
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
h-p://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including pos;ng to another Internet site, is permi=ed without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising ac;vi;es by the author(s) of the following work or their
employer(s) is intended or implied.

http://ageconsearch.umn.edu
mailto:aesearch@umn.edu
https://makingagift.umn.edu/give/yourgift.html?&cart=2313

The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Department of Geography
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher F. Baum
Boston College

Rino Bellocco
Karolinska Institutet, Sweden and
Univ. degli Studi di Milano-Bicocca, Italy

A. Colin Cameron
University of California–Davis

David Clayton
Cambridge Inst. for Medical Research

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

Charles Franklin
University of Wisconsin–Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Ben Jann
ETH Zürich, Switzerland

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington–Seattle

Roger Newson
Imperial College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California–Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
University of Virginia

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager

Stata Press Copy Editor

Lisa Gilmore

Gabe Waggoner

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press. Stata and Mata are

registered trademarks of StataCorp LP.

The Stata Journal (2007)
7, Number 1, pp. 143–145

Stata tip 43: Remainders, selections, sequences,
extractions: Uses of the modulus
Nicholas J. Cox
Department of Geography
Durham University
Durham City, UK

n.j.cox@durham.ac.uk

The mod(x, y) function produces remainders from division. It yields the remainder
or residue when x is divided by y. The manual or online help definition is that mod(x,
y) yields the modulus of x with respect to y. Mathematically, this definition is an abuse
of terminology, but one that Stata shares with many other computing languages. In
mathematics, the modulus is the divisor; somehow a few decades back in computing the
term was transferred to the remainder.

Like several other functions, mod() may at first seem fairly trivial, so here are ex-
amples of some of its uses. All illustrations will be for first arguments (dividends) that
are zero or positive integers and second arguments (divisors) that are positive integers.
Stata’s definition is more general, and yet more general definitions are possible, but
the illustrations will show the main idea and cover most practical applications. Texts
on discrete mathematics or the mathematics behind computing give fuller treatments
(Biggs 2002; Knuth 1997; Graham, Knuth, and Patashnik 1994), but we need none of
that material here. Authors often discuss these ideas under the heading of congruences.

How should you play with functions like mod() to get to know them? First, there is
display:

. display mod(1,2)
1

. display mod(2,2)
0

. display mod(3,2)
1

One useful device is a loop to get several results at once:

. forvalues i = 0/8 {

. display "‘i’ " mod(‘i’, 3)

. }

Second, there is generate, typically followed by list:

. set obs 9

. generate mod3 = mod(_n - 1, 3)

. list mod3

You can use the observation numbers n, which are integers 1 and up, to produce
variables corresponding to successive integers.

c© 2007 StataCorp LP pr0031

144 Stata tip 43

Third, there is Mata, released in Stata 9:

. mata
: x = (0..8)
: mod(x, 3)

The first illustration, dividing 1, 2, and 3 by 2, points up a useful detail. Evidently,
on division by 2, odd numbers have remainder 1 and even numbers, remainder 0. This
example gives a way of characterizing odd and even in Stata. Suppose that you want
to specify every other observation. Then

if mod(_n, 2) == 1

specifies odd-numbered observations and

if mod(_n, 2) == 0

specifies even-numbered observations. No new variable need be created, as Stata does
the necessary calculations on the fly. We can be even more concise:

if mod(_n, 2)

selects odd observation numbers. Given mod(n, 2), Stata evaluates it as 1 whenever
n is odd, which is nonzero and therefore true. Further,

if !mod(_n, 2)

selects even, as mod(n, 2) is 0 whenever n is even, but that result is flipped to 1 by
the operator !, giving again 1, nonzero and true.

The idea extends easily to other divisors; for example, if mod(year, 10) == 0 or
if !mod(year, 10) selects values of year divisible by 10 such as 1990 or 2000, and
if !mod(year - 5, 10) selects years such as 1995 or 2005 (but not 1990 or 2000).

Now let us turn to sequences. For integers x from 0 up, mod(x, 3) is

0 1 2 0 1 2 0 1 2 . . .

and for any positive integer y, mod(x, y) repeats cycles of 0 to y − 1. You may often
want to add 1 to get, e.g.,

1 2 3 1 2 3 1 2 3 . . .

Here you should use in Stata 1 + mod(x, 3) and in Mata 1 :+ mod(x, 3)—note the
elementwise operator :+.

You could get such sequences in other ways. Using cond() (Kantor and Cox 2005),
we could type for observation numbers n that run 1 upwards cond(mod(n, 3) == 0,
3, mod(n, 3)), giving the same result.

Hence, you now have a basic recipe for generating repetitive sequences. You may
know that this functionality is wired into egen’s seq() function, but the approach from
first principles has merit, too.

N. J. Cox 145

Extracting digits is yet another application. In the shadow world between numbers
and strings dwell numeric identifiers and run-together dates (20070328 for 28 March
2007) or times (112233 for 11:22:33). Whether such beasts are best processed as numbers
or strings can be a close call. Conversion functions real() and string() are available
to throw each to the other side of the divide.

Suppose that your beasts arrive as numeric. mod(112233, 100) extracts the last
two digits. Hence, second arguments that are 10k will extract the last k digits from
integers.

Other subsequences of digits require a little more work. We could get the first two,
the second two, and the third two digits like this:

. local first = floor(112233/10000)

. local second = floor(mod(112233, 10000) / 100)

. local third = mod(112233, 100)

. display ‘first’‘second’‘third’
112233

For more on floor() and its twin ceil(), see Cox (2003). You could also use int()
here. An alternative is to work with (say) real(substr(string(112233),1,2)).

Naturally, if what you are given is just 112233, you do not need Stata or even a
computer to extract digits. Rather, these are examples of the kind you can try for
yourself to see what is necessary to convert information given in variables from one
form to another.

References
Biggs, N. L. 2002. Discrete Mathematics. Oxford: Oxford University Press.

Cox, N. J. 2003. Stata tip 2: Building with floors and ceilings. Stata Journal 3: 446–447.

Graham, R. L., D. E. Knuth, and O. Patashnik. 1994. Concrete Mathematics: A
Foundation for Computer Science. Reading, MA: Addison–Wesley.

Kantor, D., and N. J. Cox. 2005. Depending on conditions: A tutorial on the cond()
function. Stata Journal 5: 413–420.

Knuth, D. E. 1997. The Art of Computer Programming. Volume 1: Fundamental
Algorithms. Reading, MA: Addison–Wesley.

