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OPTIMIZATION OVER TIME POR AGRICULTURE AND RESOURCE HANAGEMENT
Keshav P. Vishwakarma

ABSTPACT

Thiz paper deals with determination of optimal decisions
that reach over a tlme horizon. Four rase studies taken from the
literature are re-examined. One {s concerned with wmackerel
fishing jo European sea watersn. It employs a dynamic nonlinear
age cohort model. A further complicating aspect $s that the
changes in fishing effort from year to year are restricted to be
within 20 per cent of previous vear's level. In the literature it
is mentioned that more than five and a half hours of computer time
were needed 1o find the optimum. In contrast, our calculations
take only about seven minutes to reach the same optimum. Clearly
an effective procedure can save time and effort in such
complicated situetions. The second study examines the economirs
of cartelization of a commodity by producers. A podel was
reported which simulates cartels for petrcleux of}, bauxite and
copper. We discuss some of iis cormplexities and obtain opt ‘ma)
decisions. In the case of o0.) our results are practically the
same as reported in the ljterature. But, for copper we find an
optimum which is nearly a third better, i.e. a considerably
superior optimum can le achieved. The last i}lustration fnvolves
a model bullt tao investigate the economlics of seil conservation.
We employ it to highlight the care needed in constructing such
exercises. We point out that the objective functfoa in this case
Is not sensitive to wid. varfations in the decision variable,
Some comments are then included about control theory which also

deals with decision making over time.
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1. IKTRODUCTION

Mathematical optimizetion is frequently employed for
analyzing agriculture and resource management situatfoiss. Labys
and Pollak (1984) give o survey of different model)s constructed to
this end. In particular. the techniques of linear and quadratic
programming have found numerocus applications. Their advantage is
that robust and reliable procedures exist for obtaining the optimal
decisions. This s berause well constructed lnear and quadratic
progragming mod+ tax have unigue optimum. In contrast, nonlinear
optimization is aunlitatively quite different. Such
models are characteri:ud by the presence of muitiple optima.
Determining optima in nonlinear cases is far more difficult.
However, wmany practical decision-making situatiens require
nonlinear optimization. This is being reported increasingly in

the recent literature.

The objective of this article is to highlight sowe of the
complexities associated with non!inear optimization. As well, it
deals with the class of situations that involve decision-making
over time. That ts, decisfons made during different time periods
are interrelated. For jllustration four case studies reported in
the literature are re-examined. One relates Lo the harvesting of
Western muackerel fjish found in European sea shelf. To determine
the optimal fishing patteras over a 40 year horizon, it t{s
mentioned in the literature that more than 5% hours of computer
time were needed. In contrast. we present a slightly better

patters but which takes only about seven minutes for calculations.
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This illustrates the wide variation in the effectiveness of
different computation procedures. The next two examples deal with
the economics of cartelization of commodities. In one case our
results are close to those described in the literature. But in
the other we obtain an optimum for which the gain is nearly a
third higher. As well, our optimal decisions show & qualitative
different pattern. This is also very much possible in nonlinear
analysis. Our last illustration involves a model built to examine
soll conservation economics. It helps to explain some other

difficulties that may artse in nonlinear optimization,

These illustrations are presented in Sertions 2 through
5. Since control theory also deals with decision-making over
time, we briefly discuss its scope in Section 6. Some concluding

comments are included in Section 7.

2. A NULTICORORT FISHERY MODEL

We consider the fishery model reported in Horwood (1987).
It analyses harvesting of mackerel found along the west roasts of

France, lreland and the U.K.

The fish stock is assumed to consist of 10 age groups.
The first nine represent ages of years I, 2,..., up to 9. The

last group refers to fish 10 vears in age ar older.

The symhols used for different parameters and variables

are as follows.

1KV3




Parameters

n - 16, nusbor of age groups

w3, - weight at spawning of fish al age )

Py = proportion of mature fish of apge i

LT =  proportion selection in cateh (age-specific
selectivity or catchability) at age §

wm, = mean weight in the catch of fish st ape }

H - Instantaneous natural mortality rate {0.15 per
yeer)

parameters enkerinz(?he recruiteent function

a
]
=
o
-
"

a = 0.00202 millions of recruits per tonne

4 = 1/(2,180,000)

hand ¢ = paraseters sntering the ohjective function
h - 10
(o = 2.5
& = discount rate

T = time horfizon for planning (20 and 40 years here)

Endogenous Variables

State Varjables
xilt) = nusber of fish of age | in year t (milljons)

Other Dependent Variablesg

b{t) = spawning stock biomass in year t {tonnes)
s‘(t} = gurvival of fish of age { in year t

yi{t) = yleld from fishery In year t (tonnes)
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Control (Decision) Varisble
u{L) = fishing effort In year t (lence u!.u(t) « age -
specific rate of instanteous fishing mortality).
Independent Variable
t = the discrete time variable (year)
- 0.1;20‘;-01.
Model Equations

The spawning biomass in year t is determined by
n

b(t} nl): Py.ws;.x, (1) (2.1)
=}

That iz, the Tish numbers in each age group are wultiplied by the
weight per fish and a proportion of the biomass then counts

towards spawning.

The survival of fish of age § in year t is given by the

equation
slet) = exp [-M - q‘.n(t)l (2.2)

Here M is the instantaneous natural mortality and q‘.u(t) the
age-specific Vishing mortality. u(t) being the fishing effort

across all age groups.

The yield {in tonnes) from fishing in year t is then

obtained as
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n
YO = wmiq ity x 1), AL (2.3)
i=3 W q;.u{1)
The age structure of the fish stopk Is deterained by a
nusber of sirultaneous discrete- time dynamin equat ions, The
recrultsent equation is

a.b(t

x
1{teg} = 1+y b(E)

{2.4)
This Ia » nonlinear function aof the vurrent biomass b{t}. The

parameters a and ¥ have estimated values mentioned ahove.

Age groups 2 to {n-1} are egoverned by the survival rate
sg{t). In year (t+1) the number of firh of ape 3 are those

surviving from age (i-1) the previous year. Thus,
xi(toi’ . a,_l(t) . xl_!(t). i =203...,, {n-1) (2.5)

The numbers in the ]ast age group is dependent upon its
own survival rate as well as that of one year younger group, so

that
x”(t*l) = sn-l‘t’ . xn~1(tl * o8 () 2,0 (2.6)

The Init{a} age distribution and values of the parameters

‘*I,. "3, p;. qi} are given In "orurod.

Equationg (2.1) - (2.¢) thus represent the bioloy’ ~al
recruitment process, the age structure and the physical yield
obtainable from fishing. These are nonlinear dynamic equations,

The single decision variable, viz. u(t), enters in a complicated

1KV3




fashien through the survival rate sl(l) and directly in the yield
ejuation (2.3). lowever. this {s the case of a scalar control

variable since only one u{t) needs to be determined for each year,

Incquality Constraints on Fishlng Eftor;

Horwoed considers the practical situation in which
fishing effort camnot change dramatically from year to year. He
models this case by requiring that changes in the fishing effort
be restricted to within 20 per cent of the previous year's level.
Symbofically. the fallowing inequality constraints on the control

variable are stipulated,

uftel)
0.8 € u(t) €12 (2.7)

In addition, bounds are specified within which the fishing effort

remalns, viz,

0 £ u(t) € 10 (2.8)

And it is stipulated that fishing must leave a spawning biomass of

at least one mfllion tonnes at the end of the planning horizon;: i.e

b{T+1) 3 1,000,000 (2.9)

Optimization Criterfon for Decisjon-Making

For optimal operation a criterion for seleciing the
appropriate control sequence {s required. Horwood provides a

rationale for choosing 8 linear objective function. viz.
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T
max 3 41« 81 fhoyei) - eontnd) (2.10)
ta}
Thet In, the sum of discounted returns from rishing is to be
saximized over a horizon of T years. The coelficient h converts
viz)d to return in an arbitrarily selected unit., The coefficient

c asasignz a cost wmeasure to the use of control.

The mathematical optimization probles then is to find the
fishing pattern f{u(1), u(2), .... ui{T} which maximizes the
criterion (2.10) and conforms to the inequality constraints. The
yield veriable y{t} sppearing in the objective function i1, to

recall, determined through the dynsmic equations {2.1)-(2.8).

Cajculation of Optimal Fishing Mortalities

Rorwood reporta alternative calculaticns of optisal
fishing pattern for different time horizons (T) and #!sgount rates
{(8). He employed one of the avallable computer prograss for

solving these nonlinear optimtzation prohlems,

The present author obtained the numerical solutions using
a gradient algoritha. For a 40 year planning horizon, the
optimal fishing effort ts plotted tn Chart ! and for & 20 year
horizon in Chart 2. Charts 3 and 4 show the respective spawning
btomass. These results correspond to a 10 per cent discount rate
(6 » 0.1). They are similar to those reported by Horwood. In
fact. our calculations yleld somewhat better optimua value of the
objective In each case, For comparison, these values are an

follaws:
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ime Horizon T = 20 years, discount rate = 0.1

e o

Horwood‘'s optimum = -0,5065
Author's optimum = -0.474

Time Horizon T = 40 vesrs, discount rate = 0.1

——— et

Horwosd's optimum = -0.3750

Author's optimum = -0.3559

The big diff. ~ence 1* in the computation tjme. Horwood
(1987) states that his .omputations required 342 =!nutes for the
40 year horizon case (with ineq slity censtrainta oa the control
variable). In contrast, our calculations ta'e only c-bout 7
sinutes of computer time to find the optimum. This case thus
demonstrates that alternative cowputatulon sclaes can vary
greatly in their effectiveness. i alse shows that the way
available computer programs are put to use, can olso vary

significantly from user to uvser.
3. GAING PROM CARTELIZATION OF FATROLEUM OIL

Pindyck (1978) analyses gainr to producers from
cartelization ,f exhaustible resources. He examines the cases of
petroleum oil, bauxite and copper. For cach commodity he
constructed an econometric model. These models are used to
calculate the optimal gains from cartel pricing policy. In this
scction we consider the model for petroleum of). The base year

for the analysis is 1974
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Endogenous Variables

(1) = total demand for oil in year ¢ thillion barrels
= hb)

N(t) = desand for cartel oil (bb/year)

S(t) = aupply from competitive fringe producers not tn
cartel (bb/year)

CS{t) = cumulative supply fros the competitive fringe {bb)

Rit} = oil reserver of the cartel (bh)

Decisjon (Control) Variable

P(t} = price of oil in constant 3975 dollars (S per
barrel)

Model Equatlons

The total demand for ol} fn year t is determined by the

dynamic equatlion:

Th(t) = 1.0 - 0,13 P(L) + 0.87 TD(L-1)

+ 2.3 (1.015)¢ (3.1)

This is based on a total demand of 18 bb/year at a price of $6 per
barre) in the Lase year. The short-run elasticity s 0.04 and the
fong-rur 0.33 (with a Koyck adjustment pattern) at $6 per barrel.
At 2 price of $12, these elasticities are 0.09 and 0.90,
respectively, The last term {in Fq. (3.1) Incorporates an
autonomous growth cosponent st the rate of 1.5% per year, based on
a long-run {income elasticlity of 0.5 and a 3% real rate of growth

in tncome.
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Some of the demand Is met by supply from the competitive
fringe producers. These producers are not memhers of the cartel.
To account for the depletion of reserves of the comapetitive

produrers, a cumulative supply variable CS{t) is esployed, viz.
CS(t) = CS(1-1) « S(t) {3.2)

That is. the previous level plus the current supply make up the

cumulative production so far.
The supply from the competitive fringe 1s modelled as:

S(1) = 0.75 S(t-1) + (1.1 + 0.1 P(1)} (1.02) CS(t)/7
{(3.3)
This 1s a dynamic supply equation. Ir the base year the
competitive supply is about 6.5 bb/yesr at 96 a bariel. Cu.(3.3)
implies a short-run elasticity of 0.09 and a long-ren ¢k  lcity
of 0.35 at this price, At $12 a barrel. the correspeadligr 7igures

are 0.16 and 0.52.

The eflect of reserve depletion is to shift the supply
function, Fq (3 3}, to the left over time. Assuming ¢ flixed
price, competitive supply would fall to 55% of its original value
after a cumulative produrtion of 210 biliion barrels (e.g.. 7
bb/year for 30 years). it is assumed that no new technology or
reserves add to the potential supply of competitive fringe

producers.

The demand D(t) facing the cartel then is the totai

demand minus the supply from the competitive fringe, {.e
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DEL) = TDEL) - S5(t) {3.4)

It ix assumed that the cartel! can manipulate the price P{t) to
satisfy this demand. Accordingly the cartel reserves get

depleted: so that

R{t} = R{t-1) - D(1) (3.5)

Cartel Decision-Meking

The cartel price P(t) is chosen ro as to msaximize the
discounted sum of profits over a lorg time horizon. The

mathemntical objective function is:

0.5 x 500

R(1) D(t) {(3.6)

N
max W = max } (1+8) "t |p(t) -
+=]
This stipulates that the cost of production increases as reserves

falil.

In the base year the jinitial reserves are R(0) = 500
billion barrels and the initial average cost of production is $0.5
per barrel. The average cost of production rises hyperbolically
as reserve R{t) depelete to zern. The difference between the
cartel price and the cost of production is the profit margin per
barrel. Eq. (3.6) then represents the maximization of the sum of

discounted profits over the planning horfzon.

The {initial situation is specified as: TD(0O) = 18.0,
S(0) = 6.5 and CS(0) = 0. That is, the total demand in the bhase

year is 18 bb/year., the competitjve supply is 6.5 bb/year and the
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cumlative supply from the compet itive fringe is initialized to

Zero.

This is a non)inear mathematical optimization situatfon,
The objective function (3.6) Is nonlinear as Iig the set of
dynamic equations {3.1) - (3.5). There i3 an additional
complication, The variables S(t) and ¢S(t) appear or the right
hand side as well as on the left hand side. Jn other wordz, Eq.
(3.2) and (3.3) are in implicit form, not explicit. In
econometric terminolopgy, the set of dynamic equations (3.31) -

(3.5) is In “"structural form™ and not in the "reduced fora".

Calculation of Gains to Cartel Producers

Optimization can be performed using one of many
computer programs that are available. Again, we employved a
gradient procedure. In Table 1 we give the optimal cartel price
over a 40 year time horizon (N=40) and for a 5 per cent discount
rate (5=0.05). For comparison we have also fincluded the
corresponding price trajectory obtained by Pindyck. Chart § plots
the price trajectory of our calculations, It is seen that our

results are quite close to those of Pindych.

The maximum gain from carteiization over 40 years Iis
found to be 2163 in contrast to 2092 in Pindyck's calculations.

That is, our optimum is marginally (about 3%) better.

In the case of petroleum oil, we thi~ v ify that our
results are close to those of Pindyck, both quantitively and

qualitatively. This implies that our calculations are
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satisfactory,
In the next section, we describe that for copper we find
substantially better results than Pindyck.

4. GAINS FRON CARTELIZATION OF COPPIR

This model s slightly larger than the previous one for

petroleum. The base year is again 1974 however.

Endogenous Vsrisblesa

Ti{L) = total demand for copper in year t (million

Betric tons per year).
S(1) = total supply from the competitive fringe (mmt/year)
SP(t) = primary supply from competitive fringe (mmi/year)

CSP{t)= cumulative value of primary supply from the

competitive fringe (mat)

SS(t) = secondary supply derived from scrap by the

competitive fringe (mmt/year).
K(t) = stork of copper in product form (mmt)

R{t) = reserves of the cartel {mmt)

1KV3
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Model Fquations

The total demsnd for refined copper is deternined by the

dynamic equation.
t
TD(L) = 0.405 -~ 0.78 P(t) « 0.9 TD(t-1) + 0.91 (1.03)
(4.1)
In 1974 the total! demand was estimated to be about 7.3 afllion
metric tons at a price of $0.75 per pound. The short and
long-run elesticities at this price are 0.16 and 0.80,
respectively. An nutenomous grawth coasponent appears fn the
demand equalion {(4.1) It reflects a 3.75% rate of growth,

correspundiag ie a long-run income elasticity of 1.25 and a 3%

reai vate of grouth ir ircone.

Aluninium is a major substitute for copper. But Pindyck
essumes & fixed price for It and therefore its price does not

appear in the demand equation {4.1)

The total demsnd is satisfied by supply from the cartel
as well un the frirge produrers. The latter are not members and
accept the price set by thez cartel. In this sense they are

considered competitive.

The total supply from the competitive fringe comprises
two sources. One i{s the primary refined copper and the other from
scrap. The cumulative value of the primary supply is given by the

fdentfty:

1KV3




16
CSP{t) = €SP(t-1) + §P(t) (4.2)

The supply equation for prisary refined copper {rom the

competitive fringe is as follows:

SP{t) = 0.88 SP(t-1)+[-0.19+ 0.8613 P(t)ih.omfcs"::’g:

The relatfonship Is based on a privary supply of 3.8
mmt/year at $0.75 per pound in the base year. The short-run and
lonp-run price elasticities are 0.2 and 1.6, respectively. FEven

tough the long-run elasticity fs high, the adjustment time is

quite considerable.

Depletion of reserves shifts the primary supply function
’f the competitive fringe to the left over time. Assuming a fixed
price, the primary supply would fall to 55% of its original level
after a cumulative production of 160 mmt (e.g. at the rate of 4

mat/vear for 40 yeers).

The secondary supply of copper from the competitive
fringe is derived from scrap. This depends upon the stock of
copper products available to be ronverted into scrap. The copper

stock is governed by the equation:
K(t) = 0.98 K{t-1) + TD{t) - §S(t) (4.4)

This allows for losses at the rate of 2%. The serondary
production S$S(t) in the current year is subtracted to avoid

double counting.
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The equation for secondary supply fros the fringe

produrers is as follows:

SS{1}/K(t) = 0.009440.005733 I(L)-0.37[SS{L-1)/K(t~1)}

{4.5)

In this relationship price of the primary copper, viz.
P(t). appears because the price of secondary copper is hirhly
correlated with it. The equation fncludes a stock-adjusruent
behaviour. It has a higher short-ierm price elasticity of 0.43

and & lower long-run elasticity of 0.31.

The total supply from the competitive fringe forss the

identity:

S(1) = SP{t) + SS(t} {4.6)

The cartel supplies the rest of the demand, i.e.

D(t) = TD{t) - S(1) (4.7)

The cartel reserves deplete by this amount in year t, so

that:

R(t) = R{t-1) - B(1) (4.8)

Cartel Decision Making

The objective of the exercise is again to maximize the
sum of discounted profits for the cartel. The optimal trajectory
for the cartel) price P(1) needs to he determined to achfeve that.

The mathematical objective function is chosen to bhe:
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Nt
wax W= § (1+8) 2204 [P(1) gif," 12 J oy (4.9)

Here an initial rescrve of 135 amt and productjon cost of
$0.5 per pound are assumed. Again, the production cost rises
hyperbolically as reserves R(t) fall. The coefficient 2204
appears in order to convert pounds to wmetric tons. And as before,

8 is the discount rate.
The initial values for different variables are:

TO{0)=7.3, SP(0)=3.8, SS{0)~1.2, CSP(0)=0, K{0) = 120. They refer

to 1974 as the base year.

Calculation of Gains to the Cartel

We again compare our results with Pindyck's for a 40 yesr
time horizon (N=40) and & discount rate of five per cent (5+0.05).
In Table 2 the optimal! price trajectories are given nukerically.
The cartel price obtained in our calculations 1s plotted in Chart
6. This pattern is qualitatively quite different from that of
Pindyck. Our optimal trajectory shows a smooth pattern with a
single spike in the middle of planning horizon. In contrasat,
Pindyck's trojectory follows an oscilistory, fluctuating time
path, although the general envelope of the functuations is similar
to our smooth trajectory. That is, it contains spikes throughout

in 1ts graph.

The optimal gain to producers is found to be 39,767 in

our calculations. In contrast, Pindyck reports a figure of
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28,988, We are thus sble te find an optimum which is nearly a
third higher. In other words, the procvedure employed by Pindyck
finds & Joral optisum which is substantially loswer than our

result.
8. 4 SOIL CONSERVATION KODEL

We now examine a model developed by Bhide, Arden Pope 111
and Heady (1982). It deals with the economfcs of sofl
conservation. According to these authors soil use is analogous to
the use of an exhaustible resource. If soil Joss from farming
exceeds the natural sofl formatlon. then exhaustion will occur.
They give numerical modecls for three different soll types. We

consider one of those models here.

Endugenous (stat~) varjsble

SD(t) = soil depth in acre-inches in year t

Control {(decision) varlable

SL(t) = soll loss in tons/acre in year t

HMode]l relationships
There is only one dynamic equation {n this model, viz
SD{t+1) = SL(t) 0.0069 [SL(t) - 5.0} i35 1)

Here the constant 5.0 §s the rate of natural sotl formation and
0.0369 is the inverse of the bulk density of eoll

(tons/acre Inch). Eq (5.1) represents the dynamics of soil depth
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which s affented by the natural soil formation and losg from

farming.

Initially, iIn year 0, the acil depth level is 7 acre-

inches, }.e., SBa) = 7.

The saingle decision variable, viz. =sol) loss, s

restricted to be in the range 0 to 16 tons per acre; i.e.

0 € SL(t) € 18 {5.2)

Critecion for Optimization

The objective of ths exercise is to maximize the sum of
dlscounted net returns from farming. The mathematical objective

function §n this case ja as follows.

N
max W = max § (148)"% [225.207(1+0.25¢)(1-0.52805%1t)}
t=0
2
- {6.8584 ¢ (1+35)(0.6803 - 0.1225N(t) + 0.0043 SN{t)))}}

(5.3)

This Is a fairly complicated function of the single state
varfable SD{(t) and the =ingle control variable SL(t). The
discrete time vartable t s included to reflect the e!{fect of

technological changes.

Calculation_of Optimal Returns

Compared to the models of Horwood and Pindyck considered
in previous sentions, this i{s a much simpler model There is only

one dynamic equation. Also, there s only a single endopenous
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variable and s single decision variahle for each time pariod.
Only the mathematical objective function is nonlinear. And the
decision variable 1s restricted within the Inteval [0,16).

Hlowever, this model can also be solved using a pradient procedure.

Bhide et al. report the optimal solutior for a 5 percent
discount rate (6 = 0.05) and a 35 vear time ho:,zon (N=35). Note
that there are 36 decisjion variahles. SL(0)., SL{(1), ..., SL(3s),
since the aptimization criterion extends from t=0 to t=35. The
optimal soil loss obtained In our calculatlons s plotted tn
Filgure 7 and it {8 close te that reported by Bhide et al. Also,
our optimal gain at 4986.9 comporss well with thelr value of

4986.05.

This model is however seriously flawed and that has not
been pointed out by Bhide et at. From Figure 7 it can be seen
that the optimal soil loss remains in the vicinity of 10 from
year 0 te year 25. In fact, it remains within the interval [9%,
10%] in this period. After t=25 the discount factor becomes very
effective and large variations in the declaton variable wake
I>ttle contribution. In other words, the optimal! sroi] loss
pattern of Figure 7 gives a clue to the situation that the
objective function (5.3) is not very sensitive to large changes in
the decision variable. This can be verified numerically. To do
this we keep the derisfon variable at a fixed value over the whole
planning herlzon (e g. SL{t} = 9, t = 0,1,2,,,.35) and calculate
the rorresponding value of the aobjective function (which s

not optimized) The following toble lists some alternative
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vatues of the soil loss and corvesponding value of the discounted

net returns:

Soll Loss Discounted Departure from
Constant at Net Returns Opt imum (4986.9)
a 4975.2 -0.24%

9 4984 .2 -0.06%
10 4986.2 -0.02%
11 4984.6 -0.04%
12 4980.9 -0.12%

In Figure 8 we plot similar pairs for soil loss kept constant at
1.2,3.....16. The above table and Figure 8 bring out that the
particular objective function in the present case in not sensitive
to wide variations in the decision variable. 1In fact, beyond a
soi]l loss of 7, the ohjective funrtion is quite insensitive to
wide varfations. In other words, this objective function is not
helpful in identifying the optimal pattern of the decirion
variable. That is, this objective function is not meaningful for

determining optimal conirel actions.

8. CONTROL TEEORY AND WATHEMATICAL OPTINIZATION

These case studies highlight some of the complexities
assoriated with noalinear wmathematical optimizat. They
demonstrate that those who ronstruct models in an application
area, uare not always able to obtain solutions most effectively.
Someone else with expertise in nonlinear optimization could

produce bhetter performance or fidentify difficulties. Mere
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availability of computer programs dons not appear to be the
overriding factor. The resource cartelization models »»amined
here were developed at the Massachusetts Institute of Technology
where powerful computer software {s readily availahle. Simllarly,
Horwood ewployed & standard mathematical software package. In the
rase of nonlinear mathematical optimizatfon, considerable skill
and ingenuity are required even in using avallable computer
software. It is quite possible that two persons will produce

different results using the same software.

(This quizz heard on the radio is of some relevance here.
Question : Does the availability of a word-processing package make
one an accomplished author? The answer is ohvious. Similarly,
mere poszsession of a cosputer package would not wake one

accomplished in nonlinear mathematical optiamization.)

Nathematical optimization iz a broad and desanding
discipiine (see, e.g., Shapiro 1979, Simmons 1975). Nonlinear
optimization in particular is quite an involved process. Only in
rare cases would experts ir agriculture and resource economlics
have great expertise in nonlinear optimization and nuserical
methods as well. 1In normal. pedestrian cases a cooperative approach

amongst experts in different disciplines seeas advisable.

{n dynamic optimization situations the additional
dimension of time is jnvolved. Some convey the {impression that
such models can be handled routinely by control theory. But
control theory itaelf is a broad discipline and not just a handful

of techniques or procedures (see, e.g , Dorf 1980, Franklin and
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Powell  1980). it deals in gencral with the desipgn and
construction of systems so as to moke them more reiiable or
perfora better. In physical systems its domain varles from simple
(such as air-conditioning) to quite complicated (such as
automatical pilots for aircrafts, and even guidance and control of

space vehicles).

It is however true that in mathematical form some of the
situations considered in control theory are similar to the case
studies included here. A typical discrete-time control model
involving nonlinear dynamics and nonlinesr perforuance criterion

can be written as follows:

x(t+1) = £[x(t). u(t+1)}

max g glx(t), u(t),t]
t=1
where x(t) is the state vector, u(t) the control (decision}
vector, and gf ....] is the contribution to tke objective function
in period t. But this control model itse)f requires the theory of
non-linear optimization and suitable computer software for

solution (see e.g. Bryson and Ho 1969).

One particular instance of control theory models seems to
have become well-known in other disciplines. It s the so-called
linear quadratic regulator (LQR) case. In discrete time domain

the (constant parameter) LQR can be represented as follows:
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x{t+1) = A x(1) « B ult+y)

N L ]
min J x (L) P x(t) + u (1) Q u(t)
tu}
where x(t) is the nx! state vector, u(t) the mxi contro}l verter,
and P and Q are (positive definite) weighting matrices. The great
simplifying feature of the LQR foreulat'on §s that the optimal

control is & linear function of the state, viz.
*
u (La1) = -K x(t)

where K 1is the feedback matrix. This means that the optimal
control actions can be determined readily once the matrix K s
known. In the literature several alternative ways for calculsting
K have appesred {see, e.g., Franklin und Powell! 1830). These are
based on analytical derivations. It is also possible to find K
directly by nunerical methods once the system matrix A, the
control matrix B and the weighting matrices P and Q are specified.
This LQR formulation has found several applications in economi: s,
particularly in economic stablization situations (see, e.g.. Chow

1975, Vishwekarma 1974 for case studies of ®acroeconomic

stabllization).
This LQR model is deterministic. It also assumes thot
the state vector x{(t) is me-sured directly. In a more general

formulation this is not the case. That is, the state is not
supposed to be measured directly. Instead. only a linear
transformation of the state js assumed available as the

observation (output, measurment) vector y(t). Furthermore, It !s
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assused that a mensurement noisze n{t) corrupts the observation.
Similarly, the dynanmic relationship describing the transition of
the state from peried to period is thought to contain a random
nolse component %{t). Thus, the following discrete-time linear

stochastin quac: ztic regulator case arises:

a{t+1) = A x(t) + B u{tel) + ¢ E(t)

y(t+1) = D x{t+1) + n{te+1)
and

min E [ gx'm P x(t) + u'(t) Q ult) ]

t=3

Here C and D are additional coefficient matrices. Since the state
x(t) is a random process in this case, the objective function
involves minimization of the expected value of the quadratic.
And, it is usual to assume that the random disturbance processes
§{t}) snd n(t) are normally distributed (Gaussian) white noise
processes. In spite of these generalizations, the optimal
contral is again a linear function of the state with the
qualification that the conditional expectation of the state fs now

involved, s0 that
u®(te1) = K x"%(t).

Since the atate is & random process and not directly measured,
its expectation needs to be estimated from the observation process
y{t). The celebrated Kalman filter enables that. Briefly. the
principle of certainty equivalence applies and the Kalman filter

fs needed to obtain the expected value of the state which in turn
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Tacilitates calenlation of the optima) stabilizing control., See
i.0. Chow {1975) and Vishwokarma (1974) for application of this

forsulation in macroeconomic stabilization policy.

In sfeple terms therefore, control theory encompasses the
Kalman fflter. Applications of this fiiter in economic analysis
are numerous. For forecasting by means of the Kalman filter see,
for example, Vishwakarma (1970, 1974). In practical situations
the coefficient matrices A,B,C,D and the covariances of noise
processes &(t} and n{t) are of course unknown. They need to be
estimated from available tiwe series data. An illustration of
cuch estimation for sisultaneous forecasting of finterest rate,

wone, supply and bank loans is given in Vishwakarma (1987).

To be sure, there are many other models and formulations
in control theory 2s well as mathematical optimization theory

which have yet to find applications in economic analysis.

In this context reference needs to bhe made to the
well-known method of dynamic programsing (e.g. see Nemhauser
1966). This is a particular optimization procedure whirh
utilizes the so called principle »f optimality. To quote
(Rellman 1961, p. 56), this principle states: “An optimal policy
has the property that whatever the in.tial state and the initial
decision are, the remmining decialons must constitute an nptimal
palicy with repard to the state reso ting from the first
decision” This is a brozd statens wiich applies to other
techniques as well as to dynamic prograssing. Unfortunately. the

term “dynamir programeing” is a misnover. This method is better
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described as a recursive optimization approach which leads to the
aptimum through a sequence of steps. As such dynamic prograsming
doen not deal with optimization over time fnvolving dynamic
systems, although [t may be applicable f{n these situations. The
other major difficulty with it is what is termed the “curse of
dimensionality”. ¥hen several declision variables are
simultaneously involved, wuse of dynamic programsing becomes
lepractical. Rorwood's model presents such a sfitustion and

dynamic programming would not be an effective procedure for it.

Theoretical }iterature on mathematical optisization and
control theory is voluminous. Computer software for performing
calculations in this regard is also plentiful. For example,
Shittkowski (1980) presents a comparative evaluation of some 20
different optimization programs. Well-known software libraries,
such as IMSL and HAG, now include a number of routines. And some
particular packeges, NINOS (Murtagh and Saunders 1987) for
example, are becoming widely known. But, as Schittkowski
elaborates, each program has its strengths and weaknesses. In
fact, some of the programs are siaply of poor quality. And, there
is as yet no aingle program which i{s superior to cothers in all
respects. This I8 not surprising. The variety of nonlinear
optimlization models that can arise in practice is very great
indeed. Programs that are geared to a given type of situations
will naturally perfaorm better than those which cater for other
scenarios. In fact, choosing an appropriate program for the
situation in hand {s a useful skill. It Is unlikely that the same

program will be suitable In ai) situatjons.
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An sssociated aspect is the care needad in making uge of
avaiiable computer softwire. Nonlinear optiaization progranms
typically require the user to provide a subroutine or a function
to evaluate the ohjective functions and constraints. As a rule
these are given in the FORTRAN language. An ability to write
FORTRAN programs in itself is a nontrivial skil}. In this context
the dintus “garbage in, garbage out™ is very much relevant. BRoth
in writing of the subprograms and in thé use of the software, the
porsibility of making nonsensical calenlations exitz. The model
of Bhide. Arden Pope 111 and Heady provides an example. To
~ecall, fta objective function is not a pood one since it =
insensitive to wide variations in the decision variable. No
optimization =oftware can check whether such flsws erist in a
model. In other words, just because available software is run on
a rorputer to arrive at the resultz, there i{x no guarantee that

those results are =zound.

Not only for aoptimization but use of mathesatics in
general ia not so trivial z process. Even inserting numbers into
established formulae ix not a trivial endeavour. The study
conducted by Dewald, Thurshy and Anderson (1986) is a case in
point. They examined the 1issue of replicating the resanlts
published in articles on practical economic snalysis. They found
that in nany cases the authors did not correctly use even
regression analysis software. Calculation of optima in nonlinear
dynamir systems is a more involved task and regquires considerable

expertise on the part of the arslyst.
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This discussion should not be taken to mean that
Horwood's or Pindyck's analyses are (incorrect. Quite the
contrary, they ought to be commended for thefr articles. This
author 1s aware that both Pindyck and Horwood have great expertise
in optimization methodology as well as contrel theory. That has
enabled them to devise and operate the models cited here. The
description in their articles is complete. That makes it possible
for others to replicate their calculations. Such i{s not always
the case with articles appearing in the )}iterature. Again. the
Dewald, Thursby and Anderson (1986) study throws light on this
issue, It mentions that very many published analyses are not
amenable to replicatfon. Such results could only be acceptable as
a matter of faith. Our scrutiny of Horwood's and Pindyck's madels
indicates that the analysis of even experts could benefit from
cooperastion with others. Those who have lesser training would
certainly be better off seeking help. As a matter of fact, there

are professional consultants who render such services.

7. CORCLUSION

Divisjon of labour and synergy are well-known concepts.
They slignify that a complex activity 1is better performed by
dividing it into areas of expertise. Applications of mathematical
optimization and co. rol theory are in this category. The case
studies examined here jllustrate that agriculture and resource
management Involve romplicated decisjion-making. Cooperation of
experts in control usnd optimization theory with agriculture and

resource experts should result in more efficient anaslysis.
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TARLE J. COMPARISON OF OPTIMAL CARTREL PRICE  TRAJECTORY FOR
PETROLEUN OlL
{Discount Rate = 5 per cent)
Year Author's Pindyck's
Results Resultx
1978 13.26 13.24
1976 1.3 11.19
19717 10.47 10.26
1978 10.17 9.80
1979 10.13 9.82
1280 10.33 9.88
1285 11.086 10.84
1880 12.13 §1.98
1995 13.84 13.18
2000 15.09 , 14.46
2005 15.79 15.92
2030 20.36 20 .29
OPTIMAL GAIN 2,163 2,092
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TARLE 2. COMPARISON OF OPTIMAL CARTFL PRICE TRAJECTORY FOR COPPER

{Discount Rate = 5 per cent)

Year Author's Pindyck's
Renulta Results
1975 1.03 1.2
1876 0.98 0.78
1977 0.94 1.02
1978 0.92 0.73
1979 0,82 0.98
1980 0.93 0.75
1585 1.00 1.0
1980 1.11 0.97
1985 1.45 1.15
2000 1.40 1.20
2003 1.58 1.36
2010 1.68 1.49
OPTIRAL GAIN 39,767 28,988
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3. Fishery Model
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Price Trajectory Over Time
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5. Cartelization of Petroleum
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6. Cartelization of Copper

Price
Trajectory Over Tims

-
-
......

-

2000 2010

2020

1980 1980

Yaer

nBS-




Optimum Soil Loms

7. Soil Conservation Model
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8. Soil Conservation Model
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