 

 
The second main conclusion of this research is that recursive utility and the alternative 

suggested above differ markedly in their prescriptions for optimal hedge ratios.  The two differ 
most when the elasticity of intertemporal substitution is low and coincide when it is perfect.  
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There is little difference between them when the level of risk aversion is low because optimal 
hedge ratios are already very low or zero. 

 
The difference between the two objective functions implies that careful attention must be 

paid to the choice of intertemporal aggregator function.  This paper makes the case in favor of 
the alternative utility function over recursive utility, but the subject is very much still open for 
debate and discussion.  It is my desire that other researchers in the field of intertemporal choice 
under uncertainty will investigate the further properties of the two objective functions discussed 
here and that some additional insights may be gained from an ongoing discussion of the issues 
involved. 

 



 13

References 
 
Barry, P.J., L.J. Robison, and G.V. Nartea. “Changing Time Attitudes in Intertemporal 

Analysis.” Amer. J. Agr. Econ. 78(November 1996): 972-981. 

Campbell, J.Y., and L.M. Viceira. “Who Should Buy Long-term Bonds.” Amer. Econ. Review 
91(March 2001): 99-127. 

Epstein, L. G. and S. E. Zin. “Substitution, Risk Aversion and the Temporal Behavior of 
Consumption and Asset Returns: A Theoretical Framework.” Econometrica 57(1989): 937-
69. 

Epstein, L.G., and S. E. Zin. “Substitution, Risk Aversion, and the Temporal Behavior of 
Consumption and Asset Returns: An Empirical Analysis.” J. Polit. Econ. 99(April 1991): 
263-286. 

Frechette, Darren L. “The Demand for Hedging and the Value of Hedging Opportunities.” 
American J. of Agricultural Economics 82(Nov. 2000): 897-907. 

Frechette, Darren L. “The Demand for Hedging with Futures and Options.” Journal of Futures 
Markets 21(8)(2001): 693-712. 

Hall, R.E. “Intertemporal Substitution in Consumption.” J. Polit. Econ. 96(April 1988): 339-357. 

Kandel, S. “Asset Returns and Intertemporal Preferences.” J. Monetary Econ. 27(1991): 39-71. 

Knapp, K.C., and L.J. Olson. “Dynamic Resource Management: Intertemporal Substitution and 
Risk Aversion.” Amer. J. Agr. Econ. 78(Nov.1996): 1004-1014. 

Koskievic, J.-M. “An Intertemporal Consumption-leisure Model with Non-expected Utility.” 
Econ. Letters 64(1999): 285-289. 

Kreps, D.M., and E.L. Porteus. “Dynamic Choice Theory and Dynamic Programming.” 
Econometrica 47(January 1979a): 91-100. 

___. “Temporal Resolution of Uncertainty and Dynamic Choice Theory.” Econometrica 
46(January 1978): 185-200. 

Lence, S.H. “Using Consumption and Asset Return Data to Estimate Farmers' Time Preferences 
and Risk Attitudes.” Amer. J. Agr. Econ. 82(November 2000): 934-947. 

Luini, L. Uncertain Decisions: Bridging Theory and Experiments. Boston: Kluwer Academic, 
1999. 

Moschini, G. and D. A. Hennessy. “Uncertainty, Risk Aversion, and Risk Management for 
Agricultural Producers.” In Gardner, B. and G. C. Rausser, eds. Handbook of Agricultural 
Economics. Amsterdam: Elsevier Science, 2002. 



 14

Naik, V. “Asset Prices in Dynamic Production Economics with Time-Varying Risk.” The Review 
of Financial Studies 7(1994): 781-801. 

Tuthill, J. and D. Frechette. “Non-expected Utility Theories: Weighted Expected Utility, Rank 
Dependent Utility, and Cumulative Prospect Theory.” Presented at the NCR-134 
Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk 
Management, April 2002. 

von Neumann, J. and O. Morgenstern. Theory of Games and Economic Behavior. Princeton, NJ: 
Princeton University Press, 1944. 

Weil, P. “Nonexpected Utility in Macroeconomics.” Quart. J. Econ. 105(Feb. 1990): 29-42. 

___. “The Equity Premium Puzzle and the Risk-Free Rate Puzzle.” J. Monetary Econ. 
24(November 1989): 401-421. 

 



 15

Table I 
Comparison of Optimal Hedge Ratios 
With Different Objective Functions 
Transaction Costs = 0.5 cents/bu 

Discount Rate = 0% 
 

Coefficient of Absolute Risk Aversion (γ) 

2.00 0.20 0.02 

 
 
ρ 

 
Elasticity of 
Intertemporal 
Substitution  Recursive 

Utility 
Alternative 

Utility 
Recursive 

Utility 
Alternative 

Utility 
Recursive 

Utility 
Alternative 

Utility 
0.1 1.11 0.5779 0 0 0 0 0 
0.2 1.25 0.5805 0 0 0 0 0 
0.3 1.43 0.5826 0 0 0 0 0 
0.4 1.67 0.5845 0 0 0 0 0 
0.5 2.00 0.5860 0.4407 0.3164 0 0 0 
0.6 2.50 0.5873 0.5252 0.4228 0 0 0 
0.7 3.33 0.5884 0.5611 0.4783 0 0 0 
0.8 5.00 0.5894 0.5782 0.5134 0.4184 0 0 
0.9 10.00 0.5901 0.5868 0.5370 0.5111 0 0 
1.0 Infinite 0.5908 0.5908 0.5535 0.5535 0.1802 0.1802 
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Table II 
Comparison of Optimal Hedge Ratios 
With Different Objective Functions 
Transaction Costs = 1.0 cents/bu 

Discount Rate = 0% 

 

Coefficient of Absolute Risk Aversion (γ) 

2.00 0.20 0.02 

 
 
ρ 

 
Elasticity of 
Intertemporal 
Substitution Recursive 

Utility 
Alternative 

Utility 
Recursive 

Utility 
Alternative 

Utility 
Recursive 

Utility 
Alternative 

Utility 
0.1 1.11 0.5767 0 0 0 0 0 
0.2 1.25 0.5782 0 0 0 0 0 
0.3 1.43 0.5797 0 0 0 0 0 
0.4 1.67 0.5811 0 0 0 0 0 
0.5 2.00 0.5822 0.3172 0 0 0 0 
0.6 2.50 0.5833 0.4859 0.3019 0 0 0 
0.7 3.33 0.5843 0.5394 0.3955 0 0 0 
0.8 5.00 0.5852 0.5657 0.4494 0.2554 0 0 
0.9 10.00 0.5859 0.5794 0.4858 0.4359 0 0 
1.0 Infinite 0.5867 0.5867 0.5120 0.5120 0 0 
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Table III 
Comparison of Optimal Hedge Ratios 
With Different Objective Functions 
Transaction Costs = 0.5 cents/bu 

Discount Rate = 10%/year 

 

Coefficient of Absolute Risk Aversion (γ) 

2.00 0.20 0.02 

 
 
ρ 

 
Elasticity of 
Intertemporal 
Substitution Recursive 

Utility 
Alternative 

Utility 
Recursive 

Utility 
Alternative 

Utility 
Recursive 

Utility 
Alternative 

Utility 
0.1 1.11 0.5779 0 0 0 0 0 
0.2 1.25 0.5805 0 0 0 0 0 
0.3 1.43 0.5826 0 0 0 0 0 
0.4 1.67 0.5845 0 0 0 0 0 
0.5 2.00 0.5859 0.4397 0.3156 0 0 0 
0.6 2.50 0.5873 0.5248 0.4224 0 0 0 
0.7 3.33 0.5884 0.5609 0.4780 0 0 0 
0.8 5.00 0.5894 0.5781 0.5133 0.4176 0 0 
0.9 10.00 0.5901 0.5866 0.5369 0.5107 0 0 
1.0 Infinite 0.5908 0.5908 0.5534 0.5533 0.1794 0.1787 

 

 

  

 


