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1 Introduction

This paper considers three concepts of cooperative game theory, namely coalition

formation in simple games, apex games and strongly monotonic solutions. The

aim is to �nd stable outcomes of a hedonic coalition formation game which is

derived from a generalized apex game and a strongly monotonic solution.

If a group of players has to make a decision, there are subgroups (or coalitions)

which are able to impose the will of their members. Usually, the grand coalition

should be able to unanimously decide, whereas the empty coalition should not be
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able to do so. Coalitions which are able to impose their will are called winning.

A situation in which the collection of winning coalitions is fully described is

called a simple game. An important question which arises in those games is,

how powerful various players are. There are di�erent ways how to measure this

power. Particularly, it is interesting not only to ask, what is the power of a

player in the overall game, but also: How powerful is a player within a certain

coalition? The power of a player might be used to distribute the worth of a

coalition between its members (think of the number of ministries a party gets

within a political coalition). Hence, a power measure provides each player with

a tool to compare the di�erent coalitions he might belong to. Preferences over

coalitions thus derived induce a coalition formation game. The question is now:

Which coalition shall form? Or: Which coalition is stable, in the sense that no

member will leave it? We assume that the value a player receives in a coalition

does not depend on the behaviour of players outside of the coalition, that is that

there are no externalities. Such coalition formation games are called hedonic

games. They have been introduced in Drèze and Greenberg (1980) and despite

the absence of externalities, their analysis is quite complex. Particularly, it is not

even clear under which circumstances a stable coalition exists. Although there

are some general conditions which guarantee existence (see for instance Banerjee

et al., 2001; Bogomolnaia and Jackson, 2002; Iehlé, 2007), an analysis of hedonic

games which are derived from a simple game and a power measure has not led to

su�ciently general results. A good basis of this topic can be found for instance

in Dimitrov and Haake (2006, 2008).

A special subclass of simple games are apex games. They have already been

studied in Morgenstern and von Neumann (1944). These games with one major

player (originally called chief player in Morgenstern and von Neumann (1944),

later called apex player) and a set of minor players have been investigated in many

articles (see for instance Aumann and Myerson, 1988; Hart and Kurz, 1983, 1984;

Montero, 2002).

An apex player can form a winning coalition with each of the minor players. But

the set of all minor players together is winning as well. In that sense, the apex

player is not able to block any decision of the coalition of minor players. A player

which is able to block each coalition is called a veto player, hence an apex game

can be interpreted as a `weak' version of a veto game. This is the motivation for
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the class of generalized apex games which is introduced in this paper. Consider

a game with a nonwinning coalition C such that a coalition is winning if and

only if it contains C and at least one of the remaining players. Each member

of C is a veto player, and again the members of C are considerably weakened

if the game is changed such that the remaining players can unanimously form a

winning coalition. Although this is already a slight generalization, one might still

go further. Let there be several coalitions Ik in a simple game and a set J with

an empty intersection with each Ik, such that a coalition is winning if and only

if it contains some Ik and at least one j ∈ J . The apex version would be that J

itself is a winning coalition. In such games the sets Ik are called apex sets, and

J is the set of minor players.

Generalized apex games can occur in many situations. The outcome of political

election might be considered (see for instance Example 3.2). But also in decision

processes a generalized apex game can easily appear: Suppose that a decision

can be made in a committee and let Ik be the coalitions in the committee which

can impose their will. Suppose further that a decision needs approval by at least

one person from a second committee (for instance a supervisory board). Such a

voting game will end up in a generalized apex situation (see Example 3.4).

The third concept we consider is the one of monotonic solutions. If there are

two di�erent simple games u and v on the same set of players such that a player

can block in v all coalitions which he can block in u and at least one more,

then his power in v should be strictly greater than in u. This monotonicity

property appears for example in Sagonti (1991), where it is shown to be satis�ed

by the Shapley-Shubik-Index (see De�nition 5.1 as well as Shapley, 1953), and

the Banzhaf value (see De�nition 5.8, as well as Banzhaf, 1965; Coleman, 1971).

We show that the normalized Banzhaf value is in general not monotonic in this

sense, but that its behaviour on generalized apex games is quite similar to that

of a monotonic solution.

After these three ideas have been introduced, we consider hedonic games which

are derived from a generalized apex game together with a strongly monotonic

solution. In Shenoy (1979) it is shown that the (simple) apex game is the only

four player (proper monotonic) simple game which induces together with the

Shapley value a hedonic game with an empty core. For games with more players

the core of the respective hedonic game remains empty. In particular, the Shapley
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value of the apex player increases with the number of minor players. It will be

shown that this comes from the strong monotonicity of the Shapley value and

holds true also on generalized apex games. We will derive necessary and su�cient

conditions for the nonemptiness of the core of hedonic games which are induced

by a generalized apex game and a strongly monotonic solution.

Although the existence of a stable coalition in a hedonic game derived from a

generalized apex game and a strongly monotonic solution highly depends on the

structure of the family {Ik}k, it will be shown that many insights can be derived

if simple conditions hold true. Particularly, it will be shown that the players of

J are an important part of any core stable coalition.

Section 2 develops the basics of simple games and hedonic games. Particularly,

some important properties of hedonic games which are induced by simple games

and solutions are stated. Section 3 introduces apex games and their generaliza-

tion. Some basic properties of the family of apex sets as well as uniqueness of

a representation are shown. Section 4 contains the main statements. Strongly

monotonic solutions for simple games are introduced and hedonic games which

are induced by generalized apex games together with a strongly monotonic solu-

tion are analyzed. Necessary and su�cient conditions for the existence of stable

coalitions are stated and candidates for core stable partitions are given. Section 5

applies these results to the Shapley value, the Banzhaf value and the normalized

Banzhaf value. Sharper conditions for the existence of stable coalitions are stated

and for many cases stable coalitions are characterized. Section 6 presents insights

for further generalizations and states some open questions.

2 Coalition Formation in Simple Games

Throughout the paper let N be a �nite set of players. A coalition is a subset

S ⊆ N and the set P = P (N) is the collection of all subsets of N . For i ∈ N ,

let Pi (N) be the collection of all subsets of N which contain i. A partition is a

set of nonempty coalitions π = {S1, . . . , Sm} such that Sk ∩ Sl = ∅ for all k 6= l

and
⋃m
k=1 Sk = N . The collection of all partitions of N is denoted by Π = Π (N).

For a partition π ∈ Π and a player i ∈ N , let π (i) denote the unique coalition in

π which contains i. For a coalition S ⊆ N , let ΠS = ΠS (N) be the collection of

all partitions containing S.
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2.1 Simple Games

A simple game is a function v : P (N)→ {0, 1} with v (∅) = 0. Particularly, the

zero game which assigns 0 to each coalition S ⊆ N is a simple game.

Simple games have already occurred at the very beginning of game theory in the

book of Morgenstern and von Neumann (1944). The authors devoted a large

chapter only to this class of games and investigated their structure. Since then

simple games have been studied in many articles (see for instance Banzhaf, 1965;

Shapley, 1966; Shenoy, 1979). Their importance comes from the fact that they

represent situations in which the members of a society vote for or against an

alternative. The analysis of simple games provides insights into the relation

between a player's power in and the �nal outcome of such a game.

Let v be a simple game. A coalition S ⊆ N with v (S) = 1 is called winning. If S

is a winning coalition and i ∈ S is such that v (S \ {i}) = 0, then i is called pivotal

in S with respect to v. A winning coalition S in which each i ∈ S is pivotal (in

S with respect to v) is called minimal winning. If i ∈ N is not contained in

any minimal winning coalition then i is called a null player (with respect to

v). Equivalently v (S) − v (S \ {i}) = 0 for all S ⊆ N . If i ∈ N is contained

in all minimal winning coalitions then i is called veto player with respect to v.

Equivalently v (S) − v (S \ {i}) = 1 for all winning coalitions S ⊆ N . If i is a

veto player such that v ({i}) = 1 then i is called a dictator. Two players i, j ∈ N
are called symmetric in v if v (S \ {i}) = v (S \ {j}) for all S ∈ Pi ∩ Pj. Note

that all veto players with respect v are symmetric in v, as well as all null players

with respect to v are symmetric in v.

The following two possible properties of a simple game are intuitive. They would

be satis�ed, for instance, in a simple game derived from majority voting, i.e. a

voting game in which a coalition is winning if and only if it has a (simple or

quali�ed) majority of the votes.

De�nition 2.1. A simple game v is called

1. proper, if v (S) + v (N \ S) ≤ 1 for all S ⊆ N .

2. monotonic, if v (S) ≤ v (T ) for all S, T with S ⊆ T .

The set of all proper monotonic games on N is denoted by V = V (N).
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A veto player seems to be very powerful, as he can bring down each winning

coalition, while a null player seems to be quite weak, as he does not have any

in�uence in any winning coalition. The `power' of a player i in a simple game

v ∈ V is naturally related to the number of minimal winning coalitions to which

i belongs.

If a winning coalition has formed, the next question is how powerful each player is

in this (�xed) coalition. Therefore, it is reasonable to consider proper monotonic

simple games on subcoalitions of N (see for instance Dimitrov and Haake, 2008).

For v ∈ V and a set S ⊆ N the subgame (or restricted game) vS on N is de�ned

by

vS (T ) = v (S ∩ T )

for all T ⊆ N .

This idea is quite related to the carrier of a simple game de�ned in Shapley

(1953): A carrier of a simple game v is de�ned as a set N of players such that

v (S) = v (N ∩ S) for all coalitions S of players in a (maybe in�nite) universe U .

In our case, S ⊆ N is a carrier of the game vS. In this new game vS, all players

from N \ S are basically ignored: They are null players with respect to vS. Null

players are considered later in this section. First it should be clari�ed, which

properties of v remain valid in vS. Fortunately, the structure of a subgame vS is

the same as that of v in the following sense.

Proposition 2.2. Let v be a simple game and S ⊆ N .

1. If v is proper, then vS is proper.

2. If v is monotonic, then vS is monotonic.

The proof of this proposition is left to the reader. So, for any v ∈ V and any

S ⊆ N , the subgame vS is also a proper monotonic simple game. If S is not a

winning coalition, then vS is just the zero game; if S = N , then vS coincides with

v. As vS ∈ V for each S ⊆ N , veto and null players are well de�ned with respect

to vS. A veto player in S with respect to v is a veto player with respect to vS,

a null player in S with respect to v is a null player with respect to vS. Hence,

i ∈ S is pivotal in S with respect to v if and only if i is a veto player with respect

to vS. Particularly, a veto player (null player) in N with respect to v is also a

veto player (null player) in vS for all winning coalitions S ∈ Pi.
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Simple games form a subclass of the class of transferable utility games (TU

games). An outcome of a TU game on N is an allocation of v (N) to the players

of N . An allocation rule which is applicable to arbitrary TU games is called a

`solution'. We next de�ne the concept of solutions for proper monotonic simple

games and some properties.

De�nition 2.3. A solution is a mapping ϕ : V (N) → RN .1 The projection

(ϕ (v))i is abbreviated by ϕi (v). A solution ϕ

1. is nonnegative if ϕi (v) ≥ 0 for all i ∈ N and all v ∈ V ;

2. is e�cient if
∑

i∈N ϕi (v) = v (N) for all v ∈ V ;

3. is coalitionally e�cient if
∑

i∈S ϕi (vS) = v (S) for all v ∈ V and all S ⊆ N ;

4. satis�es the null player property if ϕi (v) = 0 for all v ∈ V and all null

players i ∈ N with respect to v;

5. satis�es the equal treatment property if ϕi (v) = ϕj (v) for every game v ∈ V
and all symmetric players i and j in v;

6. lives only on winning coalitions if ϕi (v0) = 0 for all i ∈ N and the zero

game v0.

Consider a proper monotonic simple game v and a coalition S which is not win-

ning. Then vS is the zero game. Hence, if ϕ is a solution which lives only on

winning coalitions then ϕi (vS) = 0 for all i ∈ N . Note that this property is

implied for instance by the null player property.

We now come back to null players. Let v ∈ V be a proper monotonic simple game

and let i be a null player in N with respect to v. Then

vN\{i} (S) = v (S ∩N \ {i}) = v (S \ {i}) = v (S)

for all coalitions S ⊆ N . Hence, games v and vN\{i} coincide. This is particularly

true for restricted games vS and null players i ∈ S with respect to vS.

1We do not need that a solution is feasible, i.e. that
∑

i∈N (ϕ (v))i ≤ v (N). In particular,
the Banzhaf value (see De�nition 5.8) is not feasible.
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Lemma 2.4. Let v ∈ V be a proper monotonic simple game. Let S ⊆ N and let

i ∈ S be a null player in S with respect to v. Then vS = vS\{i}.

Proof. For all T ⊆ N it holds that

vS\{i} (T ) = v ((S \ {i}) ∩ T ) = v (S ∩ (T \ {i})) = vS (T \ {i}) = vS (T ) .

Hence, vS\{i} and vS coincide.

The following corollary is an immediate consequence and is stated for easy refer-

ence.

Corollary 2.5. Let v ∈ V be a proper monotonic simple game. Let S ⊆ N

be a winning coalition and let i ∈ S be a null player with respect to vS. Then

ϕj (vS) = ϕj
(
vS\{i}

)
for all solutions ϕ and all j ∈ N .

Note that in Corollary 2.5 the solution ϕ does not need to satisfy the null player

property. However, it can be used to throw light on the relation between the null

player property, e�ciency and coalitional e�ciency.

Lemma 2.6. A solution ϕ is coalitionally e�cient if and only if it is e�cient

and satis�es the null player property.

Proof. Let ϕ be a solution which satis�es the null player property and e�ciency

and let S ⊆ N be a winning coalition. Then all players i ∈ N \S are null players

in the restricted game vS. In this case e�ciency implies∑
i∈S

ϕi (vS) =
∑
i∈N

ϕi (vS) = 1 = v (S) .

If S is not winning then
∑

i∈S ϕi (vS) = 0 = v (S) by the null player property.

Hence, e�ciency and the null player property together imply coalitional e�ciency.

On the other hand, if a solution ϕ satis�es coalitional e�ciency, then ϕ is e�cient

as well. Let i ∈ N be a null player with respect to v. Then ϕj (v) = ϕj
(
vN\{i}

)
for all j ∈ N by Corollary 2.5. In this case coalitional e�ciency implies

ϕi (v) =
∑
j∈N

ϕj (v)−
∑

j∈N\{i}

ϕj (v) =
∑
j∈N

ϕj (v)−
∑

j∈N\{i}

ϕj
(
vN\{i}

)
= 1− 1 = 0.
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Hence, coalitional e�ciency is equivalent to e�ciency together with the null player

property.

In case of voting games it is often asked what e�ciency means. Particularly,

several authors have tried to �nd axiomatizations of various solutions without

imposing an e�ciency requirement (see for instance Dubey et al., 1981). A recent

example of such an axiomatization of the Shapley-Shubik-Index (see De�nition

5.1) is given in Einy and Haimanko (2011). For the results of our paper, the in-

terpretation of e�ciency is not of importance. Later, solutions will be considered

which are not even e�cient.

2.2 Hedonic Games

A hedonic game is a set N together with a pro�le of preferences � = (�i)i∈N ,
where �i is de�ned on Pi (N) for all i ∈ N .2

Hedonic games belong to a special class of coalition formation games and have

been introduced by Drèze and Greenberg (1980). The main characteristic is, that

for each player i ∈ N , the preference relation �i depends only on the coalitions

to which player i belongs, and not on the behaviour of the remaining players.

The crucial question is, whether there is a partition of the player set N which is

`su�ciently satisfying' for all players. Su�ciently satisfying (or `stable') in this

context means, that there is no group of players which would leave their coalitions

and form a new one together (see De�nition 2.7). There are several answers to

this question; the probably best known are the su�cient conditions as ordinal

balancedness and consecutiveness in Bogomolnaia and Jackson (2002) and the

weak top coalition property in Banerjee et al. (2001). Unfortunately, they are not

necessary. A characterization of hedonic games for which a stable partition of

the player set exists is given in Iehlé (2007). The author gives a weaker version

of ordinal balancedness of a hedonic game which is both necessary and su�cient.

Unfortunately, this pivot balancedness is neither constructive, in the sense that a

core stable partition could easily be found, nor can it be veri�ed e�ciently.

The idea of stability of a partition in a hedonic game is stated formally in the

following de�nition.

De�nition 2.7. Let (N,�) be a hedonic game and π ∈ Π.

2A preference relation is a complete and transitive binary relation.
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1. A deviation of π is a coalition S ⊆ N such that S �i π (i) for all i ∈ S.

2. π is called core stable, if it has no deviations.

A partition π is said to be blocked by S if S if a deviation of π. A partition π

is said to blocked, if it is blocked by some S ⊆ N . The core of a hedonic game

(N,�) is the set of all core stable partitions and is denoted by C (N,�).

The remainder of this section shows, how hedonic games can be derived from

proper monotonic simple games together with a solution. It further states some

basic properties the resulting hedonic games have, depending on properties of the

underlying solution.

Given a proper monotonic simple game v and a solution ϕ there is a payo� ϕi (vS)

for each i ∈ N in the subgame vS for each S ⊆ N . Hence, a simple game v ∈ V
together with a solution ϕ canonically induces the following pro�le of preferences

(�i)i∈N . For i ∈ N de�ne �i on Pi by

S �i T if and only if ϕi (vS) ≥ ϕi (vT ) . (1)

Thus, a proper monotonic simple game v, together with a solution ϕ, induces a

hedonic game. The core of this hedonic game is denoted by C (N, v, ϕ).

In general there is not much that can be said about the structure of a hedonic

game. This is di�erent in the case of hedonic games derived from simple games.

A proper monotonic simple game v ∈ V together with a solution ϕ which lives

only on winning coalitions leads to a simple structure of the induced hedonic

game.

Lemma 2.8. Let v ∈ V and let ϕ be a solution which lives only on winning

coalitions. Then for each winning coalition S either ΠS ⊆ C (N, v, ϕ) or ΠS ∩
C (N, v, ϕ) = ∅.

Proof. Let S ⊆ N be a winning coalition. By properness v (N \ S) = 0 and by

monotonicity v (T ) = 0 for all T ⊆ N \ S. Hence, for all T ⊆ N \ S the game

vT is the zero game. Consequently, if ϕ lives only on winning coalitions then

ϕi
(
vπ(i)

)
= 0 for all i ∈ N \ S and all π ∈ ΠS.

It has to be shown that a partition π ∈ ΠS is blocked if and only if all partitions

in ΠS are blocked. The `if'-part is obvious. So, let π, σ ∈ ΠS and let D ⊆ N be
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a deviation of π. Then ϕi (vD) > 0 for all i ∈ D \ S and ϕi (vD) > ϕi (vS) for all

i ∈ D ∩ S. In this case D is also a deviation of σ. Hence, if a partition π ∈ ΠS

is blocked by a coalition D, then each partition σ ∈ ΠS is blocked by D.

Given this result the following de�nition makes sense.

De�nition 2.9. Let v ∈ V and ϕ be a solution which lives only on winning

coalitions. A coalition S ⊆ N is called core stable if each partition π ∈ ΠS is core

stable. In this case we write S ∈ C (N, v, ϕ).

At the end of this section, it makes sense to exclude some trivialities which could

appear in the presence of null players.

Lemma 2.10. Let N be a set of players, let v ∈ V be not the zero game and

let ϕ be a solution. Let N ′ ⊆ N be the set of players of N which are not null

players with respect to v, and for a partition π ∈ Π (N) let π′ ∈ Π (N ′) such that

S ∈ π if and only if S ∩N ′ ∈ π′, and let ϕ′ be the solution on V (N ′) de�ned by

ϕ′i (vS) = ϕi (vS) for all S ⊆ N ′ and all i ∈ N ′. Then π ∈ C (N, v, ϕ) if and only

if π′ ∈ C (N ′, vN ′ , ϕ
′).

Proof. For a coalition S ⊆ N let S ′ = S ∩ N ′. Recall that a null player with

respect to v is also null player with respect to the restricted game vS for all

S ⊆ N . Hence, by Corollary 2.5, ϕi (vS) = ϕi (vS′) = ϕ′i (vS′) for all coalitions

S ⊆ N and all i ∈ N .

Let π ∈ C (N, v, ϕ) and assume that π′ /∈ C (N ′, vN ′ , ϕ
′). Then there must be

T ⊆ N ′ which blocks π′. In particular,

ϕi (vT ) = ϕ′i (vT ) > ϕ′i
(
vπ′(i)

)
= ϕi

(
vπ(i)

)
for all i ∈ T . Hence, T blocks π, a contradiction.

On the other hand, let π ∈ Π (N) such that π′ ∈ C (N ′, vN ′ , ϕ
′). Suppose that

π /∈ C (N, v, ϕ). Then there must be T ⊆ N such that ϕi (vT ) > ϕi
(
vπ(i)

)
for all

i ∈ T . Particularly, for all i ∈ T ′ it holds that

ϕ′i (vT ′) = ϕi (vT ) > ϕi
(
vπ(i)

)
= ϕ′i

(
vπ′(i)

)
.

Hence, T ′ is a deviation of π′, again a contradiction.
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3 Generalized Apex Games

Apex games have been studied already in Morgenstern and von Neumann (1944).

They consist of one apex player and a set of symmetric minor players in the

following sense.

De�nition 3.1. Let N be set of players and let a be a proper monotonic simple

game on N such that there are i ∈ N and J ⊆ N \ {i} with

a (S) =

1, if J ⊆ S or (i ∈ S and S ∩ J 6= ∅) ,

0, else.

Then a = aiJ is called an apex game with apex player i and minor players j ∈ J .

If the apex game is interpreted as a weighted voting game, an interesting question

is which coalitions will form. One possibility is that the coalition of minor players

should form. This idea is supported for instance in Hart and Kurz (1984) or Au-

mann and Myerson (1988). While Aumann and Myerson investigate the Myerson

value (see Myerson, 1977) on graph games, Hart and Kurz use the Owen value

(see Owen, 1977) and introduce a partition function form game. The stability

concepts di�er in both cases from core stability in our sense. Nevertheless, some

ideas of their proofs will be generalized later. A very broad overview about the

behaviour of various solution concepts on apex games can be found in Montero

(2002).

Example 3.2. a) The German parliament currently contains �ve parties. The

biggest party is the CDU which could form a minimal winning coalition with

three of the remaining four parties (SPD, FDP, Die Linke). Exactly these

three parties together could also form a minimal winning coalition. The

�fth party (Bündnis 90 / Die Grünen) is not contained in any minimal

winning coalition. Hence, Die Grünen is a null player in the simple game,

CDU is an apex player and the remaining parties are minor players in an

apex game. The government contains CDU together with FDP.

b) In the election of the Moldavian parliament in August 2009 the commu-

nist party (PCRM) was not able to get an absolute majority on its own.
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However, a coalition with any of the four smaller parties would have led to

the majority. The four smaller parties on the other hand could form a win-

ning coalition on their own and make decisions for which a simple majority

was su�cient - although their votes did not exceed the 60% limit which

was necessary to vote the president.3 In the end the four smaller parties

built the new government and the president's election was supported by the

communists.

The idea of Hart and Kurz (1984) allows for two stable outcomes in an apex

games with not more than four players (which are not null players), namely all

minor players together or the apex player together with exactly one minor player.

Aumann and Myerson (1988) come to the conclusion that only the coalition of

all minor players should form. Both examples are supporting the idea of Hart

and Kurz (1984), the last one supports Aumann and Myerson (1988).

However, both examples are strongly in�uenced by political di�erences. In Ger-

many the coalition of minor players would contain the liberals (FDP) and the

socialists (Die Linke). In Moldavia the four minor players are the four Europe-

oriented parties and the apex player are the communists. But in both cases, there

seems to be a special role for minimal winning coalitions.

At this point, there are a few things to say about apex games. If |J | = 1 the

game aiJ is a dictator game with dictator j ∈ J . If |J | = 2 then it is a symmetric

game between i, j1 and j2, where J = {j1, j2}. In particular, the representation

of the game is not unique as each player could be interpreted as apex player.

The more interesting cases start with |J | ≥ 3. These games have a unique

representation: i must be unique, else the game would not be proper. Since a

player outside of {i} ∪ J is per de�nition not contained in any minimal winning

coalition, J is the unique set of players in N \ {i} which are not null players.

The class of apex games can be generalized in the following way.

De�nition 3.3. Let N be a set of players and a be a proper monotonic simple

game on N such that there are a collection I = {Ik}mk=1 of nonempty subsets of

3In order to prevent misunderstandings, it should be mentioned that most decisions in the
parliament can be imposed by simple majority; one exception is the election of the president.
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N and a set J ⊆ N \
⋃m
k=1 Ik with

a (S) =

1, if J ⊆ S or (S ∩ J 6= ∅ and there is Ik ∈ I with Ik ⊆ S) ,

0, else.

Then a = aIJ is a generalized apex game with apex sets I1, . . . Im and minor

players j ∈ J .

Before starting with further investigations on generalized apex games, it is useful

to consider an example.

Example 3.4. In a stock corporation under German law there is a two-tier board

system. There is an executive board which is in charge of the management of

the company and a supervisory board which has to ensure that the interests of

the stakeholders are not violated. Particularly, there are decisions which the

supervisory board has to approve. Suppose that there is a proper and monotonic

voting system in the executive board to make a decision, and that such a decision

is accepted by the supervisory board if at least one of its members agrees. On

the other hand, let the supervisory board be able to force the executive board

to follow a decision if it is reached unanimously. (This assumption is usually

ful�lled as the supervisory board is allowed to �re executives and replace them).

In this case each winning coalition in the executive board would be an apex set

in the sense of this paper, and the supervisory board would consist of the minor

players.

The set I is not necessarily unique due to monotonicity of the game. If I1, I2 ∈ I,
then I1 ∪ I2 can be element of I or not, without any in�uence on the winning

coalitions of aIJ . Therefore, I is called a minimal representation if for all I ∈ I
and all j ∈ J the coalition I ∪ {j} is minimal winning.

Independently of whether or not a generalized apex game is given in minimal

representation, the structure of apex sets is not arbitrary.

Lemma 3.5. Let aIJ be a generalized apex game on N with |J | ≥ 2 and let

I1, I2 ∈ I. Then I1 ∩ I2 6= ∅.
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Proof. Assume that I1 ∩ I2 = ∅ and let j1, j2 ∈ J with j1 6= j2. Then I1 ∪ {j1}
and I2 ∪ {j2} are winning coalitions with empty intersection. This contradicts

the properness of aIJ .

Hence, for a generalized apex game aIJ and a apex set I ∈ I it always holds that
N \ I cannot contain any apex set.

While it may happen that a player from an apex set is a null player in the

restriction of aIJ to a winning set, for the minor players the following holds true.

Lemma 3.6. Let aIJ be a generalized apex game on a set N . Let S be a winning

coalition. Then j ∈ J is a null player in the restriction of aIJ to S if and only if

j /∈ S.

Proof. If j /∈ S then j is a null player in the restriction of aIJ to S. Let j ∈ S.
If there is I ∈ I such that I ⊆ S, then j is pivotal in I ∪ {j} with respect to vS.

If such an I does not exist, then by de�nition of a generalized apex game J ⊆ S,

otherwise S cannot be winning. In this case j is pivotal in J . In any case, there

is a winning coalition in which j is pivotal with respect to vS. Hence, j cannot

be a null player in vS.

The remaining players, i.e. players which are neither minor players nor contained

in any apex set, have not much in�uence on the game.

Lemma 3.7. Let aIJ be a generalized apex game on N in minimal representation

and let h ∈ N \ (
⋃m
k=1 Ik ∪ J). Then h is a null player in N with respect to aIJ .

Proof. By construction of the apex game there is no minimal winning coalition

which contains h. This is the de�nition of a null player.

We know that for each apex game there is a representation aIJ . However, as seen

before, this representation need not to be unique. It is useful to consider only

generalized apex games in minimal representation as in this case a lot of ambiguity

vanishes. But even then, uniqueness is not guaranteed: LetN contain three player

and let v be the proper monotonic simple game in which each coalition containing

at least two players is winning. Then v is an apex game. We refer to v as the

three player simple majority voting game. Particularly, each player of N could be

interpreted as apex player. The next lemma helps to �nd those generalized apex

games which have a unique representation.
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Lemma 3.8. Let N be a set of players and let aIJ , aI′J ′ be generalized apex

games on N in minimal representation with aIJ (S) = aI′J ′ (S) for all S ⊆ N . If

|J | ≥ 3 then J = J ′ and I = I ′.

Proof. Let |J | ≥ 3. It is su�cient to show that J = J ′. In this case, since the

minimal winning coalitions of both games are identical, the collections I and I ′

must be the same.

So, assume that J 6= J ′. J is minimal winning in aI′J ′ . Therefore, J
′ cannot be a

proper subset of J . By assumption J ′ 6= J and, since J is winning, J = I ′ ∪ {j}
for some I ′ ∈ I ′ and j ∈ J ′ ∩J . Let j′ ∈ J ′ \J (such a j′ exists as J ′ * J). Then

I ′ ∪ {j′} is minimal winning as well by de�nition of a generalized apex game.

Particularly, j is not contained in I ′∪{j′}, which means that J * I ′∪{j′}. Now,
I ′ ( J by construction and I ′ ∪ {j′} is winning in aIJ . Therefore, all i

′ ∈ I ′ ⊆ J

are minor players with respect to aIJ . Consequently, the singleton {j′} must

lie in I. We have {j′} ∈ I, I ′ ( J , and I ′ ∪ {j′} being minimal winning in

aIJ . Consequently, I ′ cannot contain more than one element. Hence, the set

J = I ′ ∪ {j} cannot contain more than two elements. But this is a contradiction

to |J | ≥ 3.

The condition |J | ≥ 3 is already su�cient for uniqueness. But as it is, we can

describe the set of apex games which do not have a unique representation very

well.

Theorem 3.9. The minimal representation of a generalized apex game aIJ on

N is unique if and only if the restriction of aIJ to
⋃
I∈I I ∪ J is not the three

player simple majority voting game.

Proof. By Lemma 2.4 we can assume without loss of generality that N does not

contain any null players. Hence, by Lemma 3.7 N =
⋃
I∈I I ∪ J . If |J | ≥ 3 then

Lemma 3.8 applies and there is nothing to show. If |J | = 1 then all players in

N \ J are null players and the representation is unique. Hence, let |J | = 2. If

|N | = 2 then the representation is unique. If N contains at least 4 players then

there are at least two players in N \ J which are not null players. Hence, by

Lemma 3.5, there cannot be a minimal apex set which contains only one player.

Consequently, each minimal winning coalition in aIJ except J contains at least

three players. If J ′ 6= J , then |J ′| ≥ 3 and thus, aI′J ′ has a unique minimal
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representation by Lemma 3.8. As aIJ and aI′J ′ coincide, they must have the

same minimal representation.

Hence, there is no generalized apex game with |N | 6= 3 and |J | 6= 2 with a

representation which is not unique. But if |N | = 3 and |J | = 2 then aIJ is the

three player simple majority voting game.

4 Monotonic Solutions and Core Stable Partitions

This section is devoted to the impact of monotonicity of a solution ϕ on the

existence of core stable partitions in the hedonic game derived from a simple game

v and ϕ as in (1). The �rst subsection de�nes a `strong monotonicity' property

which is based on Sagonti (1991) and quite related to strong monotonicity in

the sense of Young (1985). The second subsection develops some properties of

strongly monotonic solutions on generalized apex games. The third section states

the main results of the paper concerning the existence of core stable partitions

in hedonic games which are induced by generalized apex games and strongly

monotonic solutions.

4.1 Strongly Monotonic Solutions on Simple Games

The following de�nition is due to Sagonti (1991), where the monotonicity prop-

erties of several solutions are analyzed.

De�nition 4.1. A solution ϕ is called strongly monotonic if

ϕi (v) > ϕi (u)

for all i ∈ N and all u, v ∈ V with

v (S)− v (S \ {i}) ≥ u (S)− u (S \ {i}) for all S ⊆ N,

and v (S)− v (S \ {i}) > u (S)− u (S \ {i}) for some S ⊆ N.

A similar de�nition of strong monotonicity can be found in Young (1985). There,

a solution ϕ is called strongly monotonic, if ϕi (v) ≥ ϕi (u) for all players i ∈ N
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and all u, v ∈ V which satisfy

v (S)− v (S \ {i}) ≥ u (S)− u (S \ {i}) for all S ⊆ N.

Neither the strict inequality v (S)− v (S \ {i}) > u (S)− u (S \ {i}) is required,
nor the strict inequality ϕi (v) > ϕi (u) is expected. Hence, there is a crucial

di�erence between the de�nitions of Sagonti and Young: If a player i is pivotal

in exactly the same coalitions with respect to a game u and a game v, then

De�nition 4.1 does not make any statement about the relation between ϕi (u) and

ϕi (v), whereas Young's notion of monotonicity claims ϕi (v) = ϕi (u). This claim

of Young's de�nition, together with e�ciency and equal treatment, is already

su�cient to characterize the Shapley-Shubik-Index (see De�nition 5.1) on proper

monotonic simple games.4

In the following, if a solution is called strongly monotonic, we always refer to Def-

inition 4.1. A strongly monotonic solution which lives only on winning coalitions

has a useful property concerning players which are not null players.

Lemma 4.2. Let v ∈ V and let ϕ be a strongly monotonic solution which lives

only on winning coalitions. If i ∈ N is not a null player with respect to v, then

ϕi (v) > 0.

Proof. Let i ∈ N be not a null player with respect to v. Then there is a minimal

winning coalition S such that i ∈ S. As ϕ lives only on winning coalitions,

ϕi (vT ) = 0 for each T ⊆ N \ S. Strong monotonicity applied to v and the zero

game vT , together with the fact that i is pivotal in S with respect to v, implies

that ϕi (v) > 0.

Recall that a solution which satis�es the null player property lives only on winning

coalitions. Hence, the next corollary follows immediately.

Corollary 4.3. Let v ∈ V and let ϕ be a strongly monotonic solution which

satis�es the null player property. Then ϕi (v) > 0 if and only if i ∈ N is not a

null player with respect to v.

4Although Young's original statement applies on general TU games, the proof uses the de-
composition of an arbitrary game into primitive games following Shapley (1953). This idea also
applies on the class of proper monotonic simple games. A proof which avoids this decomposition
can be found in Peleg and Sudhölter (2007).
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A strongly monotonic solution ϕ which lives only on winning coalitions assigns

for each v ∈ V a strictly positive value to each player which is not a null player.

Consequently, if v is not the zero game, then there must be a coalition S, such

that ϕi (vS) > 0 for each i ∈ S. This means that a partition which does not

contain any winning coalition can never be core stable, for it is blocked by S.

Together with Lemma 2.8 and De�nition 2.9 it becomes clear that in this case

knowing all core stable coalitions means knowing all core stable partitions.

4.2 Strongly Monotonic Solutions on Apex Games

In the following, let aIJ be a generalized apex game and let ϕ be a strongly

monotonic solution. For convenience, set ϕi (S) = ϕi (aIJ,S). The �rst lemma

of this subsection gives some consequences of strong monotonicity on generalized

apex games. It is the basis for most of the later results.

Lemma 4.4. Let N be a set of players, let aIJ be a generalized apex game on

N , and let ϕ be a strongly monotonic solution. Let J1, J2 ( J with |J1| > |J2|
and let I, I1, I2 ⊆ N \ J with I2 ( I1 be such that I ∪ {j} , I1 ∪ {j} , I2 ∪ {j} are

winning for each j ∈ J . Then

1. ϕj (I1 ∪ {j}) ≥ ϕj (I2 ∪ {j}) for all j ∈ J , where the equality holds if and

only if each i ∈ I1 \ I2 is a null player in I1 with respect to aIJ .

2. If ϕ satis�es in addition the equal treatment property then ϕi (I ∪ J1) >
ϕi (I ∪ J2) for each i ∈ I which is not a null player in I ∪ J1 with respect

to aIJ .

3. If ϕ satis�es in addition the equal treatment property then ϕj (I ∪ J1) <
ϕj (I ∪ J2) for all j ∈ J2.

The proof of Lemma 4.4 can be found in the appendix. Note that in case of an

e�cient solution which satis�es equal treatment part 3 can be formulated even

sharper. Not only the power of one minor player is decreasing with increasing

number of minor players in the winning coalition but also the aggregated power

of all minor players is decreasing.

Corollary 4.5. Let N be a set of players, let aIJ be a generalized apex game on

N and let ϕ be a strongly monotonic solution which satis�es coalitional e�ciency
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and equal treatment. Let J1, J2 ( J with |J1| > |J2| and I ⊆ N \ J be such that

I ∪ {j} is winning for all j ∈ J . Then
∑

j∈J1 ϕj (I ∪ J1) <
∑

j∈J2 ϕj (I ∪ J2).

Proof. Part 2 of Lemma 4.4 says that ϕi (I ∪ J1) > ϕi (I ∪ J2) for each i ∈ I

which is not a null player in I ∪ J1 with respect to aIJ . Hence,∑
j∈J1

ϕj (I ∪ J1) = 1−
∑
i∈I

ϕi (I ∪ J1) < 1−
∑
i∈I

ϕi (I ∪ J2) =
∑
j∈J2

ϕj (I ∪ J2) .

The equalities follow from coalitional e�ciency and the strict inequality follows

from the fact that not every i ∈ I is a null player in I∪J1 with respect to aIJ .

Knowing when ϕj is increasing or decreasing for j ∈ J from parts 1 and 3 of

Lemma 4.4, it is not di�cult to �nd the coalition, which maximizes ϕj for the

minor players.

Corollary 4.6. Let aIJ be a generalized apex game in minimal representation

with I = {Ik}nk=1 and let ϕ be a strongly monotonic solution which satis�es equal

treatment. Let j ∈ J and S∗ =
⋃n
k=1 Ik ∪ {j}. Then

ϕj (S∗) ≥ ϕj (S)

for all S ( N with J * S, where the equality holds if and only if S∗ ⊆ S and

each i ∈ S \ S∗ is null player in S∗ with respect to aIJ .

Proof. Let S ′, j ∈ S ′ be such that ϕj (S ′) ≥ ϕj (S) for all S ( N with J * S

(such S ′ exists as Pj is �nite. If |S ′ ∩ J | ≥ 2 then ϕj (S ′) < ϕj
(
(S ′ ∩ J) ∪ {j}′

)
by part 3 of Lemma 4.4. Hence, S ′∩J = {j}. If there is I ⊆

⋃n
k=1 Ik\S ′ with i ∈ I

which is not a null player in S ′ ∪ I with respect to aIJ then ϕj (S ′ ∪ I) > ϕj (S ′)

by part 1 of Lemma 4.4. Hence,
⋃n
k=1 Ik ∪ {j} ⊆ S ′. Particularly, S∗ ⊆ S ′ and

all i ∈ S ′ \ S∗ must be null players with respect to aIJ . Thus, by Corollary 2.5,

ϕj (S∗) = ϕj (S ′) ≥ ϕj (S) for all for all S ( N with J * S.

Remark 4.7. The condition J * S (or J1 6= J in Lemma 4.4) is necessary as

otherwise the main argument of the proofs gets lost. As long as S does not contain

J , each winning subcoalition of S must contain an apex set. This highlights the

role of strong monotonicity: If the number of minimal apex sets strictly increases,

the number of coalitions in which j ∈ J is pivotal strictly increases as well. On
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the other hand, if J ⊆ S and Ik * S for some minimal Ik ∈ I then j is pivotal

in J ∪ Ik with respect to the restriction of aIJ to S (note that the only minimal

winning coalition in S ∩ (J ∪ Ik) is J). Consider now the restriction of aIJ to

S ∪ Ik. For each j′ ∈ J \ {j}, the coalition Ik ∪ {j′} ⊆ (J ∪ Ik) \ {j} is winning.
Particularly, j would not be pivotal in Ik∪J with respect to this subgame. Hence,

strong monotonicity would not apply.5

4.3 Core Stability in the Induced Hedonic Game

It has been shown in Lemma 3.7 that all players in a generalized apex game aIJ

in minimal representation which belong neither to an apex set nor to the set of

minor players are null players with respect to aIJ . It has further been shown in

Lemma 2.10 that null players can be excluded from all core stable partitions in a

hedonic game derived from a simple game which is not the zero game. Therefore,

in the remainder, it will be assumed that aIJ is a generalized apex game on the

set N =
⋃
I∈I I ∪ J .

The �rst Lemma is stated for completeness. It eases the later proofs as we need

not to take care of trivialities.

Lemma 4.8. Let aIJ be a generalized apex game with |J | = 1 and let ϕ be

a strongly monotonic solution which lives only on winning coalitions. Then

C (N, aIJ , ϕ) 6= ∅. In particular, S ∈ C (N, aIJ , ϕ) if and only if S is winning.

Proof. If |J | = 1 then j ∈ J is a dictator and contained in all winning coalitions,

and all other players are null players. As ϕ lives only on winning coalitions

ϕi (S) = 0 for each coalition S which is not winning and each i ∈ S. As j is

pivotal in all winning coalitions and ϕ is strongly monotonic, ϕj (S) > 0 for each

winning coalition by Lemma 4.2. Hence, a coalition which is not winning can

never block a winning coalition and is always blocked by J . Let S be a winning

coalition. As all players in N \ J are null players with respect aIJ , they are

null players in S with respect to aIJ . Hence, by Corollary 2.5, ϕj (S) = ϕj (J).

Consequently, winning coalitions cannot block each other, so they all are core

stable.

5In Lemma 5.10 there is an analysis of the Banzhaf value on winning coalitions which contain
J . In particular, it is shown that part 3 of Lemma 4.4 does not hold on coalitions which contain
J .
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Also for generalized apex games with |J | ≥ 2, a �rst result can be proven. Lemma

4.4 made statements about the payo�s of di�erent players in di�erent coalitions of

a generalized apex game under a strongly monotonic solution. As these payo�s are

used to develop preferences in the induced hedonic game, the following theorem

can be derived. The proof can be found in the appendix.

Theorem 4.9. Let aIJ be a generalized apex game and let ϕ be a strongly mono-

tonic solution which satis�es equal treatment and which lives only on winning

coalitions. Then |S ∩ J | ≥ 1
2
|J | for each core stable coalition S ∈ C (N, aIJ , ϕ).

Theorem 4.9 states that a core stable coalition must contain at least half of the

minor players. Consequently, in a weighted voting game which has the structure

of a generalized apex game (as the two tier board system of Example 3.4) a

stable majority can be reached only with a majority of the minor players in J

(the supervisory board in the example). This is surprising from a theoretical point

of view: Players in J can replace each other (from the view of players from the

apex sets); this makes them weak in the simple game without coalition formation.

However, in the hedonic version, each core stable coalition must contain at least

half of them.

The previous result can be strengthened even further if one assumes coalitional

e�ciency. Again, the proof can be found in the appendix.

Theorem 4.10. Let aIJ be a generalized apex game with I = {Ik}nk=1 and |J | ≥
2. Let ϕ be a strongly monotonic solution which satis�es equal treatment and

coalitional e�ciency. Let I =
⋃n
k=1 Ik and let j ∈ J .

1. If ϕj (I ∪ {j}) ≤ 1
|J | , then C (N, aIJ , ϕ) 6= ∅. In particular, S ∈ C (N, aIJ , ϕ)

if and only if J ⊆ S and all i ∈ S \ J are null players with respect to the

restriction of aIJ to S.

2. If 1
|J | < ϕj (I ∪ {j}) ≤ 1

2
, then C (N, aIJ , ϕ) = ∅.

3. If q = ϕj (I ∪ {j}) > 1
2
, then for each S ∈ C (N, aIJ , ϕ)

1

2
≤ |S ∩ J |

|J |
≤ q.
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5 Sharper Results for Speci�c Solutions

5.1 The Shapley-Shubik-Index

Among many di�erent solutions on simple games the probably best known is the

Shapley-Shubik-Index (or Shapley value). In the �rst part of this section it will

be the solution of interest.

De�nition 5.1. Let v ∈ V . The Shapley value of a player i ∈ N in v is de�ned

as

Shi (v) =
∑

S⊆N, i∈S

(|N | − |S|)! (|S| − 1)!

|N |!
(v (S)− v (S \ {i})) .

As we are interested in the hedonic game derived from a simple game as in (1),

the computation of the Shapley value on restricted games is important. But this

computation is quite intuitive as it can be seen from the next proposition (the

proof is left to the reader).

Proposition 5.2. Let N be a set of players and v ∈ V. Then

Shi (vS) =
∑

T⊆S, i∈T

(|S| − |T |)! (|T | − 1)!

|S|!
(v (T )− v (T \ {i}))

for all S ⊆ N and i ∈ S.

For convenience the notation Shi (vS) will be abbreviated by Shi (S), if it is clear

which game v is meant.

It is well known that the Shapley value satis�es many of the previously discussed

properties: It is nonnegative, coalitionally e�cient, strongly monotonic, and sat-

is�es equal treatment. Particularly, the condition of Lemma 4.8 are satis�ed for

a generalized apex game aIJ with |J | = 1. Hence, in this case each winning

coalition is core stable in the induced hedonic game.

In a simple apex game aiJ the players in J are called minor players, since their

power in the game is quite small. Particularly, the Shapley value of any j ∈ J
is equal to 1

2
in the minimal winning coalition {i, j} and coalitions with higher

cardinality will lead to even lower Shapley values for j ∈ J , as the Shapley value

satis�es the conditions of Lemma 4.4 and Corollary 4.5.
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In a generalized apex game aIJ with I = {Ik}nk=1 the Shapley value ϕj is max-

imized in S∗ =
⋃n
k=1 Ik ∪ {j} for each j ∈ J . But there is an upper bound for

Shj (S) which does not depend on the size of S∗. The proof of the next lemma

can be found in the appendix.

Lemma 5.3. Let aIJ be a generalized apex game on N and let |J | ≥ 2. Then

Shj (S) ≤ 1
2
for all j ∈ J and all S ∈ Pj (N).

A strong monotonic simple game v is a proper monotonic simple game, such that

v (S) + v (N \ S) = 1.6 Examples are voting games (with tie breaking) in which

each coalition containing a simple majority of votes is winning. Also simple apex

games are strong. The next corollary shows that if a generalized apex game is

strong, the upper bound in Lemma 5.3 is even sharp. For easiness of reading the

proof is stated in the appendix.

Corollary 5.4. Let aIJ be a generalized apex game on N which is strong. Let

I = {Ik}mk=1 and |J | ≥ 2. Then Shj (I ∪ {j}) = 1
2
for all j ∈ J where I =⋃m

k=1 Ik.

Examples for strong generalized apex games can easily be found. The �rst ex-

ample is of course the simple apex game. Considering again the executive board

in Example 3.4, one �nds a strong apex game if this board can make decisions

with simple majority (and tie breaking, if the number of members is even). If,

on the other hand, the executive board has to make a decision unanimously (and

contains more than one member), then the resulting game is not strong (see also

Corollary 5.7).

Knowing the bounds as stated in Lemma 5.3, we can now apply Theorems 4.9

and 4.10 of the previous section to the Shapley value.

Theorem 5.5. Let aIJ be an apex game on N with I = {Ik}nk=1 and let I =⋃n
k=1 Ik.

1. If |J | = 2 then C (N, aIJ , Sh) 6= ∅. In particular, if J ⊆ S and all i ∈
S \ J are null players with respect to the restriction of aIJ to S, then S ∈
C (N, v, Sh).

6Although there are di�erent de�nitions of a strong monotonic simple game, we follow the
de�nition in Peleg and Sudhölter (2007).
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2. If |J | ≥ 3 then C (N, aIJ , Sh) 6= ∅ if and only if Shj (I ∪ {j}) ≤ 1
|J | for

all j ∈ J . In particular S ∈ C (N, aIJ , Sh) if and only if J ⊆ S and all

i ∈ S \ J are null players with respect to the restriction of aIJ to S.

Although the condition Shj (I ∪ {j}) ≤ 1
|J | for all j ∈ J in the second part of

Theorem 5.5 is easy to verify, it highly depends on the structure of I. The next
corollaries capture two special cases of a monotonic simple game.

Corollary 5.6. Let the generalized apex game aIJ on N with I = {Ik}nk=1 be

strong. Then C (N, aIJ , Sh) 6= ∅ if and only if |J | ≤ 2.

Proof. In Corollary 5.4 it has been shown that in this case Shj (I ∪ {j}) =
1
2
for I =

⋃n
k=1 Ik and all j ∈ J . If |J | = 1 then Lemma 4.8 applies and

C (N, aIJ , Sh) 6= ∅. If |J | = 2, then C (N, aIJ , Sh) 6= ∅ by part 1 of Theorem 5.5.

If |J | ≥ 3, then 1
2

= Shj (I ∪ {j}) > 1
3
≥ 1
|J | . Hence, by part 2 of Theorem 5.5,

C (N, aIJ , Sh) = ∅.

Corollary 5.7. Let aIJ be a generalized apex game on N such that I contains

only one apex set, namely I. Then C (N, aIJ , Sh) 6= ∅ if and only if |J | ≤ |I|+ 1.

Proof. Shj (I ∪ {j}) = 1
|I|+1

for all j ∈ J as I ∪ {j} is minimal winning. If

|J | ≤ 2 then C (N, aIJ , Sh) 6= ∅ by Lemma 4.8 and part 1 of Theorem 5.5. In

this case |J | ≤ 2 ≤ |I| + 1 as I is nonempty. If |J | ≥ 3, by part 2 of Theorem

5.5, C (N, aIJ , Sh) 6= ∅ if and only if 1
|I|+1

≤ 1
|J | . This is the case if and only if

|J | ≥ |I|+ 1.

5.2 The Banzhaf Value

Another example of a strongly monotonic solution on proper monotonic simple

games is the Banzhaf value. It has been introduced in Banzhaf (1965) and is

basically the same as the index presented in Coleman (1971). Although the

original index counted for each player the number of coalitions in which he is

pivotal (see for instance Dubey and Shapley, 1979), here the version given in

Owen (1978) is used.

De�nition 5.8. Let v ∈ V . The Banzhaf value of a player i ∈ N in v is de�ned
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as

ηi (v) =
1

2|N |−1

∑
S⊆N\{i}

(v (S ∪ {i})− v (S)) .

It can easily be veri�ed that the Banzhaf value is nonnegative, strongly monotonic

and satis�es the null player property as well as equal treatment on V . Particularly,
Theorem 4.9 applies, hence for each generalized apex game aIJ and each S ∈
C (N, aIJ , η) it holds that |S ∩ J | ≥ 1

2
|J |. As the null player property implies

that η lives only on winning coalitions, Lemma 4.8 applies. Hence, if |J | = 1

then each winning coalition is core stable in the induced hedonic game.

A weakness of the Banzhaf value is that it is not e�cient. Hence, Theorem 4.10

cannot be applied. The normalized version of the Banzhaf value (see for instance

Dubey and Shapley, 1979) is under consideration later in this section. First, we

want to �nd a statement which is stronger than Theorem 4.10. To do so it is

important to analyze the behaviour of the Banzhaf value on restricted games.

For convenience, ηi (vS) will again be abbreviated by ηi (S) for i ∈ S, if the game

v is �xed. The proof of the following proposition is a simple computation and

omitted.

Proposition 5.9. Let v ∈ V and let S ⊆ N be a winning coalition with respect

to v. Then

ηi (S) =
1

2|S|−1

∑
T⊆S\{i}

(v (T ∪ {i})− v (T ))

for all i ∈ S.

An easy consequence is that ηi (S) = 1
2|S|−1 for each minimal winning coalition

S ⊆ N and each i ∈ S.
There are two types of winning sets which are not minimal, namely those contain-

ing J and those not containing J . For both of them Lemma 4.4 can be strengthen

as follows. The proof of the lemma can be found in the appendix.

Lemma 5.10. Let aIJ be a generalized apex game on N and let S ⊆ N be a

winning coalition.

1. If J * S then ηj (S) = 1
2|S∩J|−1 · ηj ((S \ J) ∪ {j}) for all j ∈ J ∩ S.

2. If J ⊆ S then ηj (S) = 1
2|J|−1 for all j ∈ J .
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Note that part 2 of Lemma 5.10 does not contradict the strong monotonicity of

η (see also Remark 4.7).

From part 1 it follows that ηj (S) decreases for j ∈ J with the number of minor

players in S as long as J * S. As η is strongly monotonic and satis�es equal

treatment, Corollary 4.6 applies and ηj (S) takes its maximum (over all coalitions

S which do not contain J) in S∗ =
⋃n
k=1 Ik ∪ {j}.

As in the case of the Shapley value there is an upper bound for ηj (S) for all

j ∈ J in a generalized apex game aIJ . The proof follows similar arguments as

the proof of Lemma 5.3 and is omitted.

Lemma 5.11. Let aIJ be generalized apex game on N with |J | ≥ 2. Then

ηj (S) ≤ 1
2
for all j ∈ J and S ∈ Pj (N). Particularly, the equality holds if and

only if aIJ is strong and S =
⋃
I∈I I ∪ {j}.

A �rst corollary for generalized apex games with two minor players follows im-

mediately.

Corollary 5.12. Let aIJ be a generalized apex game with I = {Ik}nk=1 and |J | =
2. Let I =

⋃
Ik∈I Ik. Then C (N, aIJ , η) 6= ∅, in particular S ∈ C (N, aIJ , η) for

all S ⊆ N with J ⊆ S.

Proof. By Lemma 5.11, ηj (S) ≤ 1
2
for all winning coalitions S ⊆ N and all

j ∈ S ∩ J . By Lemma 5.10, ηj (S) = 1
2
for all S ⊆ N with J ⊆ N . As

by de�nition of a generalized apex game each winning coalition S must contain

some j ∈ J , it follows that winning coalitions S ⊇ J cannot be blocked.

We now come to the main theorem concerning the Banzhaf value for generalized

apex games with at least three minor players. The proof can be found in the

appendix.

Theorem 5.13. Let aIJ be a generalized apex game with I = {Ik}nk=1 and |J | ≥
3. Let I =

⋃
Ik∈I Ik and let j ∈ J .

1. If ηj (I ∪ {j}) ≤ 1
2|J|−1 then

(a) S ∈ C (N, v, η) for all S ⊆ N with J ⊆ S.

(b) There is S ∈ C (N, v, η) with J * S, if and only if (i) |J | = 3, (ii)

|S ∩ J | = 2, and (iii) aIJ is strong. In this case I ⊆ S.
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2. If 1
2|J|−1 < ηj (I ∪ {j}) ≤ 1

2
1
2 |J|+1

, then C (N, v, η) = ∅.

3. If 1

2
1
2 |J|+1

< ηj (I ∪ {j}), then 1

2
1
2 |J|
≤ 2|S∩J|

2|J|
≤ ηj (I ∪ {j}) for each core

stable coalition S.

The last case of Theorem 5.13 does not appear in case of the Shapley value.

There, the important bound for the two cases has been Shj (J) = 1
|J | . As the

Banzhaf value is not coalitionally e�cient there is a new case which has to be

considered in Theorem 5.13. The following example shows, that this case could

actually appear.

Example 5.14. Let N = {1, 2, 3, 4} and let a1J be the simple apex game on N

with J = {2, 3, 4} and apex player 1. Then the condition in part 3 of Theorem

5.13 is satis�ed, which implies that the only candidate for a core stable partition

is S ⊆ N with 1 ∈ S and |S ∩ J | = 2. We prove that such S is indeed core stable.

We have ηj (S) = 1
4
for all j ∈ S ∩ J and η1 (S) = 1

2
. Hence, S is not blocked by

J of N , as ηj (N) = ηj (J) = 1
2|J|−1 = 1

4
. Further, for each coalition T containing

only one minor player, η1 (T ) = 1
2

= η1 (S). Hence, T cannot block S either. By

equal treatment of η and symmetry between players in J , S cannot be blocked

by a coalition containing two minor players. Hence, S is core stable.

A useful property of the Banzhaf value is that the value for any player j ∈ J of any

coalition S containing j can easily be related to ηj ((S \ J) ∪ {j}). This simpli�es

many calculations. However, since η not e�cient, there is an additional case in

theorem 5.13 compared to the Shapley value. This makes a characterization of

core stable partitions (if any) much more di�cult.

There is a natural way to make the Banzhaf value e�cient (see for instance Owen,

1978; Dubey and Shapley, 1979).

De�nition 5.15. Let v ∈ V . The normalized Banzhaf value is de�ned as

βi (v) =
ηi (v)∑
j∈N ηj (v)

.

The normalization ensures that the value is coalitionally e�cient. Hence, the

normalized Banzhaf value is nonnegative, coalitionally e�cient and satis�es equal

treatment.

28



For a player i and a proper monotonic simple game v ∈ V , let µi (v) be the

number of coalitions in which i is pivotal with respect to v. Then the normalized

Banzhaf value is exactly

βi (v) =
µi (v)∑
j∈N µj (v)

.

In the following we write βi (S) (respectively µi (S)) for βi (vS) (respectively

µi (vS)) if it is clear which game v is meant.

For a dictator game with dictator j it is clear that βj (S) = 1 for the dictator j

in each winning coalition S. Hence, for the generalized apex game with |J | = 1

each winning coalition is core stable in the induced hedonic game as before.

In Sagonti (1991) the question is asked whether or not the normalized Banzhaf

value is strongly monotonic. The following example shows that in general it is

not - not even on simple games. This is the price paid for the normalization.

Example 5.16. Consider the player set N = {1, 2, 3, 4, 5} and the apex game

aIJ on N with J = {1, 2} and apex sets

I = {{3, 4} , {3, 5} , {4, 5}} .

Let S = {1, 3, 4} and T = {1, 3, 4, 5}. If β were strongly monotonic, then β1 (T ) >

β1 (S) by Corollary 4.6. But µ1 (S) = µ3 (S) = µ4 (S) = 1, and on the other hand

µ1 (T ) = 3 and µ3 (T ) = µ4 (T ) = µ5 (T ) = 2. Hence,

β1 (S) =
1

3
=

3

9
= β1 (T ) .

This implies that β is not strongly monotonic.

It can be shown that if |N | ≥ 6, there is also a collection of apex sets such that

even β1 (S) > β1 (T ) for S ( T .

Although β is not strongly monotonic, at least the following monotonicity proper-

ties on generalized apex games which are analogous to Lemma 4.4 can be veri�ed.

Lemma 5.17. Let N be a set of players and let aIJ be a generalized apex game

with I = {Ik}nk=1 on N . Let J1, J2 ( J with |J1| > |J2| and I ⊆
⋃m
k=1 Ik be such

that I ∪ {j} is winning for all j ∈ J . Then:
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1. βj (I ∪ J1) < βj (I ∪ J2) for all j ∈ J2.

2. βi (I ∪ J1) > βi (I ∪ J2) for all i ∈ I.

As before, it is useful to look for an upper bound of βj (S) with S ⊆ N in a

generalized apex game aIJ with |J | ≥ 2. For the proof, which can be found in

the appendix, a result from Dubey and Shapley (1979) is used.

Lemma 5.18. Let aIJ be a generalized apex game on a player set N with |J | ≥ 2.

Then βj (S) ≤ 1
2
for all S ⊆ N and all j ∈ S ∩ J .

This is su�cient to make statements about the normalized Banzhaf value which

are analogous to Theorem 5.13. The only di�erence is that it is unclear where

the value is maximal for elements from J .

Theorem 5.19. Let aIJ be a generalized apex game with I = {Ik}nk=1. Let j ∈ J
and let I∗ ⊆

⋃n
k=1 Ik maximize βj (I ∪ {j}) over all I ⊆

⋃n
k=1 Ik.

1. If |J | = 2 then C (N, v, β) 6= ∅. In particular, if J ⊆ S and all i ∈ S \ J are

null players with respect to the restriction of aIJ to S, then S ∈ C (N, v, β).

2. If |J | ≥ 3 then C (N, v, β) 6= ∅ if and only if βj (I∗ ∪ {j}) ≤ 1
|J | . In this case

S ∈ C (N, v, β) if and only if J ⊆ S and all i ∈ S \ J are null players with

respect to the restriction of aIJ to S.

6 Further Generalizations

Generalized apex sets can be interpreted as a composition of monotonic simple

games in the following sense. Let N1, N2 be two player sets with an empty

intersection. Let v1 be a proper monotonic simple game on N1 and let I be the

collection of all minimal winning coalitions. Let v2 be the monotonic simple game

on N2 with v2 (S) = 1 for all S ⊆ N2 with S 6= ∅. The game v de�ned on N1∪N2

by

v (S) =

1, if (v1 (S ∩N1) = 1 and v2 (S ∩N2) = 1) or N2 ⊆ S,

0, else
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is a generalized apex game with apex sets I ∈ I and minor players j ∈ N2. The

question is for which other games ṽ2 instead of v2 the results can be generalized.

If all players are symmetric in ṽ2, a strongly monotonic solution applied on the

composed game ṽ will behave similarly compared to a generalized apex game.

But for general ṽ2 it is quite di�cult to �nd any results.

A Proofs

Proof of Lemma 4.4. 1. Let j ∈ J , let v be the apex game restricted to

I1∪{j} and let u be the apex game restricted to I2∪{j}. If T ⊆ N is such

that j ∈ T is pivotal in T with respect to u then T is a winning coalition

in u. In this case T is also winning in v due to properness. Particularly,

T ∩ (I1 ∪ {j}) ∩ J = {j} and hence, by de�nition of a generalized apex

game, j is pivotal in T with respect to v. Consider two cases:

(i) If I1 \ I2 contains only null players with respect to v then u and v are

identical (Lemma 2.4) and hence, ϕi (u) = ϕi (v) for all i ∈ N .

(ii) If there is i ∈ I1 \ I2 which is not a null player, then there is a minimal

winning coalition T such that i and j are pivotal in T with respect to v.

On the other hand, u (T ) = 0 and hence, j is not pivotal with respect

to u. Hence, varphij (I1 ∪ {j}) = ϕj (v) > ϕj (u) = varphij (I2 ∪ {j})
due to strong monotonicity of ϕ.

2. Since all j ∈ J are symmetric with respect to aIJ and since ϕ satis�es the

equal treatment property, it can be assumed without loss of generality that

J2 ( J1. Let v be the restricted game aIJ on I ∪ J1 and u be the restricted

game aIJ on I ∪ J2. Let i ∈ I be not a null player with respect to v. First,

we show that in this case i is not a null player with respect to u either. As

i is not a null player with respect to v, there is a minimal winning set S

containing i such that S ∩ J1 = {j}. Particularly, S ′ = S \ {j} ∪ {j′} is
minimal winning in v for each j′ ∈ J2 ( J1. This means, that i is pivotal

in S ′ with respect to u. Hence, i is not a null player with respect to u.

Let now i be pivotal in S ⊆ N with respect to u. Then i is also pivotal

in S with respect to v by de�nition of a generalized apex game. Hence,

v (S ∪ {i}) − v (S) ≥ u (S ∪ {i}) − u (S) for all S ⊆ N \ {i}. Particularly,
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for S = I ∪ J1 \ J2 the inequality is strict. Hence, by monotonicity of ϕ we

have ϕi (I ∪ J1) = ϕi (v) > ϕi (u) = ϕi (I ∪ J2).

3. If j ∈ J2 \ J1 there is nothing to show. Since all j ∈ J are symmetric with

respect to aIJ and since ϕ satis�es the equal treatment property, it can be

assumed without loss of generality that J2 ( J1. Let v be the apex game

restricted on I ∪ J1 and let u be the restricted apex game on I ∪ J2. Let

j ∈ J2 ⊆ J1 and let S ⊆ N such that j is pivotal in S with respect to v.

Then S contains at least one apex set and S contains j, hence S is winning

in u. Particularly, S cannot contain any j′ ∈ J1\{j} ) J2\{j} as otherwise
j would not be pivotal in S with respect to v. Hence, j is also pivotal in S

with respect to u. Consequently, u (S ∪ {i}) − u (S) ≥ v (S ∪ {i}) − v (S)

for all S ⊆ N \ {i}.

On the other hand, consider T = I ∪{j}∪ (J1 \ J2). Then j is pivotal in T
with respect to u but not with respect to v. Strong monotonicity implies

ϕj (I ∪ J2) = ϕj (u) > ϕj (v) = ϕj (I ∪ J1).

Proof of Theorem 4.9. If |J | ≤ 2, there is not much to show. As aIJ is not the

zero game, each core stable coalition must be winning and each winning coalition

must contain at least one member of J .

Hence, suppose that |J | ≥ 3. Let S ∈ C (N, aIJ , ϕ) and assume that |S ∩ J | <
1
2
|J |. As S must be winning, S contains an apex set I ⊆ S \ J . By properness

of the game the coalitions π (j) are not winning for any j ∈ J \ S. As ϕ lives

only on winning coalitions, ϕj (π (j)) = 0 for all π ∈ ΠS and all j ∈ J \ S. For

each winning coalition T ′ containing j ∈ J , j is not a null player with respect to

restriction of aIJ to T ′ by Lemma 3.6. Thus, by Lemma 4.2 ϕj (T ′) > 0 for all

j ∈ T ′ ∩ J . The coalition T = (S \ J) ∪ (J \ S) contains the apex set I ⊆ S \ J
and minor players j ∈ J \ S 6= ∅. Hence, T is a winning coalition in aIJ and

ϕj (T ) > ϕj (π (j)) = 0

for all j ∈ J \ S.
Since ϕ satis�es the equal treatment property, part 2 of Lemma 4.4 applies.

Hence, ϕi (S) is strictly increasing in the size of S ∩ J for all i ∈ S \ J . As
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|S ∩ J | < 1
2
|J | < |J \ S| = T ∩ J , it follows in particular

ϕi (T ) = ϕi ((S \ J) ∪ (J \ S)) > ϕi ((S \ J) ∪ (J ∩ S)) = ϕi (S)

for all i ∈ S \ J . Thus, S is blocked by T .

Proof of Theorem 4.10. If |J | = 1 then Lemma 4.8 applies. In particular,

S ⊆ N is winning if and only if J ⊆ S. In this case every i ∈ S \ J is a null

player in S with respect to aIJ Hence, only the �rst case has to be considered.

But it has be shown that it holds true in Lemma 4.8.

Hence, let |J | ≥ 2. Note that by Lemma 2.6 coalitional e�ciency implies the null

player property. So, ϕ lives only on winning coalitions and Theorem 4.9 applies.

1. Let ϕj (I ∪ {j}) ≤ 1
|J | and let S ⊆ N with J * S. If |S ∩ J | < 1

2
|J |, then

by Theorem 4.9 S is not core stable. Hence, suppose |S ∩ J | ≥ 1
2
|J |. From

Corollary 4.5 and equal treatment it follows, that

|S ∩ J | · ϕj (S) =
∑

j′∈S∩J

ϕj′ (S) < ϕj (S \ J ∪ {j}) .

Hence,

ϕj (S) <
1

|S ∩ J |
ϕj (S \ J ∪ {j}) ≤ 1

1
2
|J |
· 1

|J |
≤ 1

|J |
,

as |J | ≥ 2. So, S is blocked by J .

If J ⊆ S and S contains i ∈ S \J which is not a null player, then ϕi (S) > 0

as shown in Lemma 4.2. Consequently, ϕj (S) < 1
|J | for all j ∈ J by equal

treatment. Hence, S is blocked by J .

If J ⊆ S and all i ∈ S are null players in the restriction of aIJ to S, then

the restriction of aIJ to S coincides with the restriction of aIJ to J . Thus,

S is core stable if and only if J is core stable. J cannot be blocked by any

coalition T containing J as ϕj (T ) ≤ 1
|J | = ϕj (J) for all such T . Hence,

it remains to be shown that J is not blocked by any coalition which does

not contain J . Each winning coalition S must contain some j ∈ J . By

Corollary 4.6 ϕj is maximized by I ∪ {j}. Hence, it is su�cient to show

that J is not blocked by I ∪ {j} for any j ∈ J . But this follows from

ϕj (I ∪ {j}) ≤ 1
|J | = ϕj (J). Thus, J ∈ C (N, aIJ , ϕ).
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2. Let ϕj (I ∪ {j}) > 1
|J | . Then J is blocked by I ∪ {j} for each j ∈ J . If S

consists only of J and only null players with respect to the restriction of aIJ

to S, then ϕj (J) = 1
|J | and S is blocked. If S contains J and some players

which are not null players in S with respect to aIJ then S is blocked by J

as before. If S is winning with |S ∩ J | < 1
2
|J | then S cannot be core stable

by Theorem 4.9. Let |S ∩ J | ≥ 1
2
|J |. As ϕj (I ∪ {j}) ≤ 1

2
we have

ϕj (S) <
1

|S ∩ J |
ϕj (S \ J ∪ {j}) ≤ 1

1
2
|J |
· 1

|2|
≤ 1

|J |
.

Hence, S is blocked by J . Therefore, there are no core stable coalitions.

3. Let q = ϕj (I ∪ {j}) > 1
2
and let S ⊆ N . As before, Theorem 4.9 implies

the �rst inequality.

Since ϕj (J) = 1
|J | ≤

1
2
, J is blocked by I ∪ {j}, and so is each coalition

S containing J and only null players in S with respect to aIJ . If S ⊇ J

contains any i ∈ S \ J which is not a null player in S then S is blocked by

J .

Using Corollary 4.5 as before implies

ϕj (S) <
1

|S ∩ J |
ϕj (S \ J ∪ {j}) =

q

|S ∩ J |
.

If now |S∩J |
|J | > q, then ϕj (S) < 1

|J | . In this case S is blocked by J . Hence,
|S∩J |
|J | ≤ q.

Proof of Lemma 5.3. Let I = {Ik}k=1m and let S ⊆ N . If J ⊆ S, the inequal-

ity is implied by equal treatment. So, let J * S. Due to Corollary 4.6, Shj is

maximal on I ∪ {j}, where I =
⋃m
k=1 Ik. In this case

Shj (I ∪ {j}) =
∑
T⊆I

(|I| − |T |)! |T |!
(|I|+ 1)!

(v (T ∪ {j})− v (T ))

=
1

|I|+ 1
· 1

2

[∑
T⊆I

(
|I|
|T |

)−1
(v (T ∪ {j})− v (T ))

+
∑
T⊆I

(
|I|
|I \ T |

)−1
(v ((I \ T ) ∪ {j})− v (I \ T ))

]
.
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By Lemma 3.5 the intersection of two apex sets must be nonempty. Let T ′ ⊆ I

such that T ′ ∪ {j} is winning for all j ∈ J . Then there is Il ⊆ T ′ and therefore

T ′∩Ik 6= ∅ for all k = 1, . . . n. Particularly, I\T ′ does not contain any apex set and
hence, I\T ′∪{j} is not winning. Consequently, v ((I \ T ′) ∪ {j})+v (T ′ ∪ {j}) ≤
1.

Further, for each integer l ≤ |I| there are
(|I|
l

)
subsets of I of size l. Altogether

Shj (I ∪ {j}) ≤ 1

|I|+ 1
· 1

2

∑
T⊆I

(
|I|
|T |

)−1
· 1 (2)

=
1

|I|+ 1
· 1

2

|I|∑
k=0

(
|I|
k

)(
|I|
k

)−1
=

1

2
.

This completes the proof.

Proof of Corollary 5.4. Let T ⊆ I such that T ∪ {j} is winning for all j ∈ J .
Then (I \ T ) ∪ {j} is not winning. On the other hand if T ⊆ I is such that

T ∪ {j} is not winning for any j ∈ J , then N \ (T ∪ {j}) is winning in a strong

game. Let S = I \T . Then N \ (T ∪ {j}) = S ∪ (J \ {j}). As this set is winning
and does not contain J , there must be an apex set Ik ⊆ S. Hence, S ∪ {j′}. In
this case S ∪ {j} is also winning since j and j′ are symmetric. Hence, inequality

(2) in the proof of Lemma 5.3 becomes an equality and Shj (I ∪ {j}) = 1
2
for all

j ∈ J .

Proof of Theorem 5.5. 1. If |J | = 2 then Shj (J) = 1
2
. As shown in Lemma

5.3 this is the upper bound for Shj (S) for each S ⊆ N . Hence, there is no

deviation of J . If S is such that J ⊆ S and all players in S \ J are null

players in the restriction of aIJ to S then by Corollary 2.5 Shi (S) = Shi (J)

for all i ∈ S. Hence, S is core stable as well.

2. Let |J | ≥ 3. If Shj (I ∪ {j}) > 1
|J | then by part 2 of Theorem 4.10 the core is

empty (note that part 3 of Theorem 4.10 never applies as Shj (I ∪ {j}) ≤ 1
2

by Lemma 5.3). If, on the other hand, Shj (I ∪ {j}) ≤ 1
|J | then J is not

blocked by S∗ = I ∪ {j} for any j. Due to Corollary 4.6 S∗ maximizes Shj

over all coalitions which do not contain J . Hence, J is not blocked by any

coalition which does not contain J . Due to symmetry and e�ciency of the
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Shapley value, J cannot be blocked by any coalition containing J . Hence,

J ∈ C (N, aIJ , Sh). If S contains J and is such that all players in S \ J are

null players with respect to the restriction of aIJ to S then by Corollary

2.5 Shi (S) = Shi (J) for all i ∈ N . Particularly, such S cannot be blocked

as J is not blocked.

Proof of Lemma 5.10. 1. Let S ⊆ N be winning such that J * S and let

j ∈ S ∩ J . Then each subset of S for which j ∈ J is pivotal must be a

subset of (S \ J) ∪ {j}. Hence,

ηj (S) =
1

2|S|−1

∑
T⊆S\{j}

v (T ∪ {j})− v (T )

=
2|S\J |

2|S|−1
· 1

2|S\J |

∑
T⊆S\J

v (T ∪ {j})− v (T )

=
1

2|S∩J |−1
· ηj ((S \ J) ∪ {j}) .

2. As J is minimal winning, ηj (J) = 1
2|J|−1 for each j ∈ J . Let now S be a

coalition which contains J . We consider two cases:

(i) Let S not contain any apex set. Then each i ∈ S \ J is a null player

with respect to vS. Consequently, ηi (S) = ηi (J) for all i ∈ N by

Corollary 2.5. In particular ηj (S) = ηj (J) = 1
2|J|−1 for all j ∈ J .

(ii) Let S contain at least one apex set, let T ′ ⊆ S and let j ∈ T ′ ∩ J . j
can be pivotal in T ′ with respect to aIJ only if T ′ contains not more

but one, or all minor players. Hence,

ηj (S) =
1

2|S|−1

 ∑
T⊆S\J

(aIJ (T ∪ {j})− aIJ (T ))

+
∑
T⊆S\J

(aIJ (T ∪ J)− aIJ (T ∪ J \ {j}))

 .

Let T ⊆ S \J . If T contains an apex set, then j is pivotal T ∪{j} but
not in T ∪ J . If T does not contain any apex set, then j is pivotal in
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T ∪ J but not in T ∪ {j}. Hence, for all T ⊆ S \ J

(aIJ (T ∪ {j})− aIJ (T )) + (aIJ (T ∪ J)− aIJ (T ∪ J \ {j})) = 1.

As there are exactly 2|S\J | di�erent subsets T ⊆ S \ T ,

ηj (S) =
1

2|S|−1
· 2|S\J | = 1

2|J |−1
.

Proof of Theorem 5.13. 1. Let ηj (I ∪ {j}) ≤ 1
2|J|−1 .

(a) I∪{j}maximizes ηj (S) over all coalitions S ⊆ N which do not contain

J . As I∪{j} does not block J and as each winning coalition S contains

some j′ ∈ J (which are symmetric to j in aIJ), there is no coalition

which blocks J . Hence, a coalition S ⊇ J cannot be blocked by part 2

of Lemma 5.10. Therefore, each coalition containing J is core stable.

(b) Let S ∈ C (N, v, η) such that J * S. Then ηj (S) ≥ ηj (J) = 1
2|J|−1 for

all j ∈ S ∩ J . Further, ηj (S) = 1
2|S∩J|−1 · ηj (S \ J ∪ {j}) for all j ∈ S

by part 1 of Lemma 5.10, and |S ∩ J | ≥ 1
2
|J | by Theorem 4.9. Now,

we show that the three conditions must be satis�ed.

(i) If |J | ≥ 4, then ηj (I ∪ {j}) ≤ 1
2|J|−1 ≤ 1

2
1
2 |J|+1

. Hence,

ηj (S) =
1

2|S∩J |−1
· ηj (S \ J ∪ {j}) ≤ 1

2
1
2
|J |−1

· 1

2
1
2
|J |+1

=
1

2|J |
< ηj (J) .

In this case S would be blocked by J . Hence, |J | = 3.

(ii) As |S ∩ J | ≥ 1
2
|J |, J * S, and |J | = 3, it follows that |S ∩ J | = 2.

(iii) As |S ∩ J | = 2 it follows

1

2
· ηj (S \ J ∪ {j}) = ηj (S) ≥ 1

2|J |−1
=

1

4

Hence, ηj (S \ J ∪ {j}) ≥ 1
2
. By Lemma 5.11 this is the upper

bound for ηj (S) which can be reached only if aIJ is strong.

Lemma 5.11 said that S must contain all apex sets, that is I ⊆ S.
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Let on the other hand conditions (i)-(iii) be satis�ed. Then

ηj (S) =
1

4
= ηj (J)

for all j ∈ S∩J if and only if I ⊆ S. In this case S cannot be blocked.

2. Any coalition S ⊇ J containing some i ∈ S \ J which are not null players

in S is blocked by J . If S ⊇ J does not contain any such i, then S is

blocked by I ∪ {j}. Hence, let J * S. By Theorem 4.9, each coalition

S ∈ C (N, aIJ , η) must contain the majority of players from J . Consider a

winning coalition S such that |S ∩ J | ≥ 1
2
|J |. By part 1 of Lemma 5.10

ηj (S) =
1

2|S∩J |−1
· ηj (S \ J ∪ {j}) ≤ 1

2
1
2
|J |−1

· ηj (S \ J ∪ {j}) .

Thus, if ηj (S \ J ∪ {j}) ≤ 1

2
1
2 |J|+1

then

ηj (S) ≤ 1

2
1
2
|J |−1

· 1

2
1
2
|J |+1

=
1

2|J |
<

1

2|J |−1
= ηj (J) .

In this case S is blocked by J .

3. From Theorem 4.9 it follows that each coalition S ∈ C (N, aIJ , η) must

contain the majority of players from J . Hence, |S ∩ J | ≥ 1
2
|J | for each

S ∈ C (N, v, η). This gives the �rst inequality. Since S is not dominated by

J , it follows that ηj (S) ≥ 1
2|J|−1 . Hence, using part 1 of Lemma 5.10,

1

2|S∩J |−1
· ηj (S \ J ∪ {j}) = ηj (S) ≥ 1

2|J |−1
.

It follows that

2|S∩J |

2|J |
≤ ηj (S \ J ∪ {j}) ≤ ηj (I ∪ {j}) .

Proof of Lemma 5.17. Let S = I∪J1 and let µ (S) be de�ned as
∑

i∈S\J µi (S).

j ∈ J1 is pivotal in T ⊆ S if and only if T is winning and T ∩ J1 = {j}. There
are exactly µj (I ∪ {j}) such sets. For each such set T there are 2|J |−|J1| subsets

U ⊆ J \J1 such that j is pivotal in T ∪U with respect to the apex game restricted
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to S. Hence, there are µj (I ∪ {j}) · 2|J |−|J1| di�erent coalitions T ⊆ S, such that

j is pivotal in T with respect to the restriction of aIJ to S.

On the other hand let i ∈ I. Then i is pivotal in T ⊆ S if and only if T is winning

i is pivotal in (T \ J1)∪{j} ⊆ S. Hence, there are µi (I ∪ {j})·
(
2|J1| − 1

)
di�erent

coalitions T ⊆ S such that i is pivotal in T with respect to aIJ .

For each of theses sets there are 2|J |−|J1| subsets U of J \ J1 such that i is pivotal

in T ∪ U . Altogether,

βj (I ∪ J1) =
µj (I ∪ {j}) · 2|J |−|J1|

|J1| · µj (I ∪ {j}) · 2|J |−|J1| + µ (I ∪ {j}) · (2|J1| − 1) · 2|J |−|J1|

=
µj (I ∪ {j})

|J1| · µj (I ∪ {j}) + µ (I ∪ {j}) · (2|J1| − 1)
(3)

βi (I ∪ J1) =
µi (I ∪ {j}) ·

(
2|J1| − 1

)
· 2|J |−|J1|

|J1| · µj (I ∪ {j}) · 2|J |−|J1| + µ (I ∪ {j}) · (2|J1| − 1) · 2|J |−|J1|

=
µi (I ∪ {j}) ·

(
2|J1| − 1

)
|J1| · µj (I ∪ {j}) + µ (I ∪ {j}) · (2|J1| − 1)

(4)

The rest of the proof is now straightforward.

1. If j ∈ J2 \ J1 there is nothing to show. For j ∈ J2 ∩ J1 it follows from

equation (3) that βj (I ∪ J1) is decreasing in |J1|.

2. From equation (4) follows that βi (I ∪ J1) is increasing in |J1|.

Proof of Lemma 5.18. We use the following result from Dubey and Shapley

(1979):

Let v be a (not necessarily proper monotonic) simple game on a player set N .

Let ω be the number of winning coalitions S ⊆ N in v and let ν be the number of

losing coalitions S ⊆ N with respect to v. Then∑
i∈N

µi (v) ≥ λ · b|N | − log2 (λ)c , (5)

where λ = min (ω, ν) and bxc is the greatest integer k with k ≤ x.

If S ⊆ N is a winning coalition with J ⊆ S, then the claim follows from the equal

treatment property, so let J * S. By part 1 of Lemma 5.17 it is su�cient to show,

that this bound holds for each winning coalition S ⊆ N with |S ∩ J | = 1. Let
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j ∈ S ∩ J . Then j is a veto player in the restriction v of aIJ to S. By properness

of the game, there are not more than 2|S|−2 subsets T ⊆ S \ J = S \ {j} such
that T ∪ {j} is winning. As there are 2|N |−|S| di�erent subsets of N \ S, we get

µj (S) = ω (v) ≤ 2|S|−2 · 2|N |−|S| = 2|N |−2 ≤ ν (v) .

With equation (5) we �nd∑
i∈S

µi (S) ≥ µj (S) · b|N | − log2 (ω (v))c

≥ µj (S) ·
⌊
|N | − log2

(
2|N |−2

)⌋
= µj (S) · b|N | − |N |+ 2c

= 2µj (S) .

Thus, βj (S) =
µj(S)∑
i∈S µi(S)

≤ 1
2
.

Proof of Theorem 5.19. As β is coalitional e�cient and satis�es equal treat-

ment, βj (J) = 1
|J | for all j ∈ J . If S ⊆ N is such that J ⊆ S and all i ∈ S \ J

are null players with respect to the restriction of aIJ to S then by Corollary 2.5

βj (S) = βj (J) = 1
|J | for all j ∈ J . Therefore, S is blocked if and only if J is

blocked. For βj (J) = 1
|J | and I

∗ ∪ {j} maximizes βj (S) over all S which do not

contain J , J is not blocked if and only if it is not blocked by I∗ ∪ {j}.

1. If |J | = 2, then βj (J) = 1
2
for all j ∈ J . As this is the upper bound for βj

by Lemma 5.18, J cannot be blocked.

2. We �rst show, that S ⊆ N can be core stable, only if J ⊆ S and all

i ∈ S \ J . Let therefore J * S and assume S ∈ C (N, aIJ , β). From

Theorem 4.9 it follows that a coalition S ∈ C (N, aIJ , β) must contain the

majority of players from J . Let I = S∩
⋃n
k=1 Ik and J1 = S∩J . As |J | ≥ 3,

|J1| ≥ 2. Then from equation (3) follows that

βj (S) =
µj (I ∪ {j})

|J1| · µj (I ∪ {j}) + ν (I ∪ {j}) · (2|J1| − 1)

=
1

|J1|+ (2|J1| − 1) · ν(I∪{j})
µj(I∪{j})

If |J1| = 1, this value is maximized by I = I∗. Hence, ν(I∪{j})
µj(I∪{j}) is minimized
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by I∗ and βj (I ∪ J1) is maximized by I∗ for all J1 ( J . Particularly, since

|J1| < 2|J1|−1 for |J1| ≥ 2 it follows that

βj (I ∪ J1) <
1

|J1|
· 1

1 + ν(I∪{j})
µj(I∪{j})

=
1

|J1|
· βj (I ∪ {j}) .

Since βj (I∗ ∪ {j}) ≤ 1
2
and |J1| ≥ 1

2
|J |, it follows that βj (S) < 1

|J | . This

means that S is blocked by J .

Let now J ⊆ S. If S contains any i ∈ S \ J which is not a null player,

then βj (S) < 1
|J | . Thus S is blocked by J . Hence, S can be core stable

only if J ⊆ S and alli ∈ S are null players in the restriction of aIJ to S.

It has been shown at the beginning of the proof that such S is core stable

if and only if J is core stable. As J is blocked by I∗ ∪ {j} if and only if

βj (I∗ ∪ {j}) > 1
|J | , the claim is proven.
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