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Random Sampling of Beef Cattle for Genetic Testing: Optimal Sample Size Determination 

Abstract 

Sample size is often dictated by budget and acceptable error bounds. However, there are many 

economic problems where sample size directly affects a benefit or loss function, and in these 

cases, sample size is an endogenous variable. We introduce an economic approach to sample size 

determination utilizing a Bayesian decision theoretic framework that balances the expected costs 

and benefits of sampling using a Bayesian prior distribution for the unknown parameters. To 

demonstrate the method for a relevant applied economics problem, we turn to randomly 

sampling beef cattle for genetic testing. A theoretical model is developed, and several 

simplifying assumptions are made to solve the problem analytically. Data from 101 pens (2,796 

animals) of commercially-fed cattle are then used to evaluate this solution empirically. Results 

indicate that at the baseline parameter values an optimal sample size of 𝑛∗ = 10 out of 100 

animals generate returns from sampling of nearly $10/head, or a return-on-investment of 250%. 

Therefore, a large portion of the additional value for higher-quality cattle can be captured by 

testing a relatively small percentage of the lot. These results vary depending on the actual quality 

(or profitability) of a particular pen of cattle, the homogeneity within the pen, the variance of the 

buyer’s subjective prior distribution of expected profit, and the per-head cost of genetic testing. 

Nonetheless, results suggest that random sampling has the potential to provide a context in which 

the benefits of genetic testing outweigh the costs, which has not generally been the case in 

previous research. 

Keywords: Bayesian decision theory, beef cattle genetics, random sampling, sample size 

determination  
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The methods for determining sample size can be generally classified into two broad categories: 

frequentist and Bayesian (Adcock 1997). The debate between proponents of these two 

approaches has occupied entire issues of statistical journals (for example, Journal of the Royal 

Statistical Society: Series D (The Statistician) 46(2), 1997) and is ongoing. In practice, sample 

size has often been a function of budget and acceptable error bounds. Therefore, the commonly 

used frequentist approach determines sample size by specifying a null and alternative hypothesis 

for the parameter of interest and using predetermined specifications of size, power, variance, and 

a minimum detectible difference (Adcock 1997; Wilan 2008). However, there are many 

economic problems where sample size directly affects a benefit or loss function. In these cases, 

sample size is an endogenous variable that should be considered jointly with other choice 

variables in an optimization problem. In this article we introduce an economic approach to 

sample size determination utilizing a Bayesian decision theoretic framework. The Bayesian 

framework for sample size determination appears to be rarely used in economic research, but is 

arguably the theoretically sound approach to determining sampling for many applied economic 

problems. In addition to introducing the method, we develop a practical, currently relevant 

application of the model for randomly sampling beef cattle for genetic testing.  

The issue of endogenous sample size was first identified by Grundy, Healy, and Rees 

(1956). In this seminal piece, the authors acknowledge that in order to determine the 

economically justifiable amount of experimentation, the costs of the experiment must be set 

against the potential benefits of the new process being evaluated. However, they point out that 

the main difficulty is that the expected benefits of the new process depend on the outcome of the 

experiment. Their model has since been generalized and further developed by Riffa and Schlaifer 

(1961) and, more recently, by Lindley (1997), and has come to be known as the Bayesian 
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decision theoretic approach to sample size determination. In this fully Bayesian framework, the 

economically-optimal sample size is determined using an objective function to balance the 

expected costs and benefits of sampling using a Bayesian prior distribution for the unknown 

parameters.  

Despite its potential for application to a variety of research problems, to date, the use of 

this method has been largely limited to clinical trials in medical research (Gittins and Pezeshk 

2000, 2002; O’Hagan and Stevens 2001; Kikuchi, Pezeshk, and Gittins 2008; Wilan 2008; 

Willan and Pinto 2005, 2006) and substantive tests in financial auditing (Smith 1976, 1979; 

Patterson, 1993; Laws and O’Hagan 2002). Still, there remain many research problems to which 

this method could, and likely should, be applied for determining the economically-optimal 

sample size. For example, in a variety of audit/inspection contexts (for example, internal bank 

audit, environmental regulation compliance audit, Food and Drug Administration [FDA] 

inspections, health inspections, etc.), it is much too costly to examine each individual unit of 

interest. However, there is significant value associated with obtaining a sufficient sample to 

identify potential losses or costly, undesirable outcomes. Therefore, the fully Bayesian approach 

allows the decision maker to determine the sample size that will balance the expected costs and 

benefits of sampling. In addition, a sampling error of ±3% in many survey based research 

methods is dictated by convention. However, researchers rarely discuss, or even consider, the 

tradeoff between the cost and accuracy of a given survey question. Likewise, issues of quality 

control/statistical tolerancing or sampling related problems (for example, grain sampling, 

livestock sampling, soil sampling, etc.) could also benefit from this approach.  

To demonstrate the method for a relevant applied economics problem, we turn to genetic 

testing for market livestock. Recent advancements in genomic technology have the potential to 
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generate value throughout the beef industry (Van Eenennaam and Drake 2012). Previous 

research has shown significant differences in the profitability of animals with different genetic 

profiles suggesting some merit in using the tests for selection (Lusk 2007; Thompson et al. 

2014). However, economic evaluations of commercially available genetic marker panels have 

indicated that the value of this information for feedlot management is generally not enough to 

offset the current cost of genetic testing (about $40/head; Igenity 2015). For example, the value 

of using genetic information for sorting feedlot cattle by optimal days-on-feed is less than 

$3/head (DeVuyst et al. 2007; Lusk 2007; Lambert 2008; Thompson et al. 2014), and the value 

of using this information to selectively market (live weight, dressed weight, or grid pricing) fed 

cattle is less than $13/head (Thompson et al. 2016).  

Therefore, in order to achieve a scenario in which genetic testing is cost-effective, the 

value of genetic information must increase or the cost of testing must decrease. While animal 

scientists are continually progressing towards providing more accurate genetic markers that have 

the potential to increase the value of genetic information (for example, see Akanno et al. 2014), 

producers seeking to use this technology have no control over the pace at which these new 

variations are released. So, we introduce a strategy for reducing the overall cost of genetic testing 

that has been previously discussed, but has yet to be evaluated: random sampling (Thompson et 

al. 2014, 2016). That is, instead of testing each individual animal in a group of cattle, a random 

sample of animals could be tested to measure the genetic potential of the group. While appealing 

in theory, there is a thorny practical question: “What size sample should I take?” To answer this 

question we use a Bayesian decision theoretic approach to determine the economically-optimal 

sample size. 
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Unlike previous research evaluating the value of genetic information, which has generally 

focused on marker-assisted management at the feedlot stage, in this research we approach the 

problem from the feeder cattle producer’s perspective. That is, producers who know that their 

feeder cattle have high-value genetics may want to try to convince buyers (for example, wheat 

stocker producers or feedlot owners) that their cattle are higher quality in order to receive a 

premium. However, in order to establish the actual genetic makeup of a lot of feeder cattle the 

seller must incur the cost of genetic testing. Therefore, the objective of this research is to 

determine if randomly sampling a group of feeder cattle for genetic potential is cost-effective 

and, if so, to determine the economically-optimal sample size. A general framework is 

introduced, and a theoretical model specific to randomly sampling feeder cattle for genetic 

testing is developed. Several simplifying assumptions are made to solve the problem analytically, 

and the solution is then evaluated empirically using data from 101 pens (2,976 animals) of 

commercially-fed cattle. After estimating the optimal sample size and the returns from sampling, 

sensitivity analysis is conducted to evaluate the robustness of these results to varying levels of 

quality and homogeneity of a particular lot of cattle. Our results suggest sampling could be a 

viable strategy to reduce the costs of genetic testing for beef cattle.  

Conceptual Framework 

The objective of the Bayesian decision theoretic approach to economically-optimal sample size 

determination is to determine how large of a sample (𝑛) to take from a population to make an 

inference/decision about some feature of the population considering that both the costs and 

benefits of sampling are a function of 𝑛 (Grundy, Healy, and Rees 1956; Riffa and Schlaifer 

1961; Lindley 1997). The framework for the fully Bayesian treatment of this problem is set was 

set out in detail by Riffa and Schlaifer (1961) and was later updated by Lindley (1997). Both 
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descriptions approach the problem in temporal order: first the sample size 𝑛 is chosen, 𝑛 

realizations of random quantity 𝑋 are then collected (𝑥1, 𝑥2, … , 𝑥𝑛) where the density of 𝑋 is of a 

known form dependent on the unknown parameter 𝜃, the information from this sample is used to 

make decision 𝑑 concerning some feature of the population, and finally the unknown parameter 

𝜃 is considered. The merit of this decision sequence is captured by specifying a utility function, 

𝑢(𝑛, 𝑥, 𝑑, 𝜃). 

Before performing the optimization the decision maker has a prior distribution of the 

unknown parameter 𝜃, 𝑝𝑝𝑟𝑖𝑜𝑟(𝜃). An application of Bayes rule to 𝜃 and 𝑥 gives the posterior 

distribution of 𝜃 conditional on 𝑥 and 𝑛, 𝑝𝑝𝑜𝑠𝑡(𝜃|𝑥, 𝑛) = 𝑝(𝑥|𝜃, 𝑛)𝑝𝑝𝑟𝑖𝑜𝑟(𝜃)/𝑝(𝑥|𝑛), where 

𝑝(𝑥|𝜃, 𝑛) = ∏ 𝑝(𝑥𝑖|𝜃) is the usual likelihood function and 𝑝(𝑥|𝑛) = ∫ 𝑝(𝑥|𝜃, 𝑛)𝑝𝑝𝑟𝑖𝑜𝑟(𝜃)𝑑𝜃 is 

a normalizing constant.  

With the posterior distribution of 𝜃 available, Riffa and Schlaifer’s (1961) resolution of 

this problem is to proceed in reverse time order, taking expectations of utility over random 

variables 𝜃 and 𝑥, and maximixing over choice variables 𝑑 and 𝑛. Assuming that utility does not 

depend on 𝑥 and is additive and linear in 𝑛, the utility function can be written as 𝑢(𝑛, 𝑥, 𝑑, 𝜃) =

𝑢(𝑑, 𝜃) − 𝑐𝑛, where 𝑐 is the cost in utiles of each additional observation (Riffa and Schlaifer 

1961; Lindley 1997). Therefore, the objective function is (Lindley 1997): 

(1)  
max
𝑛≥0

{∫ max
𝑑≥0

[∫ 𝑢(𝑑, 𝜃)𝑝𝑝𝑜𝑠𝑡(𝜃|𝑥, 𝑛)𝑑𝜃
𝜃

] 𝑝(𝑥|𝑛)𝑑𝑥 − 𝑐𝑛
𝑥

}. 
 

The problem can be solved by taking the expectation over 𝜃 of the utility of 𝑑, given 𝑥 and 𝑛, 

and then maximizing over the decision variable 𝑑. Subsequently, the expectation over 𝑥 of this 

maximized value can be found using 𝑝(𝑥|𝑛), and finally, this expectation can be maximized over 

𝑛 to answer the original question, “What size sample should I take?” 
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Application to Genetic Testing for Beef Cattle 

Although equation (1) offers a well-defined algorithm for solving the general form of the 

Bayesian decision theoretic approach to sample size determination, applications of this method 

are still limited. Most notably, several studies have used the fully Bayesian approach to 

determine the optimal sample size for clinical trials in medical research. Although these studies 

have been conducted from a variety of different perspectives, including societal/public health 

(Gittins and Pezeshk 2002; Wilan and Pinto 2005, 2006) and industry/pharmaceutical companies 

(Gittins and Pezeshk 2000, 2002; O’Hagan and Stevens 2001; Kikuchi, Pezeshk, and Gittins 

2008; Wilan 2008), they focus on a single market participant. Conversely, there are two 

participants in the market for feeder cattle: buyers and sellers. Therefore, we extend the model to 

take into account both buyer and seller information.  

Suppose 𝑿𝑖  (𝑖 = 1, 2, … , 𝑚) is a column vector of molecular breeding values (MBVs) 

characterizing 𝑝 economically relevant traits for the 𝑖th animal in a lot of 𝑚 feeder cattle. Within 

a pen of cattle, this vector of genetic markers is assumed to be independent and identically 

distributed across animals with a multivariate normal density (Mrode 2014):
1
 

                                                 
1
 The independence assumption is a common simplifying assumption (Hoff 2009). However, in 

practice genetic markers are likely to be positively correlated across animals. For example, a lot 

of feeder cattle from the same ranch often have a high degree of relatedness with dams 

frequently being cousins and bulls being able to service 20-25 head. Holding all else constant, 

relaxing the independence assumption would likely result in a lower optimal sample size and 

higher returns from sampling as the information collected from each animal is more informative 

about the pen as a whole. Therefore, our model, which assumes independence, represents the 



9 

 

(2)  𝑿𝑖~𝑖𝑖𝑑 𝑀𝑉𝑁𝑝(𝜽, 𝚺),  

where the true value of 𝜽 is unknown and the 𝑝 × 𝑝 variance-covariance matrix 𝚺 is known from 

previous experience. Both the buyer (feedlot) and the seller (producer) of a lot of feeder cattle 

have their own subjective prior distributions of the unknown parameter 𝜽. For example, the 

seller’s prior distribution of 𝜽 can be expressed as:  

(3)  𝜽~𝑀𝑉𝑁𝑝(𝝁𝑠, 𝑽𝑠),  

and the buyer’s prior distribution can be written similarly as:  

(4)  𝜽~𝑀𝑉𝑁𝑝(𝝁𝑏, 𝑽𝑏).  

Given previous experience with their own cattle, the seller is expected to have a narrower 

distribution of 𝜽 than the buyer (i.e., 𝑽𝑠 ≤ 𝑽𝑏). Although buyers often have access to some 

information about how animals will perform, in the extreme case that the buyer is completely 

uninformed 𝑽𝑏 is characterized by the variance-covariance matrix of the MBVs between lots of 

cattle. 

A model examining the consequences of asymmetric information between buyers and 

sellers was first introduced by Akerlof (1970) using the example of the market for used cars. 

This model has since been extended to a variety of topics, including asymmetric information in 

cattle auctions (Allen 1993; Chymis 2007). Results indicate that one way to alleviate the 

inefficiency created by this information gap is to introduce credible information to the decision 

problem. However, as indicated by Stigler (1961) a rational decision maker will only obtain 

additional information if the benefits outweigh the costs. Therefore, given the discrepancy 

between buyer and seller expectations of the genetic makeup of a lot of feeder cattle, sellers who 

                                                                                                                                                             

extreme case in which animals are completely unrelated, and as a result, the optimal sample sizes 

presented here are likely an upper bound on the true profit maximizing sample size.  
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know that their cattle have valued genetics may want to differentiate their cattle by convincing 

buyers that they are higher quality. One way to do this would be to use genetic testing to 

establish the actual genetic makeup of the lot. However, previous research has consistently found 

that testing each individual animal is not cost-effective. Therefore, the seller may choose to 

randomly sample a subset of the cattle. The question is how many cattle should the seller test to 

maximize returns? 

An objective function characterizing the costs and benefits of randomly sampling 𝑛 

animals out of a lot of 𝑚 feeder cattle is specified using a Bayesian prior distribution for the 

unknown vector of parameters 𝜽. The cost of testing is known to be 
𝑐

𝑚
𝑛, where 𝑐 is the cost of 

commercial testing services ($/head). The benefit of persuading the buyer that a pen of cattle has 

higher quality genetics than expected is characterized by the increase in the buyer’s expected 

profit which is specified as a function of genetics, 𝜋(𝜽). For simplicity, the buyer is assumed to 

be risk neutral so that the seller receives the entire surplus profit created from testing. Moreover, 

in application the presence of a large number of buyers would result in the additional value to 

buyers being bid away given the reasonable assumption that the market for feeder cattle is 

perfectly competitive (Zhao, Du, and Hennessy, 2011). 

As a result, the seller’s objective function 𝑟(𝑛), which is the total expected benefit from 

the resulting improvement in the buyer’s profit function minus the cost of testing, can be written 

as: 

(5)  
max
𝑛≥0

𝑟(𝑛) = ∫ [∫ 𝜋(𝜽)𝑝𝑝𝑜𝑠𝑡(𝜽|𝑿, 𝑛)𝑑𝜽
𝜽

] 𝑝(𝑿|𝑛)𝑑𝑿
𝑿

− ∫ 𝜋(𝜽)𝑝𝑝𝑟𝑖𝑜𝑟(𝜽)𝑑𝜽 −
𝑐

𝑚
𝑛

𝜽

, 
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where 𝑝𝑝𝑜𝑠𝑡(𝜽|𝑿, 𝑛) is the buyer’s posterior distribution of 𝜽 conditional on the genetic 

information 𝑿 collected from a random sample of 𝑛 animals and 𝑝𝑝𝑟𝑖𝑜𝑟(𝜽) is the buyer’s prior 

distribution of 𝜽 given in equation (4). An application of Bayes rule indicates that the posterior 

distribution is proportional to the product of the likelihood function and the buyer’s prior 

distribution of 𝜽, 𝑝𝑝𝑜𝑠𝑡(𝜽|𝑿, 𝑛) ∝ 𝑝(𝑿|𝜽)𝑝𝑝𝑟𝑖𝑜𝑟(𝜽). Therefore, in order to maximize the returns 

from sampling in equation (5), the seller is assumed to know the buyer’s prior distribution of 𝜽, 

which could be implied from the initial bid received.  

If, for simplicity of exposition, we assume that the buyer’s profit function in equation (5) 

is linear in the MBVs, 𝜋 = 𝛼 + 𝜷𝑿, the multivariate distribution of genetics in equation (2) can 

be transformed into a univariate normal distribution of profit per head within a pen of cattle: 

(6)  𝜋𝑖~𝑖𝑖𝑑 𝑁(𝛼 + 𝜷𝜽, 𝜷𝚺𝜷′),  

where the mean is still unknown. Similarly, buyer and seller subjective prior distributions of 

genetics can also be transformed into prior distributions of profit. For example, the seller’s prior 

distribution of expected profit is a linear transformation of the prior distribution of genetics in 

equation (3): 

(7)  𝛼 + 𝜷𝜽~𝑁(𝛼 + 𝜷𝝁𝑠, 𝜷𝑽𝑠𝜷′),  

and the linear transformation of the prior distribution of genetics in equation (4) returns the 

buyer’s prior distribution of expected profit:  

(8)  𝛼 + 𝜷𝜽~𝑁(𝛼 + 𝜷𝝁𝑏, 𝜷𝑽𝑏𝜷′).  

Replacing distributions of genetics with distributions of profit, the objective function in 

equation (5) can be rewritten as: 
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(9)  
max
𝑛≥0

𝑟(𝑛) = ∫ [∫ (𝛼 + 𝜷𝜽)𝑝𝑝𝑜𝑠𝑡(𝛼 + 𝜷𝜽|𝜋̅, 𝑛)𝑑(𝛼 + 𝜷𝜽)
𝛼+𝜷𝜽

] 𝑝(𝜋̅|𝑛)𝑑𝜋̅
𝜋̅

− ∫ (𝛼 + 𝜷𝜽)𝑝𝑝𝑟𝑖𝑜𝑟(𝛼 + 𝜷𝜽)𝑑(𝛼 + 𝜷𝜽) −
𝑐

𝑚
𝑛

𝛼+𝜷𝜽

, 

 

where 𝑝𝑝𝑜𝑠𝑡(𝛼 + 𝜷𝜽|𝜋̅, 𝑛) is the buyer’s posterior distribution of profit conditional on the 

sufficient statistic 𝜋̅ =
1

𝑛
∑ 𝜋𝑖

𝑛
𝑖=1  and sample size 𝑛 and 𝑝𝑝𝑟𝑖𝑜𝑟(𝛼 + 𝜷𝜽) is the buyer’s prior 

distribution of expected profit in equation (8). Given that both the likelihood function and the 

buyer’s prior distribution of expected profit are normally distributed, the posterior distribution is 

also well known to be normally distributed as (Hoff 2009): 

(10)  
𝛼 + 𝜷𝜽|𝜋̅, 𝑛~𝑁 (

(𝜷𝚺𝜷′)(𝛼 + 𝜷𝝁𝑏) + 𝑛(𝜷𝑽𝑏𝜷′)𝜋̅

(𝜷𝚺𝜷′) + 𝑛(𝜷𝑽𝑏𝜷′)
,

(𝜷𝚺𝜷′)(𝜷𝑽𝑏𝜷′)

(𝜷𝚺𝜷′) + 𝑛(𝜷𝑽𝑏𝜷′)
). 

 

From this familiar solution we can see that when 𝑛 = 0 the mean and variance of the posterior 

distribution reduce to the buyer’s prior distribution of profit in equation (8). However, at values 

of 𝑛 > 0 the mean and variance of the posterior distribution converge towards the sample mean 

and sample variance. 

Because of the linearity assumption of the profit function, the integrals in equation (9) 

can be evaluated by replacing the random parameters with their expected values. For example, 

the integrals with respect to 𝛼 + 𝜷𝜽 can be evaluated by replacing the unknown values of profit 

with the expected values of the buyer’s posterior and prior distributions of profit, respectively: 

(11)  
max
𝑛≥0

𝑟(𝑛) = ∫ [
(𝜷𝚺𝜷′)(𝛼 + 𝜷𝝁𝑏) + 𝑛(𝜷𝑽𝑏𝜷′)𝜋̅

(𝜷𝚺𝜷′) + 𝑛(𝜷𝑽𝑏𝜷′)
] 𝑝(𝜋̅|𝑛)𝑑𝜋̅

𝜋̅

 

−(𝛼 + 𝜷𝝁𝑏) −
𝑐

𝑚
𝑛. 
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Given that the objective function is from the seller’s perspective, the density of the sample mean 

is known to be 𝜋̅|𝑛~𝑁 (𝛼 + 𝜷𝝁𝑠,
1

𝑛
(𝜷𝑽𝑠𝜷′)). Therefore, the integral with respect to 𝜋̅ can also 

be evaluated by replacing 𝜋̅ with its expected value, 𝛼 + 𝜷𝝁𝑠. As a result, equation (11) can be 

rewritten as: 

(12)  
max
𝑛≥0

𝑟(𝑛) =
(𝜷𝚺𝜷′)(𝛼 + 𝜷𝝁𝑏) + 𝑛(𝜷𝑽𝑏𝜷′)(𝛼 + 𝜷𝝁𝑠)

(𝜷𝚺𝜷′) + 𝑛(𝜷𝑽𝑏𝜷′)
− (𝛼 + 𝜷𝝁𝑏) −

𝑐

𝑚
𝑛. 

 

In practice, sample size 𝑛 is an integer. However, if we treat 𝑛 as continuous for ease of 

exposition, we can maximize 𝑟(𝑛) by letting 
𝑑𝑟(𝑛)

𝑑𝑛
= 0. Taking the derivative of equation (12) 

and solving for 𝑛, the optimal sample size, 𝑛∗, is: 

(13)  

𝑛∗ =
√(𝜷𝚺𝜷′)(𝜷𝑽𝑏𝜷′)(𝜷𝝁𝑠 − 𝜷𝝁𝑏) − (𝜷𝚺𝜷′)√

𝑐
𝑚

(𝜷𝑽𝑏𝜷′)√
𝑐
𝑚

. 

 

The second order condition indicates that the solution in equation (13) maximizes the seller’s 

returns from sampling for values of 𝜷𝝁𝑠 > 𝜷𝝁𝑏: 

(14)  𝑑2𝑟(𝑛)

𝑑𝑛2
=

−2(𝜷𝚺𝜷′)(𝜷𝑽𝑏𝜷′)2(𝜷𝝁𝒔 − 𝜷𝝁𝒃)

[(𝜷𝚺𝜷′) + 𝑛(𝜷𝑽𝑏𝜷′)]3
< 0  ∀ 𝜷𝝁𝑠 > 𝜷𝝁𝑏 . 

 

That is, as long as the seller’s prior expectation of profit is higher than the buyer’s prior 

expectation of profit, 𝑛∗ = agrmax{𝑟(𝑛)}. This makes sense given that a seller who knows that 

the quality of their cattle is lower than the buyer’s prior expectation has no incentive to test.  

Alternative Applications for Genetic Testing of Beef Cattle 

The framework described above is just one of many applications of this method to genetic testing 

for beef cattle. For example, similar to the scenario described above, a producer could use a 

sample of genetic information to determine whether or not to retain ownership of a lot of feeder 

cattle. Another potential alternative is that a feedlot may want to differentially manage cattle 
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based on genetics, or marker-assisted management, but cannot collect genetic information until 

after they have purchased a lot of feeder cattle. In this case, the benefit portion of the objective 

function will be the improvement in feedlot profit from improved management decisions, 

including how cattle are fed, how technologies such as implants and beta agonists are used, and 

how cattle are marketed (Van Eenennaam and Drake 2012), and the cost portion will remain the 

same. Therefore, the feeder now chooses some feedlot management decision variable (𝑑; e.g., 

marketing method and/or days-on-feed) and the number of animals to be sampled (𝑛), and the 

objective function in equation (5) can be re-specified as: 

(15)  
max
𝑛≥0

{∫ max
𝑑≥0

[∫ 𝜋(𝑑, 𝜽)𝑝𝑝𝑜𝑠𝑡(𝜽|𝑿, 𝑛)𝑑𝜽
𝜽

] 𝑝(𝑿|𝑛)𝑑𝑿
𝑿

− ∫ 𝜋(𝑑, 𝜽)𝑝𝑝𝑟𝑖𝑜𝑟(𝜽)𝑑𝜽 −
𝑐

𝑚
𝑛

𝜽

}, 

 

where profit is now a function of the feedlot management decision variable 𝑑 and genetics 𝜽, 

𝑝𝑝𝑜𝑠𝑡(𝜽|𝑿, 𝑛) is the feeder’s posterior distribution of 𝜽 conditional on the genetic information 𝑿 

collected from a random sample of 𝑛 animals, and 𝑝𝑝𝑟𝑖𝑜𝑟(𝜽) is the feeder’s prior distribution of 

𝜽. While it is important to acknowledge alternative applications of this model, for simplicity in 

this paper we focus on the original context discussed above of a seller trying to convince a buyer 

that their cattle are higher quality in order to receive a premium. 

Data 

Data were provided by Neogen, the parent company of commercial testing service Igenity, for 

2,976 commercially-fed cattle from a single feedlot in Iowa. Cattle represented year-round 

placements in the years 2007 and 2008. At placement, animals were weighed and a hair sample 

or tissue punch from ear tag application was collected for genetic testing. Genetic information 

was provided in the form of MBVs for the following seven traits: marbling, yield grade, rib-eye 
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area (in
2
), hot-carcass weight (lbs.), average daily gain (lbs./day), tenderness (lbs. of Warner-

Bratzler shear force [WBSF]), and days-on-feed (days). Each of these markers, except hot-

carcass weight and days-on-feed, have been found to be significantly correlated with the traits 

they are designed to predict in independent validations (DeVuyst et al. 2011; National Beef 

Cattle Evaluation Consortium 2015). Molecular breeding values are a continuous representation 

of an animal’s genetic potential to express a given trait. Similar to expected progeny differences 

(EPDs), MBVs are reported in the units of the trait they represent. However, they are interpreted 

as the “relative differences expected in animals across breeds compared to their contemporaries” 

(Igenity 2013, p. 2). For example, if two animals exposed to the same environmental and 

management conditions have marbling MBVs of -100 and 100, respectively, we would expect, 

on average, that these two animals’ marbling scores would differ by 200 units (100 - [-100] = 

200). Additional live-animal characteristics for days-on-feed, sex, and hide color were also 

provided, and carcass performance measurements, including calculated yield grade, marbling 

score, and hot-carcass weight, were collected at slaughter. Summary statistics for carcass 

performance, live-animal characteristics, and MBVs are reported in table 1.  

The data consist of 101 contemporary groups, which are defined as groups of animals 

that had an equal opportunity to perform: same sex, managed alike, and exposed to the same feed 

resources. These groups ranged in size from 11 to 69 animals with an average group size of 29 

animals. While most of the groups are expected to be from a single producer, the extent to which 

some cattle were comingled from different herds was not recorded. Therefore, the results of our 

analysis are conditional on the data that we use, and may underestimate the value of testing for 

cattle that are known to have homogeneous genetics. Sensitivity analysis is done to provide some 

context for the results presented here.  
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Procedures 

Using the data described above we estimate the parameters needed to obtain the optimal sample 

size in equation (13) and the returns from sampling in equation (12). A brief description of each 

of the parameters along with their baseline values and a range of parameter values for sensitivity 

analysis are reported in table 2. The procedures for how these parameters and their ranges were 

estimated from the data are discussed below. 

Expected Profit 

The intercept and slope coefficients in the buyer’s profit equation, 𝛼 and 𝜷, are estimated using a 

mixed model regression of feedlot profit on the MBVs. Prior to estimating these parameters an 

estimate of profit for each animal in the sample was generated using grid pricing: 

(16)  𝜋 = 𝑃(𝑌𝐺, 𝑄𝐺, 𝐻𝐶𝑊) × 𝐻𝐶𝑊 − 𝑃𝐶(𝑃𝑊𝑇, 𝑆𝐸𝑋) − 𝐹𝐶(𝐷𝑂𝐹) − 𝑌𝐶(𝐷𝑂𝐹)

− 𝐼𝐶(𝑃𝐶, 𝐷𝑂𝐹), 

 

where 𝑃 is the grid price which is a function of actual yield grade (𝑌𝐺), quality grade (𝑄𝐺), and 

hot-carcass weight (𝐻𝐶𝑊), 𝑃𝐶 is the purchase cost of feeder cattle which is a function of 

placement weight (𝑃𝑊𝑇) and sex (𝑆𝐸𝑋), 𝐹𝐶 is feed cost, 𝑌𝐶 is yardage cost, and 𝐼𝐶 is interest 

cost on the purchase of feeder cattle which are all a function of days-on-feed (𝐷𝑂𝐹). Fed cattle 

prices, including grid premiums and discounts, and feeder cattle prices were simple averages of 

the weekly prices reported by the USDA Agricultural Marking Service (AMS) for the 2014 

marketing year and were obtained from the Livestock Marketing Information Center (LMIC) 

spreadsheets (LMIC 2015; USDA AMS 2015). The prices used in this analysis are reported in 

table 3. Observations of feed intake were not available. Therefore, a standardized estimate of 

feed intake was generated for each animal in the sample using the dry matter intake model from 

the National Research Council’s (NRC) Nutrient Requirements of Beef Cattle (NRC 2000). For 
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examples of the National Research Council’s dry matter intake model see Lusk (2007) or 

Thompson et al. (2014). Additional information needed to evaluate profit includes a dry matter 

feed cost of $230/ton ($0.12/lb.), yardage cost of $0.40/day, and a 7% interest rate on the 

purchase of feeder cattle (Lardy 2013).  

Using equation (16), estimates of profit for the animals in our sample are generally 

negative. This is contradictory to Tonsor (2015), which reported that feedlot net returns in 

Kansas were positive for most of 2014. However, negative returns to cattle feeding are common 

with average net returns over the past 13 years being -$26.77 and -$15.44/head for steers and 

heifers, respectively (Tonsor 2015). The discrepancy between our estimates of profit and those 

reported by Tonsor (2015) are likely due to differences in the input and output prices used in this 

analysis and those observed when cattle in our sample were actually being fed.  

A mixed model regression equation of profit on MBVs and other live-animal 

characteristics is then estimated as: 

(17)  𝜋𝑖𝑗 = 𝛼0 + 𝛼1𝑃𝑊𝑇𝑖𝑗 + 𝛼2𝐷𝑂𝐹𝑖𝑗 + 𝛼3𝐷𝑂𝐹𝑖𝑗
2 + 𝛼4𝑃𝑊𝑇𝑖𝑗𝐷𝑂𝐹𝑖𝑗 + 𝛼5𝑆𝑇𝑅𝑖𝑗

+ 𝛼6𝐵𝐿𝐾𝑖𝑗 + 𝜷𝑿𝑖𝑗 + 𝑣𝑗 + 𝜀𝑖𝑗, 

 

where 𝜋𝑖𝑗 is the estimated feedlot profit for the 𝑖th animal in the 𝑗th contemporary group, 𝑃𝑊𝑇𝑖𝑗 

is placement weight, 𝐷𝑂𝐹𝑖𝑗 is days-on-feed, 𝑆𝑇𝑅𝑖𝑗 is a dummy variable equal to one if the 

animal was a steer and zero otherwise, 𝐵𝐿𝐾𝑖𝑗 is a dummy variable equal to one if the animal was 

black-hided and zero otherwise, 𝑿𝑖𝑗 is a 7 × 1 vector of MBVs characterizing marbling, yield 

grade, rib-eye area, hot-carcass weight, average daily gain, tenderness, and days-on-feed, 

𝑣𝑗~𝑁(0, 𝜎𝑣
2) is a contemporary group random effect, and 𝜀𝑖𝑗~𝑁(0, 𝜎𝜀

2) is a random error term.  

The model is estimated using Proc Mixed in SAS (SAS Institute Inc. 2013). D’Agostino-

Pearson K
2
 omnibus test for skewness and kurtosis and a conditional variance test identified 
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evidence of nonnormality and static heteroskedasticity. Sandwich estimators of the standard 

errors were estimated to obtain estimates of standard errors that were consistent in the presence 

of nonnormality and static heteroskedasticity (White 1982). Given the large sample size, 

asymptotic properties are relevant, and the small sample biases common with generalized 

method of moments estimators should be of little concern.  

Results from the estimation of equation (17) are reported in table 4. Live-animal 

characteristics generally exhibited the expected relationships with the only notable result being 

that, on average, fed cattle profit for steers was $75/head less than heifers. While previous 

research has discussed the potential for heifers to generate higher returns (Williams et al. 1993; 

Tonsor 2015), steers are usually expected to generate higher fed cattle profit. In this case, the 

discrepancy between feedlot profit for steers and heifers is a result of the prices used. Although 

feeder cattle prices include a premium for steers regardless of the weight class, the average 

dressed fed cattle prices used as the base for the grid were nearly identical for steers and heifers. 

Fixed effects for live-animal characteristics are not of interest in this study, so these variables are 

set to their mean values and absorbed into the intercept, 𝛼 = 𝛼0 + 𝛼1𝑃𝑊𝑇̅̅ ̅̅ ̅̅ ̅ + 𝛼2𝐷𝑂𝐹̅̅ ̅̅ ̅̅ +

𝛼3𝐷𝑂𝐹2̅̅ ̅̅ ̅̅ ̅̅ + 𝛼4𝑃𝑊𝑇̅̅ ̅̅ ̅̅ ̅ × 𝐷𝑂𝐹̅̅ ̅̅ ̅̅ + 𝛼5𝑆𝑇𝑅̅̅ ̅̅ ̅ + 𝛼6𝐵𝐿𝐾̅̅ ̅̅ ̅̅ . Thus, the profit equation can be written as a 

linear function of the MBVs, 𝜋 = 𝛼 + 𝜷𝑿. 

Each of the MBV effects, except for the rib-eye area MBV, is positive. This is consistent 

with expectations given that higher MBVs correspond with more favorable outcomes for the 

traits they characterize. The marbling and hot-carcass weight MBVs were the only markers to 

significantly influence fed cattle profitability. The negative effect of the rib-eye area MBV is 

likely due to genetic correlations among the MBVs included in our model. Specifically, the 

known inverse relationship between rib-eye area and marbling is likely the primary driver of this 
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result (DeVuyst et al. 2011). That is, more favorable rib-eye area outcomes are often 

accompanied by less favorable outcomes for marbling. Therefore, for the grid used in this 

analysis, the premiums associated with more favorable rib-eye area (yield grade) outcomes are 

not enough to offset the lower premiums, or higher discounts, associated with less favorable 

marbling (quality grade) outcomes.  

Buyer and seller expectations of profit are estimated from the data using equation (17). 

We assume that the buyer’s expected value of profit, 𝛼 + 𝜷𝝁𝑏, is equal to the mean profit 

observed in our data. Given linearity of the profit function, this is equivalent to profit at the mean 

values of the seven MBVs. If the seller’s expectation of profit is less than or equal to the buyer’s 

prior expectation of profit then the optimal sample size is zero. That is, there is no incentive to 

test if sellers know that their cattle will have below-average profitability. However, for any 

combination of MBVs that 𝛼 + 𝜷𝝁𝑠 > 𝛼 + 𝜷𝝁𝑏 there is a potential benefit to testing. Therefore, 

the baseline value for the seller’s expectation of profit is arbitrarily assumed to be equal to the 

75
th

 percentile of profit observed in our sample, and sensitivity analysis is conducted for values 

of 𝛼 + 𝜷𝝁𝑠 ranging from the mean to the maximum profit observed in the sample to determine 

the effect of the quality of a particular set of cattle on optimal sample size and the returns from 

sampling. 

Variance of Profit Between and Within Pens 

The variances of the MBVs between and within lots of cattle (i.e., the diagonal elements of 𝑽𝑏 

and 𝚺, respectively) can be estimated using a random effects model for each of the seven MBVs:  

(18)  𝑀𝐵𝑉𝑖𝑗𝑘 = 𝜇𝑘 + 𝑔𝑗𝑘 + 𝑒𝑖𝑗𝑘,  

where the dependent variable is the 𝑘th MBV for the 𝑖th animal in the 𝑗th contemporary group, 

𝜇𝑘 is the mean for the 𝑘th MBV, 𝑔𝑗𝑘~𝑁(0, 𝜏𝑘
2) is a contemporary group random effect where 𝜏𝑘

2 
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is the variance of the 𝑘th MBV between groups of cattle, and 𝑒𝑖𝑗𝑘~𝑁(0, 𝜎𝑘
2) is a random error 

term where 𝜎𝑘
2 is the variance of the 𝑘th MBV within groups. Models for each of the seven 

MBVs were estimated independently using Proc Mixed in SAS (SAS Institute Inc. 2013).  

Estimates of the between and within variance from the random effects models are 

reported in table 5. The variance of the MBVs within contemporary groups was generally higher 

than the variance between groups. As discussed earlier, this result could indicate that some of the 

cattle in our sample were comingled for feeding. That is, cattle from different sources with 

differing genetics were fed in the same contemporary group resulting in higher within pen 

variability than may be experienced by a single producer with a lot of cattle with homogenous 

genetics. Nonetheless, the estimated variances, along with the correlation matrix of the seven 

MBVs, can be used to calculate the covariances, or off-diagonal elements, of 𝑽𝑏 and 𝚺 using the 

known relationship between them, 𝐶𝑜𝑣(𝑥, 𝑦) = 𝜌𝑥,𝑦𝜎𝑥𝜎𝑦. Variance-covariance matrices of 

genetics are then converted to scalar estimates of the variance of profit within and between lots 

of cattle using the vector of parameter values 𝜷.  

In addition to their baseline values, the variance of profit between (𝜷𝑽𝑏𝜷′) and within 

(𝜷𝚺𝜷′) lots of cattle is subjected to sensitivity analysis to determine how the homogeneity or 

heterogeneity of a particular lot of cattle influences optimal sample size and the returns from 

sampling. The upper and lower bounds for the sensitivity analysis of both 𝜷𝑽𝑏𝜷′ and 𝜷𝚺𝜷′ were 

approximately set to equal the maximum and minimum variance of profit observed for the 

contemporary groups in our data.  

Cost of Genetic Testing 

The final component to evaluating the optimal sample size in equation (13) is the per-head cost 

of genetic testing, 
𝑐

𝑚
. The current cost of commercially available genetic testing services is 𝑐 = 
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$40/head (Igenity 2015). Therefore, assuming the data collected is applied to a pen of 𝑚 = 100 

animals, the cost of testing an additional animal is $0.40/head. In addition to this baseline value, 

sensitivity analysis is conducted for costs of testing ranging from $0.10/head to $1.00/head. 

These values are evaluated to account for differing costs of testing due to smaller or larger lots of 

cattle and to account for the potential decreasing cost of genetic testing services.  

Results 

The optimal sample size and returns from sampling are first evaluated at the baseline parameter 

values in table 2. A plot of the expected value of sample information (EVSI), total cost, and 

expected net gain (ENG), as a function of sample size (𝑛), are reported in figure 1. The EVSI is 

increasing sharply for small sample sizes as the genetic information collected from each 

additional animal contains valuable information. However, as sample size increases above 

𝑛 = 20 the EVSI levels off at values of $16-$18/head. Given that the cost of testing each 

additional animal is the same, $0.40/head, the total cost function is linear with respect to sample 

size. The difference in the EVSI and total cost is the ENG, or the returns from sampling. Results 

indicate that in this case an optimal sample size of 𝑛∗ = 10 maximized the ENG. Despite only 

testing 10% of the animals, the returns from sampling are $9.79/head compared with not testing 

any animals and accepting the buyer’s prior expectation of the genetic makeup of the pen. 

Aggregating across the assumed pen size of 𝑚 = 100 animals, that is a net return of 

approximately $1,000 from a $400 investment, or a 250% return-on-investment. These results 

indicate that random sampling has the potential to provide a context in which the benefits of 

genetic testing outweigh the costs, which has not generally been the case in previous research 

where each individual animal was tested and the results were used to sort cattle into management 

groups.  
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Sensitivity analysis is conducted to evaluate the robustness of these results with respect to 

the parameters 𝛼 + 𝜷𝝁𝑠, 𝜷𝚺𝜷′, 𝜷𝑽𝑏𝜷′, and 
𝑐

𝑚
. As expected, holding all else constant, optimal 

sample size and the returns from sampling are both increasing with respect to the seller’s 

expectation of profit (𝛼 + 𝜷𝝁𝑠; figure 2, panel i). That is, sellers with higher quality (more 

profitable) cattle have an incentive to test more animals. However, consider that the optimal 

sample size for a lot of cattle with a genetic makeup similar to the most profitable animals in our 

sample is only about 𝑛∗ = 24. Although the returns from testing for such animals are quite high, 

nearly $60/head, the marginal return to testing additional animals beyond 𝑛 = 24 is not enough 

to offset the marginal cost of obtaining additional information. Therefore, at the baseline values 

for the variance of profit between and within lots of cattle and the cost of testing, the benefits of 

genetic testing can be captured by testing a relatively small portion of a lot of feeder cattle (less 

than 25 out of 100 animals for a set of very high-quality cattle).  

Optimal sample size is also increasing with the variance of profit within a lot of cattle 

(𝜷𝚺𝜷′; figure 2, panel ii). However, the returns from sampling are simultaneously decreasing. 

That is, the additional noise associated with more heterogeneous lots of cattle make it more 

difficult to identify improvements in the actual quality of a particular set of cattle. As a result, 

more animals must be tested in order to “convince” buyers that a particular set of cattle is 

actually higher quality. In addition, the marginal return to testing each additional animal is 

decreased relative to more homogeneous lots of cattle resulting in decreased returns from 

sampling. For example, a set of cattle with variability similar to the most heterogeneous lot of 

cattle observed in our sample has an optimal sample size of 𝑛∗ = 12, but the returns from 

sampling are only about $4/head. On the other hand, producers selling feeder cattle that are 

known to have very homogeneous genetics may be able to capture a large portion of the 
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additional value by testing a relatively small percentage of the cattle. For example, the returns 

from sampling for a set of cattle with variability similar to the most homogeneous group of cattle 

in our sample is $15/head with an optimal sample size of just 𝑛∗ = 5. 

In the case that the buyer is completely uninformed, the variance of profit between lots of 

cattle is used to characterize the variance of the buyer’s subjective prior distribution of expected 

profit for a lot of feeder cattle. Contrary to within variability described above, optimal sample 

size is decreasing with the variance of the buyer’s prior distribution of expected profit (𝜷𝑽𝑏𝜷′), 

and the returns from sampling are increasing (figure 2, panel iii). This indicates that as the 

buyer’s prior distribution of expected profit becomes more uninformed (i.e., more diffuse), it is 

easier to persuade their opinion away from their prior expectation towards the seller’s 

expectation of the actual profitability of the pen. As a result, fewer animals need to be tested to 

“convince” the buyer that the cattle are actually higher quality, and the marginal returns from 

testing each additional animal becomes more valuable. For example, if the buyer is completely 

uninformed (high variance for the prior distribution of profit) the optimal sample size is 𝑛∗ = 4, 

and the returns from sampling are over $16/head. However, for buyers with very narrow prior 

distributions of expected profit the optimal sample size is 𝑛∗ = 11 and the returns from sampling 

are just $8/head.   

Lastly, as would be expected, the per-head cost of testing (
𝑐

𝑚
) is inversely related to 

optimal sample size and the returns from sampling (figure 2, panel iv). That is, as the marginal 

cost of testing increases, the ENG of testing each additional animal is reduced, and as a result, 

optimal sample size will decrease. The cost of testing is made up of two components: the cost of 

genetic testing services (𝑐) and the size of the pen to which the information collected is being 

applied (𝑚). Therefore, a lower per-head cost of testing could be the result of either a reduction 
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in the cost of the test due to technological advancements or an increase in the number of animals 

to which the decision is applied. Either way, results indicate that the ability to reduce the cost of 

testing would enable sellers to test more animals allowing them to achieve closer to the full value 

of their cattle. For example, the ability to cut the baseline value of per-head testing cost in half, 

$0.20/head, increases the optimal sample size to 𝑛∗ = 15 and the returns from testing to 

$12/head. Conversely, doubling the per-head cost of testing, $0.80/head, leads to an optimal 

sample size of 𝑛∗ = 6 animals and returns from sampling of less than $7/head.  

Conclusions 

In this article, we introduce an economic approach to sample size determination utilizing a 

Bayesian decision theoretic framework (Grundy, Healy, and Rees, 1956; Riffa and Schlaifer 

1961; Lindley 1997). To date, few economic studies explicitly consider the endogeneity of 

sample size and so this method is scarcely used in economic research. However, this method is a 

theoretically sound approach to determining sample size for many economic problems and 

should be considered in a wide range of economic modeling problems. For example, consider a 

generic scenario in which a new policy is to be implemented for the betterment of society. Prior 

to its implementation, the policy maker must determine the optimal level of the policy through an 

assessment of its effect on the population. In most cases, it would be too costly to take a census. 

However, there is significant value associated with obtaining a sufficient sample to determine the 

level of the policy that will maximize the overall benefits. Therefore, sample size is an 

endogenous variable that needs to be considered jointly with other decision variables by utilizing 

an objective function to balance the expected costs and benefits of sampling.  

To demonstrate the method for a relevant applied economics problem, we turn to the 

problem of asymmetric information in the market for feeder cattle. A theoretical model is 
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developed characterizing a scenario in which sellers (producers) who know that their feeder 

cattle have high-value genetics are trying to convince buyers (feedlots) that their cattle are higher 

quality in order to receive a premium above the prevailing market price. However, in order to 

establish the actual genetic makeup of a lot of feeder cattle, the seller must incur the cost of 

genetic testing. Using the Bayesian sampling model we determine the economically-optimal 

sample size and the returns from sampling.  

Results from this example indicate that the marginal benefit to testing is high for small 

sample sizes as the genetic information collected from each additional animal contains valuable 

information. However, as the sample size increases the marginal expected value of sample 

information diminishes quickly, indicating that a large portion of the additional value for higher-

quality cattle can be estimated by testing a relatively small percentage of a lot of feeder cattle. 

For example, at the baseline parameter values the optimal sample size is 𝑛∗ = 10 animals out of 

a lot of 100 feeder cattle and the returns from sampling are nearly $10/head. Aggregating across 

the assumed pen size of 100 animals, that is a net return of approximately $1,000 from a $400 

investment, or a 250% return-on-investment. Sensitivity analysis was conducted to provide some 

context, and results indicated that the optimal sample size and returns from sampling may 

increase or decrease depending on the actual quality (or profitability) of a particular pen of cattle, 

the homogeneity within the pen, the variance of the buyer’s subjective prior distribution of 

expected profit, and the per-head cost of genetic testing. The only scenario evaluated in which 

the returns from sampling were not positive was if the seller’s expectation of profit was less than 

or equal to the buyer’s prior expectation of profit, in which case the optimal sample size is 

𝑛∗ = 0.  
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Nonetheless, results suggest that random sampling has the potential to provide a context 

in which the benefits of genetic testing outweigh the costs, which has not generally been the case 

in previous research. Previous research demonstrates that genetic differences generate 

measurable differences in fed cattle profitability. However, the per-head difference in profit has 

been shown to be less than genetic testing costs. So prior to this research, genetic testing of 

feeder cattle for feedlot placement decisions has not been considered economically advisable. 

Our sampling method demonstrates that economically-optimal sampling of feeder cattle can 

improve profitability. This is the first research to demonstrate the potential for genetic testing of 

feeder cattle to improve net return from testing. So, this research represents an important 

contribution to the literature evaluating the economic value of genetic testing for beef cattle and 

potentially more importantly to the beef cattle industry. While demonstrated for a feeder calf 

sale, the method can be similarly applied for a fed calf sale to packers or boxed beef sale to high-

end retailers. 

When interpreting the results presented here consider that we only include the direct cost 

of genetic testing. However, there may be additional management and handling costs associated 

with collecting samples for genetic testing. As indicated in previous research, these additional 

costs could be mitigated, or even eliminated, if samples were collected at a point when animals 

are already being handled (Koontz et al. 2008). Perhaps the more troublesome issue is that if the 

seller is the one making the sampling decision, will they truly select a “random sample?” That is, 

there is an incentive for the seller to selectively sample animals known to be higher quality. This 

raises the question of whether third-party verification would be needed to ensure the cattle being 

tested are really a random sample. This is similar to the third-party verification associated with 

value-added feeder cattle sales (Chymis et al. 2007; Williams et al. 2012), and brings about the 
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potential for some additional costs that may need to be considered in order for the application 

described here to succeed. However, using third-party verified value-added feeder calf sales as 

the metric, this cost is likely much less than estimated returns from genetic sampling. 

It is also important to note that the static context described here does not lead to changes 

in the product form, and as a result, does not appear to generate any additional value. Instead, 

value is redistributed between buyers and sellers. However, by better aligning prices received by 

feeder calf producers with traits desired by feedlot operators, economically-optimal genetic 

testing has the potential to reduce misaligned incentives and improve the overall profitability of 

the beef industry. By reducing asymmetric information, cow-calf producers with genetics valued 

by feedlot operators are compensated for those genetics. This provides the incentive to produce 

more cattle that perform better in feedlots with higher value carcasses, so profits for the beef 

sector improve. While the model presented here assumes that profits accrue to the cow-calf 

producer for tractability, the likely outcome is a division of profits from sampling to both buyer 

and seller. In addition, if feedlot operators were subsequently able to use the genetic information 

provided by sellers to improve feedlot management decisions, including how cattle are fed, how 

technologies such as implants and beta agonists are used, and how cattle are marketed (Van 

Eenennaam and Drake 2012), they could generate additional value by changing the product form 

(Koontz et al. 2008). This additional information would lead to reduced inefficiencies associated 

with cattle feeding and could potentially create social welfare gains through improved quality 

and consistency of beef products.  
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Table 1. Summary Statistics for Carcass Performance, Live-Animal Characteristics, and 

Molecular Breeding Values (n = 2,976). 

Variable Mean 

Standard 

Deviation Minimum Maximum 

Carcass performance     

Marbling score 414.43 70.87 250.00 830.00 

Yield grade 2.97 0.58 0.31 5.10 

Hot-carcass weight, cwt. 7.20 0.70 4.58 9.83 

Live-animal characteristics     

Placement weight, cwt. 6.55 1.24 2.94 11.16 

Days-on-feed, days 171.51 29.09 106.00 238.00 

Steer
a 

0.74    

Black
b 

0.78    

Molecular breeding values (MBV)     

Marbling MBV -16.44 26.94 -119.37 68.26 

Yield grade MBV -0.06 0.07 -0.28 0.20 

Rib-eye MBV, in
2 

-0.78 0.47 -2.16 1.38 

Hot-carcass weight MBV, lbs. 28.43 9.06 -15.57 55.91 

Average daily gain MBV, lbs./day 0.20 0.10 -0.12 0.48 

Tenderness MBV, lbs. of WBSF
c 

-1.49 1.52 -5.90 2.92 

Days-on-feed MBV, days -2.83 2.95 -14.28 8.35 

Note: Molecular breeding values (MBVs) are reported in the units of the trait and reflect the 

differences expected in animals across breeds compared to their contemporaries (Igenity, 2013). 

Therefore, mean MBVs offer little insight. Instead, the range of MBVs is more informative. For 

example, the range of average daily gain MBV suggests that the animal with the highest genetic 

potential for average daily gain in the sample would be expected, on average, to gain 

approximately 0.60 lbs./day more than the animal with the lowest genetic potential for average 

daily gain (0.48 - [-0.12] = 0.60).    
a
 Steer is a dummy variable equal to one if the animal was a steer and zero otherwise. 

b
 Black is a dummy variable equal to one if the animal was black-hided and zero otherwise. 

c
 Warner-Bratzler shear force.  
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Table 2. Parameter Definitions, Baseline Values, and Ranges for Sensitivity Analysis 

Parameter Definition Baseline Value 

Range for 

Sensitivity Analysis  

𝛼 + 𝜷𝝁𝑠  Seller’s expectation of profit ($/head) -$63.16 -$82.30 to -$3.74 

𝛼 + 𝜷𝝁𝑏  Buyer’s expectation of profit ($/head) -$82.30 — 

𝜷𝚺𝜷′  Variance of profit within a lot of cattle 608.57 100 to 2000 

𝜷𝑽𝑏𝜷′  Variance of the buyer’s subjective prior 

distribution of expected profit (variance 

of profit between lots of cattle) 

157.01 100 to 2000 

𝑐

𝑚
  Cost of genetic testing ($/head) $0.40 $0.10 to $1.00 
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Table 3. Average 2014 Base Price and Yield Grade, Quality Grade, and Hot-Carcass 

Weight Premiums and Discounts for Grid Pricing 

Grid Component Premium/(Discount) 

 $/cwt. 

Base price  

Steers $244.22 

Heifers  $244.21 

Quality grade adjustment  

Prime $19.26 

Choice $0.00 

Select ($8.63) 

Standard ($20.84) 

Yield grade adjustment  

1.0-2.0 $4.58 

2.0-2.5 $2.25 

2.5-3.0 $2.13 

3.0-4.0 $0.00 

4.0-5.0 ($8.63) 

>5.0 ($13.64) 

Hot-carcass weight adjustment  

400-500 ($25.42) 

500-550 ($22.19) 

550-600 ($2.93) 

600-900 $0.00 

900-1000 ($0.24) 

1000-1050 ($2.27) 

>1050 ($23.24) 

Source: USDA Agricultural Marketing Service (AMS) reports LM_CT150 and LM_CT169 

obtained from the Livestock Marketing Information Center (LMIC) spreadsheets (LMIC, 2015; 

USDA AMS, 2015).  
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Table 4. Feedlot Profit Mixed Model Regression Estimates (n = 2,976) 

Variable Coefficient Standard Error
a 

Intercept -1151.33*** 353.24 

Placement weight 103.82*** 25.15 

Days-on-feed 8.08** 3.35 

Days-on-feed squared -0.01 0.01 

Placement weight × days-on-feed -0.60*** 0.14 

Steer
b 

-75.25*** 10.88 

Black
c 

2.08 7.58 

Marbling MBV
d 

0.44*** 0.12 

Yield grade MBV 17.54 55.70 

Rib-eye area MBV -23.40** 9.58 

Hot-carcass weight MBV 1.55*** 0.31 

Average daily gain MBV 27.21 32.32 

Tenderness MBV 1.86 2.10 

Days-on-feed MBV 0.30 0.84 

   

quasi-𝑅2e 0.29  

Note: Dependent variable is estimated feedlot profit ($/head) from equation (16). Single, double, 

and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1% level.  
a
 Standard errors are estimated using “sandwich estimators” to obtain estimates of standard errors 

that are consistent in the presence of nonnormality and static heteroskedasticity (White, 1982).  
b
 Steer is a dummy variable equal to one if the animal was a steer and zero otherwise. 

c
 Black is a dummy variable equal to one if the animal was black-hided and zero otherwise. 

d
 Molecular breeding value.  

e
 The quasi-𝑅2 is calculated as the squared correlation of the actual and predicted values 

including the contemporary group random effect.   
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Table 5. Random Effects Model Estimates of Variance of Molecular Breeding Values 

Between and Within Lots of Cattle (n = 2,976) 

Molecular Breeding Value Between Variance Within Variance 

Marbling 191.730*** 543.420*** 

Yield grade 0.001*** 0.004*** 

Rib-eye area 0.046*** 0.173*** 

Hot-carcass weight 11.184*** 72.080*** 

Average daily gain 0.001*** 0.008*** 

Tenderness 1.072*** 1.332*** 

Days-on-feed 0.297*** 8.425*** 

Note: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 

1% level.  
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Figure 1. Expected value of sample information (EVSI), expected net gain (ENG), and total 

cost as a function of sample size (𝒏) at the baseline parameter values 
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Figure 2. Sensitivity analysis of optimal sample size and the returns from sampling with 

respect to (i) the seller’s expectation of profit (𝛼 + 𝜷𝝁𝑠), (ii) the variance of profit within a 

lot of cattle (𝜷𝚺𝜷′), (iii) the variance of the buyer’s prior distribution of expected 

profit(𝜷𝑽𝑏𝜷′), and (iv) the per-head cost of genetic testing (
𝑐

𝑚
) 


