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Abstract 

Climate change is one of the preeminent policy issues of our day, and the social cost of carbon 

(SCC) is one of the foremost tools for determining the socially optimal policy response. The SCC 

is estimated using Integrated Assessment Models (IAMs), of which Nordhaus’ DICE is the oldest 

and one of the best respected. These numerical models capture the various steps in the climate 

and economic processes that translate a marginal unit of CO2 emissions into economic damage. 

While accuracy at each of these steps is necessary to precisely estimate the SCC, correct 

calibrating the climate damage function, which translates a temperature change into a 

percentage change in GDP, is critical. Calibration of the damage function determines which 

climate damages are included and excluded from the cost of carbon. Traditionally, Nordhaus 

calibrated the DICE damage function using a global damage estimate calculated by aggregating 

a series of region-sector specific damage estimates (Nordhaus and Boyer, 2000; Nordhaus, 

2008). However, in DICE-2013, Nordhaus moved to calibrating the DICE damage function using 

a meta-analysis at the global scale (Nordhaus and Sztorc, 2013). This paper critiques this meta-

analysis approach as it is currently applied and re-estimates the DICE-2013 damage function 

using up-to-date meta-analysis techniques to more accurately reflect climate damages and the 

uncertainty underlying them. This paper finds that DICE-2013 damage function significantly 

under-estimates climate damages by a factor of two to three.  
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Loaded DICE: Refining the Meta-analysis Approach to Calibrating Climate Damage Functions 

Peter H. Howard and Thomas Sterner 

Climate change is one of the preeminent policy issues of our day, and the social cost of carbon 

(SCC) is one of the foremost tools for determining the socially optimal policy response. As of 

2008, the federal government must include the SCC in all federal cost-benefit analyses. The U.S. 

government’s published estimates developed by the 2010 and 2013 Interagency Working 

Groups (IWGs) rely on three Integrated Assessment Models (IAMs): DICE, FUND, and PAGE. 

These numerical models capture the various steps in the climate and economic processes that 

translate a marginal unit of CO2 emissions into an economic damage. While accuracy at each of 

these steps is necessary to precisely estimate the SCC, calibrating the climate damage function, 

which translate a temperature increase above the preindustrial level into a percentage change 

in GDP, correctly is critical. Calibration of the damage function determines which climate 

damages are included and excluded from the cost of carbon.  Historically, developers calibrated 

IAMs using the enumerative strategy – whereby they aggregated region-sector specific damage 

estimates to determine the global damage (as a % of GDP) for a particular temperature 

increase. 

In DICE-2013, the most recent version of DICE, Nordhaus calibrated the DICE damage function 

using a meta-analysis technique instead of using the more common enumerative strategy that 

he helped to pioneer. Of the three IAMs used by the IWG, Nordhaus’ DICE is the first and one of 

the best respected. Traditionally, Nordhaus calibrated the DICE damage function using a global 

damage estimate calculated by aggregating a series of region-sector specific damage estimates 

(Nordhaus and Boyer, 2000; Nordhaus, 2008); this technique was utilized in the previous three 

versions of DICE: DICE-1999, DICE-2007, and DICE-2010. More recently in DICE-2013, Nordhaus 

utilized a meta-analysis approach instead. Drawing on global damage estimates from thirteen 

studies surveyed in Tol (2009), Nordhaus regressed climate damages on temperature change 

using ordinary least squares after rescaling the damage estimates upwards by 25% to account 

for missing damages (Nordhaus and Sztorc, 2013). 

The estimation of the DICE-2013 damage function falls short in several respects. First, it relies 

on a data set assembled by Tol (2009), and later updated in Tol (2013), which does not meet 

the standards set in the meta-analysis literature. This potentially results in biased estimates due 

to selection bias and publication bias. Second, Nordhaus and Sztorc (2013) do not utilize the 

standard meta-analysis techniques developed in the literature. In fact, the authors utilize a 

simple OLS regression of global climate damages (as measured as a % of GDP) on average 

surface temperature. However, one of the leading studies - Nelson and Kennedy (2009) - argues 

that estimating “a simple OLS model…is clearly inadequate” when conducting a meta-analysis 

due to heteroskedasticity, dependence of errors, and other issues. Together, these 

shortcomings imply that the DICE-2013 damage function can easily be improved. 
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The goal of this paper is to improve the meta-analysis technique as applied to estimating a 

climate damage function in DICE. This is important for two reasons. First, given the leadership 

status placed on DICE by other economists and the prominence of Nordhaus in the field, it is 

important to scrutinize such a significant change in his modeling strategy. For example, the 

DICE-1999 damage function, along with FUND, helped inform Hope’s choice of damage function 

parameters for both PAGE02 and PAGE09 (Hope, 2006; Hope, 2011; Howard, 2014). Second, 

the 2010 Interagency Working Group on the Social Cost of Carbon (2010 IWG) and the 2013 

Working Group (2013 IWG) utilized the 2007 and 2010 versions of DICE, respectively, in their 

calculation of the U.S. social cost of carbon. Given the U.S. government’s intent to update their 

estimates every two to three years based on the latest economic and scientific results, it is 

important to assess significant changes to DICE, FUND, or PAGE before their use in determining 

U.S. policy. 

The results of this assessment should not be taken as a rejection of the DICE model. In fact, the 

DICE model is probably the most rigorously analyzed integrated assessment model in the 

literature, and it has stood the test of time thus far. Instead, this paper is an attempt to build 

upon and improve an important economic model of climate damages. With this aim in mind, I 

attempt to re-estimate the DICE-2013 damage function with a larger dataset and up-to-date 

estimation techniques. By doing so, I demonstrate how the IWG should re-estimate the DICE-

2013 damage function if it chooses to use DICE-2013 in its updated social cost of carbon 

estimates. In particular, the damage function I estimate, unlike the current DICE-2013 damage 

function, conforms to the standards laid out by the EPA for meta-analysis (EPA, 2006). 

In this paper, we focus on improving the estimation of the DICE-2013 damage function, and 

then improving it. First, we review the meta-analysis literature, including a summary of 

previous meta-analyses of the total cost of climate change and how these meta-analyses fall 

short of the current state of the art meta-analysis techniques. Second, we describe the creation 

of the datasets used in this paper. Third, we present the methods utilized in this paper to 

conduct its meta-analysis of willingness to pay to avoid non-catastrophic climate damages. 

Fourth, we follow this section up with a discussion of our results, including the derivation of a 

new DICE-2013 damage function whose magnitude represents a threefold increase from the 

Nordhaus and Sztorc (2013) model. Finally, we conclude with a summary of important results, 

and a discussion of potential directions for future work to improve the estimation of climate 

damage functions for IAMs. 

Literature Review 

A meta-analysis is a statistical method for combining multiple estimates (in this case multiple 

damage estimates) across studies into a new estimate (in this case a new damage function). 

Typically, the analyst collects a series of primary studies in economics by various authors that 
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employ differing “study designs, model specifications, and econometric techniques,” and then 

regress a common summary statistic or effect size on the characteristics of the study (Nelson 

and Kennedy, 2009); regressors are typically specified as binary dummies (Nelson and Kennedy, 

2009). In general these regressions attempt to explain the heterogeneity in study estimates, 

which exist for factual reasons (i.e., study context and characteristics of the object of the study 

– income, location, or time period) and methodological reasons (i.e., differing methodological 

approaches - assumptions, methods, models, and data). When the sample size is sufficient, an 

alternative to binary regressors is to conduct an analysis on more homogenous subsamples.  

Generally, the meta-analysis regression is 

(1)  ̂   (   )    

where Y is the effect size, P is the factual causes of observed heterogeneity in the effect size, R 

is the methodological causes of the observed heterogeneity in the effect, and   is the error 

term. This error term can be subdivided into unobservables ( ) and measurement errors ( ) 

from studies, such that 

(1’)  ̂   (   )      

where it is often assumed that    (    
 ) and    (    

 );1 in many cases,   
  is reported in 

studies and   
  has to be calculated (Rhodes, 2012).  Often analysts assume a linear function, 

such that 

 ̂                        and           

where Z and X are the unobserved factual and methodological causes of the unobserved 

heterogeneity of the effect size.  

The typical goals of conducting a meta-analysis are: research synthesis (obtain a mean value), 

hypothesis testing (explain heterogeneity in the estimated effect and/or publication bias), and 

benefit transfer (provide in-sample and out-of sample) predictions. In our case, the goal of the 

meta-analysis is estimating a damage function; this is a combination of in and out of sample 

prediction (Nelson and Kennedy, 2009; Smith and Pattanayak, 2002). 

Current Guidelines for meta-analyses 

As meta-analyses are becoming increasingly more common, several groups have developed 

guidelines for meta-analyses.2 Though not a set of standards per se, the EPA assembled a 

working group in 2006 on estimating the value of a statistical life that was highly critical of 

                                                           
1
 While the normal error terms are often assumed, they are not necessary. Instead, we can assume more generally 

that   (    
 ) and   (    

 ). 
2
 This has been necessary do to the inconsistent application of methods, and the frequency of studies failing to 

meet “minimum” standards of quality. 
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current meta-analyses. Though they focused on meta-analyses with regards to the value of a 

statistical life, their critique of methods is often cited as a minimum set of standards. Similar 

critiques are leveled by Stanley et al (2013), in which authors lay out the Journal of Economic 

Survey’s minimum guidelines for met-analyses, and Nelson and Kennedy (2009), which reviews 

the econometric issues that arise in meta-analysis and develop a set of best practices. The three 

studies lay out similar sets of best practices for meta-analyses.  

First, analysts must be transparent with respect to how they developed their data set. To start, 

the analyst should clearly define the problem to be tested, and clearly define the effect size to 

be studied.  

Second, analysts should clearly lay out a priori their search protocols and study selection 

criteria, including their quality criteria. Specifically, Nelson and Kennedy (2009) request that 

analysts provide a clear statement defining the search protocol (who searched and what 

databases and the protocols they utilized) and study select rules; this is necessary to avoid 

publication bias and selection bias introduced by the analysts. This includes making sure that all 

primary studies measure the same effect,3 and discussing any necessary adjustment of the 

dependent variable. While testing for publication bias is recommended in meta-analysis 

studies, these tests cannot be applied in the case of climate damages to a lack of standard error 

estimates. 

Third, authors should clearly define their coding methods, including who read and coded the 

studies for the meta-analysis (at least two analysts must code the data),4 when they did it, and 

what they coded and how; this should include how missing data was addressed. The analyst 

should also provide an explanation and summary of all relevant variables, including a discussion 

of which coefficients are most likely to be sensitive due to the small number of studies 

addressing the issue.  

Fourth, the various studies layout slightly different data collection requirements, i.e. a 

minimum set of coding variables. Universally, the three studies agree that analysts should 

collect data on: the effect size, variance (standard deviation, standard error, and confidence 

intervals) when available, sample size when available, and time period and location of study (or 

data developed). Stanley et al (2013) further recommend controlling for model and/or methods 

utilized in study,5 dummy variables for the omission of relevant variables, the type (and 

potentially source) of publication (journal, working paper, book, report, etc.), and dataset 

utilized.  
                                                           
3
 In terms of collecting data, the analyst must ensure that the dependent variable measures the same concept 

across all of the studies included in the meta-analysis; this may be an issue in climate change where analysts have 
done a poor job of clarifying whether damages estimates are relative to the pre-industrial or current period and a 
combination of willingness to pay and willingness to accept estimates have been employed. 
4
 At a minimum, a second researcher must randomly double check a significant share of the coding. 

5
 Similarly, the EPA (2006) recommends collecting data on key control variables in underlying studies. 
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Fifth, analysts should transparently address multiple damage estimates per study. The EPA 

(2006) suggests selecting one estimate per study.6 Alternatively, analysts can combine damage 

estimating using variances as weights. If sufficient degrees of freedom are an issue, the analyst 

can also utilize panel data methods to address the resulting dependence. 

Sixth, in term of meta-analysis regression methods, the guidelines all require a reporting of the 

estimation strategy utilized, and specifically a reporting of methods used to control for common 

meta-analysis issues: heteroskedasticity and dependent errors. Both of these econometric 

issues result in consistent and inefficient coefficient estimates, and biased estimates of the 

standard errors. Analysts must address these econometric issues to obtain unbiased estimates 

of the standard errors and also efficient estimates of the coefficients’ mean and standard 

errors; efficiency is important due to the sample size associated with most meta-analyses.  

Heteroskedasticity often arises in meta-analyses because of significant unobserved 

heterogeneity of the effect size, i.e.  . While frequent solutions for heteroskedasticity are 

robust standard error calculations, e.g. Huber-White standard errors, or specifying more 

homogenous sub-populations upon which to conduct the meta-analyses, alternative solutions 

are often recommended in meta-analyses due to sample size that results in the asymptotic 

properties of estimators not applying. Specifically, the EPA (2006) and Nelson and Kennedy 

(2009) recommend controlling for heteroskedasticity by weighing estimates by their variance 

using either a fixed-effect-size or random-effect-size estimators (i.e. weighted least squares 

estimators). This is not possible in terms of the social cost of carbon because it would give 

undue influence on estimates that failed to include standard errors or other measures of 

uncertainty. Alternatively, the Davidson and MacKinnon adjustment can be utilized instead of 

Huber-White standard errors due to its adjustment for small sample size.  

Dependence of the error terms in meta-analyses arises because of correlations in the 

underlying damage estimates.  This can occur for several reasons, including: (1) multiple 

analysts utilize the same dataset; (2) a team of researchers contributes multiple estimates, and 

these estimates each contain their “perceptional bias” (Rhodes, 2012); (3) similar unobserved 

characteristics across studies; (4) similar observed characteristics across studies; (5) common 

adjustments across studies; and (6) an meta-analyst uses multiple estimates from the same 

study. While the last three causes can be addressed by carefully choosing the appropriate 

independent variables (i.e. regressors) and selecting one estimate per study, it is often 

necessary to still control for dependencies in the data due to the three first causes. These 

dependences, i.e. correlations, often result in the clustering of error terms. Assuming that 

groups are clustered by group j, the model becomes, 

                                                           
6
 The EPA (2006) suggests that the inclusion of multiple estimates from a study is statistically valid if these 

estimates are independent. 
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               . 

where   ,   ,    , are assumed to be independent and identically distributed error terms. In this 

case, Nelson and Kennedy (2009) suggest a panel estimator: random-effects (RE) estimator or 

fixed-effects (FE) estimator. If instead, the errors are clustered around group j and group k, the 

model becomes, 

                      

where   ,   , and      are assumed to independent and identically distributed error terms. In 

this case, Nelson and Kennedy (2009) suggest a hierarchical model. At a minimum, cluster 

robust standard errors should be calculated.7 

Seventh, analyst should choose their final meta-regression by using specification tests. Authors 

should clearly provide all specification tests (omitted variables, functional form, and 

multicollinearity) and diagnostic tests (heteroskedasticity, outliers, and dependence).  This 

should include tests for (1) data heterogeneity and heteroskedasticity using the Q test for 

homogeneity, (2) dependence of error term (i.e. correlation of effect sizes) using the I-test, (3) 

outliers using sensitivity analysis and effect size distributions, (4) omitted variable bias, and (5) 

publication bias using funnel plots and funnel asymmetry tests. Several tests can also be utilized 

to choose the correct estimator. If a weighted least squares estimator is chosen, the analyst can 

use a Cochrane’s Q statistic to choose between the FES and RES estimators. If instead a panel 

data estimator is chosen, the analyst can use a Hausman test to choose between the fixed-

effects and random-effects models. 

Finally analysts should be transparent with regards to the robustness of their analysis. This 

includes conducting sensitivity analysis with respect to data points (to test for outliers), relevant 

variables (omitted variable bias), regression models (specification error), and sub-populations 

(heteroskedasticity).8 Furthermore, if panel data methods are utilized, multiple levels of 

stratification, i.e., grouping, should be utilized to test for sensitivity of results to cluster choice. 

                                                           
7
 Nelson and Kennedy (2009) recommend generalized least squares (GLS) to ordinary least squares (OLS) when 

correlation is an issue because (1) GLS results in more sensible unbiased estimates than OLS, and (2) GLS accounts 
for heteroskedasticity. Often feasible Specifically, Nelson and Kennedy focus on subsets of GLS: hierarchical 
groups, panel methods (fixed effects and random effects), and clusters regressions. The latter two types of 
estimators are also special cases of the mixed linear model – a panel data method where cluster j is now the 
individual and damage estimates within cluster j are time periods. A mixed linear model allows for the variance of 
     to vary with observed variables. More generally, the specification of the mixed linear model is 

                   

where     (    ),      (    
 ), and the variance and covariances in matrix    are referred to as random 

parameters; while normality is not required for either error term, they must be independent and identically 

distributed. This model nests the pooled OLS model (     ), the random effects model (     ), the random-

coefficients model (       ), and the hierarchal model (Cameron and Trivedi, 2010, p. 305). 
8
 Stanley et al (2013) emphasizes the need for sensitivity analyses of all relevant variables included in the meta-

analysis. 
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This transparency also applies to clearly representing the level of uncertainty in estimate, 

including graphical representations of data, the residuals from the resulting estimates, and 

confidence intervals.  

Global Climate Damage Meta-analyses 

In addition to Nordhaus and Sztorc (2013), there are a couple of additional global climate 

damage meta-analyses: Tol (2009) and Tol (2013). Of these analyses, Tol (2009) and Nordhaus 

and Sztorc (2013) utilize the Tol (2009) dataset, while Tol (2013) utilizes an updated dataset. 

Few to none of the recommendations specified in the previous sub-section are followed by 

Nordhaus and Sztorc (2013) or Tol (2009; 2013). 

Datasets. Tol (2009) develops the first datasets of global climate damage estimates; see table 1. 

When constructing the dataset, Tol (2009) did not follow the meta-analysis guidelines discussed 

above. He did not report his search protocols, study selection rules, or coding methods; nor did 

he ensure that all studies measure the same effect or that only one estimate was drawn per 

study. Instead, using an unspecified protocol, he assembled a dataset of 14 global climate 

damage estimates for 1 °C, 2.5 °C, and 3 °C increases in global mean surface temperature 

(relative to both the pre-industrial temperature and current temperature depending on the 

study) from 13 studies; this number falls short of the minimum number required for a meta-

analysis according to Field (2001). Of these estimates, eight were derived using the 

enumerative approach, five using the statistical approach, and one using the survey approach; 

see the Appendix for a full discussion of these estimation approaches and their relative 

strengths. All of the studies are from 2006 or earlier, and a little less than half of them are from 

the 1990s. Of these estimates, there are several citation errors: Nordhaus (1994b)9, Hope 

(2006),10 and Nordhaus (2006).11 See Table 1a. 

                                                           
9
 Tol (2009) and Tol (2013) misquote the damage estimate in Nordhaus (1994b) as a 4.8% decline in GDP for a 3 °C 

increase; instead he should utilize the mean impact under Scenario A of a 3.6% decline in GDP for a 3 °C increase in 
GDP. This error is confirmed in Pearce et al (2006). 
10

 Tol (2009) misquotes the damage estimate in Hope (2006). Given that only one region, Russian and Eastern 
Europe, experiences a positive effect from climate change, the assertion by Tol (2009) that a doubling of CO2 
emissions increases GDP worldwide according to Hope (2006) is incorrect. Therefore, Nordhaus and Sztorc (2009) 
citation of a 0.9% increase in GDP (and a 1.125% increase with the non-market adjustment) for a 2.5 degree Celsius 
increase in temperature is incorrect. Instead, using mean damage estimates and 2100 GDP weights, we find a 
1.38% decline in worldwide GDP assuming no adaptation, a 0.97% GDP decline assuming adaptation up to 2 °C, 
and a -0.86% GDP decline assuming adaptation up to 2.5 °C. This mistake is confirmed in Tol (2013) and in personal 
correspondence with Chris Hope. 
11

 Nordhaus (2006) may estimate climate damages for a three degree Celsius increase in average land surface 
temperature, rather than average global surface temperature. In scenarios CC1 and CC2 of both papers, he 
assumes “a mean surface temperature change of 3.0 Celsius averaged over all terrestrial grid cells in the sample,” 
given an economic base year of 1990 and a base period of 1961-1990 for climate data. We assume this implies a 3 
degree increase in land surface air temperature (LSAT) or global mean surface temperature, and thus a 2.07 °C 
increase in global mean surface temperature. This adjustment used numbers calculated from the IPCC (2013), but 
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Many of these estimates are highly related to one another. All of the fall in one of three camps: 

(1) Nordhaus and Mendelson at Yale, (2) Fankhauser, Maddison, Tol, and Rehdanz affiliated 

with University College of London, and (3 Hope at Cambridge University. Additionally, seven out 

of eight of the estimates are drawn from earlier versions of DICE, FUND, and PAGE.12 Finally, 

many of the later estimates represent updates or modification of earlier estimates: Hope (2006) 

is based on estimates of Tol (2002) and Nordhaus and Boyer (2000); Plambeck and Hope (1996) 

is based on estimates of Tol (1995) and Fankhauser (1995),13 and Nordhaus and Yang (1996) is 

based on the damages estimate from Nordhaus (1994a). 

Tol (2013) constructs the second dataset by expanding the Tol (2009) from 14 damage 

estimates from 13 studies to 20 damage estimates from 17 studies. Like Tol (2009), the study 

does not follow the guidelines developed for meta-analyses. While the new dataset includes 

three damage estimates drawn from two studies that apply the general equilibrium approach 

(see Appendix for more), the other two studies are updates of previous estimates. 

Furthermore, while Tol (2013) corrects the citation error for Hope (2006), it maintains the 

citation error Nordhaus (1994b). See Table 1b. 

Meta-analyses 

Using ordinary least squares and equal weighting of studies, Tol (2009) regresses climate 

damages (measured as a percentage of GDP where 0.01 represents 1% of GDP) on the increase 

in global average surface temperature above pre-industrial levels ( ) and this measurement of 

temperature change squared (  ) on assuming that the constant term equals zero; we believe 

that Tol assumes homoscedasticity. The resulting damage equation is 

                     

where all terms are significant at the 5% statistical level; 51% of variation is explained (i.e. R-

squared equals 0.51);14 a negative (positive) number implies that a temperature increase will 

                                                                                                                                                                                           
corresponds to results ratios between global land temperature and global surface temperature in 
https://www.ncdc.noaa.gov/sotc/. 
12

 Nordhaus (1994a), Nordhaus and Yang (1996), and Nordhaus and Boyer (2000) represent estimates of climate 
damages for various versions of DICE/RICE. Tol (1995) and Tol (2002) represent estimates of climate damages for 
the FUND model. Finally, Plambeck and Hope (1996) and Hope (2006) are two damage estimates for the PAGE 
model. 
13

 Tol (2009) incorrectly asserts that Hope (2006) is based on estimates of Tol and Fankhauser. This is in fact 
Plambeck and Hope (1996). 
14

 According to Tol (2009), he estimates this curve with fourteen data points. Given that there are only thirteen 
studies, this requires one study to be counted twice; this is Mendelsohn, Schlesinger, and Williams (2000) for 
whom Tol (2009) reports two damage estimates. If instead, we utilize only the thirteen estimates used by 
Nordhaus and Sztorc (2013), the resulting damage equation is 
 

                     
 



11 
 

have a positive (negative) effect on GDP. From this regression, Tol (2009) notes that (1) the 

effect of climate change at 2.5 degree Celsius will be relatively small, and (2) there will be some 

initial benefits from climate change up to a 2.24 degrees Celsius increase.15,16 

Tol (2009) and Tol (2011) conduct sensitivity analysis over these results in several ways. First, he 

re-estimates the curve omitting each observation and each pair of observations. While Tol finds 

that no observation or any two pair of observations significantly affect the damage function, he 

finds that the two pairs of observations at 1 °C and 3 °C have the most substantial effects. 

Second, after converting confidence intervals to positive and negative standard deviations, Tol 

regresses temperature on the two resulting sets of five standard deviation estimates; this is the 

most accurate representation of uncertainty according to Tol, and he finds the potential for 

significant climate impacts. Tol (2012) similarly finds the potential for significant climate 

damages. 

Also using the Tol (2009), Nordhaus and Sztorc (2013) estimates the DICE-2013 damage 

function - the first major update of the DICE model since the 2007 version. Like Tol (2009), 

Nordhaus and Sztorc (2013) fit an OLS damage function to the data assuming homoscedastic 

error terms. However, Nordhaus and Sztorc (2013) make several different assumptions than Tol 

(2009). First, Nordhaus and Sztorc (2013) drop one of one of the estimates from Mendelsohn, 

Schlesinger, and Williams (2000), such that there are 13 estimates from 13 studies; see Table 1a 

and Figure 1a for a full list of data points utilized by Nordhaus and Sztorc (2013). Second, 

Nordhaus and Sztorc (2013) multiply these damage estimates by 25 percent to account for 

damages of climate impacts omitted from the underlying studies cited by Tol (2009).17 

However, this adjustment is insufficient to include a catastrophic damage estimate equal in 

magnitude to DICE-2007; adjustment of 62% at 2.5 °C and 87% 6 °C would be necessary. Third, 

as in 2007, Nordhaus assumes that there are no initial benefits from climate change by setting 

the coefficient corresponding to the linear temperature term equal to zero.  

                                                                                                                                                                                           
where all terms are significant at the 10% significance level (only the second term is significant at the 5% level 
statistical level) and 60% of variation is explained. 
15

 Tol (2009) attributes the initial benefits of climate change to the CO2 fertilization effect and that temperate 
countries, which produce the majority of the world’s wealth, initially benefit from climate change.  
16

 Again using Tol (2009), Tol (2012) using a vote counting procedure to estimate the probability distribution 
function, which actually represents the degree of belief, of the impacts of climate change. Again, Tol finds strong 
evidence of initial benefits and medium and long-term negative impacts for higher temperature increases. Net 
negative impacts are reasonable certain at a 3 °C increase. 
17 Specifically, Nordhaus and Sztorc (2013) state that “current studies generally omit several important factors (the 

economic value of losses from biodiversity, ocean acidification, and political reactions), extreme events (sea-level 

rise, changes in ocean circulation, and accelerated climate change), impacts that are inherently difficult to model 

(catastrophic events and very long term warming), and uncertainty (of virtually all components from economic 

growth to damages).” There are many additional damage impacts omitted from these underlying estimates; see 

Howard (2014). 
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The resulting DICE-2013 damage function is 

             

where a positive number implies that a temperature increase will negatively affect GDP.18 See 

figures 2a and 2b for a comparison of DICE-2013 and Tol (2009) damage functions; the DICE-

2013 damage function is strictly lower than the DICE-2007 damage function. Furthermore, they 

find higher climate damages than Tol (2009) up until 3 degrees Celsius, and lower damages 

thereafter. 

Using an expanded dataset of 20 damage estimates from 17 studies, Tol (2013) estimates the 

damage function using ordinary least squares, standard bootstrap,19 kernel regression 

constrained to go through the origin, and smoothed bootstrap.20 For the parametric (i.e. non-

kernel) regressions, he tests multiple functional forms drawn from the literature: 

          
  (Nordhaus and Boyer, 2000; Tol, 2009) 

      
  (Nordhaus, 2008) 

      
     

  (Weitzman, 2012) 

      
    (Hope, 2008) 

     [ 
 

    
   ] (Karp, 2003; van der Poeg and Withagen, 2012) 

where T is global mean surface temperature and D is climate damages measured as a 

percentage of GDP. Of the regressions run by Tol (2013), the kernel regression best fits the 

data; the kern regression follows a quadralinear path, i.e.          
     

     
 . 

While none of the parametric specifications from the literature fit the data particularly well, 

Weitzman’s specification fits the data best according to its log-likelihood value followed by Tol’s 

specification. 

Tol (2013) also finds that the damage estimate in Maddison and Rehdanz (2011), a study 

unavailable in Tol (2009), is an outlier. Of the Tol (2013) studies, Maddison and Rehdanz (2011) 

is the only damage estimate based on willingness to accept.21 In the empirical literature, 
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 Re-estimating this regression, we find that the resulting damage equation is 
 

              
 
where the coefficient is significant at the 99% significance level and 48% of variation is explained. 
19

 In the standard bootstrap, Tol estimates draws 20 pseudo-observations with replacement, run ordinary least 
squares, and repeat 10,000 times. 
20

 The standard regression relies on the false assumption that these twenty pseudo-observations are the only 
possible climate impacts. The smoothed bootstrapping method avoids this assumption by drawing the 20 pseudo-
observations with replacement from the kernel regression, 
21

 Technically, Maddison and Rehdanz (2011) measures compensating surplus, which is a combination of 
willingness to pay for those nations that prefer climate change and willingness to accept for those made worse off 
by climate change. Given that more nations experience damages in their dataset (59%) and they find an overall 
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willingness to accept estimates are often larger in magnitude than willingness to pay estimates 

(Tol, 2009). In addition to income effects, loss aversion, and agency effects (Tol, 2009), 

willingness to accept estimates can exceed willingness to pay estimates because the magnitude 

of the payment is not limited by income. Given that society already benefits from a stable 

climate, willingness to accept estimates are potentially the more appropriate estimate in terms 

of climate damages. 

Shortcomings of meta-analyses 

As asserted earlier, Nordhaus and Sztorc (2013) falls short of meeting many of the guidelines 

specified in the meta-analysis literature. These shortcomings are with respect to many of the 

key issues raised by the guidelines. First, the Tol (2009) dataset, which Nordhaus and Sztorc 

(2013) utilizes with only slight modification, fails to meet the transparency requirements with 

respect to data assembly specified by the meta-analysis. In other words, Tol fails to conduct a 

systematic review of his search and selection methods. Second, Tol (2009) fails to prove that 

these studies measure the same effect. By failing to control for factual and methodological 

causes of observed heterogeneity in the effect size other than temperature or to adjust the 

effect size to account for differences, Nordhaus and Sztorc (2013), like Tol (2009), compare 

apples and oranges – i.e. studies that measure fundamentally different study effects. Third, 

Nordhaus and Sztorc (2013) follow Tol (2009) in utilizing OLS – an inadequate estimator 

according to all meta-analysis guidelines discussed above. Finally, unlike Tol (2009), Nordhaus 

and Sztorc (2013) fail to conduct any post-estimation analysis – including sensitivity analysis. Tol 

(2013) suffers from similar shortcomings. 

Though not address in the meta-analysis literature, there is the possibility that the error terms 

are not normally distribution in the case of climate damage estimates. Specifically, the 

uncertainty surrounding the climate problem (future emissions, the climate sensitivity 

parameter, omitted damages, and catastrophic damages) makes the damages and error terms 

right skewed.22 While Tol (2009) find some evidence of right skewed error terms in the standard 

errors of some studies, he mainly argues that negative climate surprises are more likely than 

positive climate surprises given the ease at which they come to mind. Therefore, the analyst 

should test for whether normality holds.23 If the estimates are skewed, the problems that arise 

in a small sample are similar to that of dependence and heteroskedasticity – the coefficient 

                                                                                                                                                                                           
negative effect on welfare (do to willingness to accept estimates that exceed 100% of income), I refer to this 
estimate as a willingness to accept estimate. 
22

 While the error term can potentially be skewed for multiple reasons, in the case of this paper, it cannot be due 
to the asymmetry of the climate sensitivity parameter because the meta-analysis estimates control for 
temperature nor due to catastrophic damages because following estimates capture only non-catastrophic impacts. 
23

 Using the omnibus test, we find that the normality does not hold for Tol (2009) at the 10% significance level. In 
particular, we reject the null hypothesis that the data is symmetric at the 5% significance level, and find that it is 
skewed (Cameron and Trivedi, 2010, p. 102). 
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estimates are consistent and not efficient and the standard error estimates are potentially 

biased. A potential solution in STATA is the use of the mixed linear model, which allows for no 

structure to be placed on the time-invariance component of the error if an unstructured 

covariance matrix is chosen.24 

Data 

This section will discuss the methods used to construct this study’s data for a meta-analysis of 

global climate damage estimates; specifically, global willingness to pay to avoid non-

catastrophic impacts of climate change as measured as % of global GDP. This paper reviews the 

a priori search, study selection, and estimate selection criteria, as well as how we coded data. 

See Table 1c for the data for this paper. 

Constructing dataset 

All data points in Tol (2013) are selected for inclusion in this study. The data points are 

corrected for citation errors, i.e. Nordhaus (1994b) and Nordhaus (2006). We then added the 

latest damage estimates for FUND, PAGE, and G-ECON. Regardless of whether it was due to his 

search criteria or his selection criteria, Tol (2009) clearly omitted the latest climate damage 

estimates from DICE, FUND, PAGE, and G-ECO. At the time of the publication of Tol (2009), 

DICE-2007 (Nordhaus, 2008a), FUND 3.3, and updated estimates for G-ECON were available. Of 

these, Tol (2013) only included DICE-2007. 

This was followed by a search on Google Scholar and Econlit and a re-reading of sources in Tol 

(2013) for high damage estimates.25 In this search, I identified several sources of global climate 

damage estimates for high temperatures: Tol (1994b) and Weitzman (2012) via Ackerman and 

Stanton (2012). In our search for global damage estimates due to medium and high 

temperature increases, we found an additional low temperature damage estimates in 

Ackerman and Stanton (2012), which is based on an estimate from Hanemann (2008). More 

work is necessary in the future to identify new damage estimates, particularly unpublished 

estimates, especially since this is the primary method to eliminate publication bias in this 

context.26 We will leave this for future work.27 

                                                           
24

 In STATA, the mixed linear model allows for no structure to be placed on the time-invariance component of the 
error if an unstructured covariance matrix is chosen. 
25

 The search terms were: “percentage of GDP”, “climate change”, global; “percent of GDP”, “climate change”, 
global; “percent GDP” , “climate change”, global; “% of GDP” , “climate change”, global; “% GDP” , “climate 
change”, global; "Climate change" "world output"; “Estimated impact of global warming on world output”; 
"climate change" "economic impact" global – Econlit only; and “climate change" "global impact" – Econlit only. 
26 While testing for publication bias would be ideal, it is not possible in this context because many of the studies in 

Tol (2013) and this dataset do not provide standard errors. Thus, the Egger and Begg test statistics for publication 
bias cannot be constructed. 
27

 In particular, alternative IAMs should be analyzed for how they calibrated their damage estimate. Also, various 
studies that analyze different model structures should be analyzed. 
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From the studies that we have assembled, we have the following criteria for including studies. 

First, the data estimate should be a willingness to pay estimate, and not a willingness to accept 

estimate. The one willingness to accept estimate cited in Tol (2013), i.e. Rehdanz and Maddison 

(2011), should be dropped unless the estimate can be adjusted; we drop the data point.28 

Second, cross sectional studies at the national level should potentially be dropped due to bias, 

as discussed earlier; this includes Maddison (2003), Rehdanz and Maddison (2005), Rehdanz 

and Maddison (2011), and one estimate from Mendelsohn, Schlesinger, and Williams (2000). 

Last, studies that rely on author discretion to cap damage damages at a particular level should 

excluded. The only estimate that potentially violates this criterion is Nordhaus (1994a), which is 

based on the arbitrary assumption that total U.S. climate damages will equal 1% of GDP for a 3 

°C increase in global average surface temperature above. Due to the large number of estimates 

that would need to be dropped and the sample size in this study, we will not drop cross-

sectional studies or Nordhaus (1994a) – the latter of which just barely meets our a priori quality 

specification. Instead we conduct a sensitivity analysis to their inclusion. 

Following the EPA (2006) recommendation, we include only one estimate per study, unless 

multiple estimates are based on different methods. In other words, we select one estimate if 

multiple estimates were derived using the identical model. We choose the estimate that utilizes 

the business as usual scenario (A2), the most climate information available (i.e. temperature 

and precipitation changes), and GDP weights. Therefore, we recalculate the damage estimates 

from Rehdanz and Maddison (2005) Maddison and Rehdanz (2011), and Nordhaus (2006) cited 

in Tol (2013) using GDP projects from Columbia 

(http://ciesin.columbia.edu/datasets/downscaled/). Studies that have multiple estimates still 

included are: Nordhaus (1994b), Mendelsohn et al (2000), and Roson and van der Mensbrugghe 

(2012).29 Sensitivity analysis over the choice to include multiple damage estimates is conducted. 

Finally, I remove the catastrophic impact, from the studies that account for them, such that all 

study effects are the non-catastrophic climate impacts. First, I adjusted the Nordhaus and Boyer 

(2000) and Nordhaus (2008a), i.e. the DICE-1999 and DICE-2007, damage estimates to exclude 

catastrophic impacts. This is easy to do since both studies utilize the enumerative approach, 

and explicitly specify the magnitude of the catastrophic impacts. Second, I calculate the Hope 

(2002) and Hope (2009), i.e. PAGE2002 and PAGE2009, damage estimates excluding 

catastrophic impacts.  

In summary, our data set includes 26 damage estimates from 23 studies. Of these 26 estimates, 

12 utilize the enumerative approach (all for low temperature increases), 6 utilize the statistical 

                                                           
28

 Future work will test the effect of adding this data point, and adjust it to measure willingness to pay. 
29

 In the latter case, i.e. Rehdanz and Maddison (2005), it is concern that the high damage estimate is not an 
independent estimate, but rather an extrapolation of the lower damage estimate using ENVISAGE - the computer 
general equilibrium model. While this may seem reasonable to include, this raises the problem that infinite 
damage estimate predictions could be included based on extrapolation from any IAM. 

http://ciesin.columbia.edu/datasets/downscaled/
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approach (all are for low temperature increases and 4 are cross-sectional analyses at the 

country scale), 2 utilize surveys (1 is for low temperature increases), 3 utilize the general 

equilibrium approach (2 are for low temperature increases), and 2 are scientific based (none 

are for low temperature increases). Only one of these studies represents a willingness to accept 

estimate, i.e. Maddison and Rehdanz (2011), and it is derived using a cross-sectional analysis at 

the country scale; this study is dropped bringing out total number of damage estimates to 25. 

Furthermore, ten of the estimates; authors are associated with the Yale Group, and seven with 

the University College of London. Of these estimates, DICE is the most represented model with 

4 estimates, followed by FUND, PAGE, and CRED with 3. Two damage estimates are drawn from 

G-ECON, ICES, surveys by Nordhaus (1994b), and happiness studies by Maddison and Rehdanz. 

Coding data 

Using the 26 studies, Peter Howard coded the data. Some of that data was reviewed by Christo 

S. Tarazi, an undergraduate research assistant. Most of the studies are also discussed in Tol 

(2009) and Tol (2013), which provide a supporting opinion for much of the coding decisions.  

We code multiple damage and temperature variables. The damage variables are damage - 

equals non-catastrophic damages – and D_new – the actual damage estimate cited in the paper 

including a mix of non-catastrophic and catastrophic impacts. The temperature variables are 

global average mean surface temperature increase in degrees Celsius and its squared value, i.e. 

T_new and T2_new; temperature must be controlled for in order to make the damage 

estimates comparable.30 Like previous meta-analyses, temperature is included as the sole 

factual causes of observed heterogeneity. The idea behind this decision is not that temperature 

is the sole climate-related driver of impacts, but that many of the other climate drivers of 

impacts, such as an increase in storm intensity and precipitation change, are strongly correlated 

with temperature change. 

The remaining choice of variables to code is based on assessment of the methodological causes 

of the observed heterogeneity in the study effect and potential causes of dependent errors. We 

identify nine possible methodological causes of study effect heterogeneity, and capture these 

causes using fourteen variables. First, current is an indicator variable equal to one if the 

temperature increase is relative to the current period, instead of the pre-industrial period. 

While the DICE damage function assumes that the climate damage function is relative to the 

pre-industrial temperature, many of the studies cited in Tol (2009) and Tol (2013) differ in 

whether they measure the temperature increase relative to the pre-industrial or current 

                                                           
30

 Some of the temperature variables are corrected from Tol (2009) and Tol (2013), specifically Nordhaus (2006) 
and Nordhaus (2008b) based on the belief that Nordhaus estimated the effect of a 3 °C increase in land 
temperature, which represents a smaller increase in global average mean surface temperature, as discussed 
earlier. 
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temperatures.31 In other words, the various studies cited in Tol (2009) differ in their base year. 

Given that the damage function is increasing at an increasing rate, failing to include this dummy 

variable biases the coefficient on temperature upwards.  

Second, market is an indicator variable if the estimate only accounts for market damages and 

nonmarket is an indicator variable if the estimate only account for non-market damages; omit is 

an indicator variable that equal one if the estimate captures only market or non-market 

impacts. Only estimates derived using the statistical approach suffer from this shortcomings. 

However, the sign corresponding to these variables is difficult to predict because estimates 

derived using other approaches (enumerative, general equilibrium, and survey) may fail to 

include damages or capture adaptation measured using the statistical approach. 

Third, cross is an indicator variable equal to one if the statistical estimation approach relied on 

cross-sectional data at the national scale. Cross-sectional studies at the national or regional 

(above-national) scales are potentially bias because it can be difficult, if not impossible, to 

separate non-climatic factors at the national and regional scales from climatic factors. 

Therefore, climate damage estimates may, and likely do, suffer from omitted variable bias. Of 

the statistical studies, only Nordhaus (2006) and Nordhaus (2008b) conduct analysis at a sub-

regional scale to avoid this complication. 

Fourth, Year is the publication year of the article or book in the case of published material, and 

the release date of unpublished material, i.e. grey literature, and Time is the number of years 

since 1994, i.e. the first year that a study in the dataset was published, and Time2 is Time 

squared. Time variables should be included because Tol (2009) finds that climate damage 

estimates decline over time; he finds that estimates decline by 0.23% of GDP per year over the 

12 years that span the thirteen studies. This potentially could be due to multiple reasons: (1) 

the failure of early damage studies to recognize climate benefits, (2) the underestimation of 

humans ability to adapt by earlier studies, (3) the potential bias of statistical studies (discussed 

above) which are become more common in the latter period, and (4) the failure of Tol to 

account for temperature.32 Regardless, including time and time squares can potentially improve 

the estimate. 

Fifth, WTA is an indicator variable equal to one if the estimate corresponds to willingness to 

accept. If willingness to pay and willingness to accept estimates are combined, the inclusion of 

a willingness to accept indicator variable is necessary because willingness to accept is often 

larger in magnitude than willingness to pay. 

                                                           
31

 Eight of the thirteen studies estimate climate damages from an increase of temperature above the pre-industrial 
temperature. The other five studies analyze the effect of an increase in temperature relative to the current 
temperature. 
32

 If we include a temperature in the regression (and correct citation errors in the data), the time variable is still 
negative but no longer significant. However, following Tol, this result is dependent on including an intercept. 
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Sixth, arbitrary is an indicator variable equal to one if the estimate potentially violates the non-

arbitrary estimate requirement described in the previous section.  

Seventh, pub_type is the type of publication the estimate was drawn from, and peer was 

whether the resulting estimate was peer-reviewed in either that publication or another.33 

Including these variables can potentially capture publication bias. However, this variable is not 

included in our study because all of the damage estimates were eventually peer reviewed. 

Eighth, product is an indicator variable equal to one if the model allows climate change to affect 

productivity. Modeling economic growth can significantly increase the magnitude of damages. 

However, only general equilibrium models, i.e. ICES and ENVISAGE, have modeled productivity 

declines. 

Finally, cat is an indicator variable that equals one if the study’s original damage estimate 

accounts for catastrophic impacts. Like productivity, including catastrophic impacts can 

significantly increase total damage estimates. 

See Table 1c for a summary and for the predicted sign of effect of these variables. 

We identify four possible variables to cluster standard errors around. First, Method is 

categorical variable for estimation approach; see the Appendix. Second, primary_model is a 

categorical variable for the type model utilized in the study. Where possible, the integrated 

assessment that utilized the estimate was chosen as the primary model; the version of the 

model is ignored. Third, primary_author is the primary author of the study. Last, Group is a 

categorical variable for group of authors: Yale, University College of London, or other. These 

groups are chosen based on the idea that damage estimates made for the same model and by 

the same author, institutions, or methods are likely correlated. 

Data Groups 

The data are broken up into three varying subsets of these 26 estimates. The first group of 

estimates is the damage estimates cited in Tol (2009). The second group of estimates is damage 

estimates in the expanded dataset corresponding to a low temperature increase (i.e. a 3.2 °C 

increase or below). The final group is the full dataset, which includes all low and high 

temperature damage estimates. 

Method 

This section will discuss the methods used in this paper to conduct a meta-analysis of global 

climate damage estimates. Specifically, this paper will examine global willingness to pay to 

avoid non-catastrophic impacts of climate change as measured as % of global GDP. The 
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 We drew 19 estimates from academic journal articles, 4 from books, 2 from technical reports, and 1 from a 
working paper. 
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estimation will be broken up into four differing analyses: (1) a basic meta-analysis using only 

temperature square; (2) a complex meta-analysis of global climate damage estimates; (3) a re-

estimation of the DICE-2013 damage function using the more advanced meta-analyses 

techniques, and (4) sensitivity analysis. Estimating the damage function differs slightly from the 

complex meta-analyses in that it requires that climate damage equal zero when temperature is 

at the pre-industrial level. This places several restrictions on the model, including that there is 

no intercept and that the methodological variables, such as time trends and omitted damage 

indicator, must be interacted with temperature-squared. 

As discussed earlier, heteroskedasticity and dependence are the two main issues to address 

along with non-normal error terms. Each of the following sections will aim to address these 

issues using slightly different methods. Due to the speculative nature of impact estimates 

corresponding to high temperature increases, each section will utilize two sets of estimates to 

conduct to the analyses: (1) damage estimates corresponding to low temperature increases (i.e. 

3.2 °C or below), and (2) the full dataset combining damage estimates corresponding to low 

and high temperature increases. 

Previous meta-analysis techniques 

For each of the data groups and the Tol (2009) dataset, the original Nordhaus and Sztorc (2013) 

analysis is conducted whereby we regress on temperature squared using OLS. However, in 

addition to calculating the standard homoscedastic standard errors as in Nordhaus and Sztorc 

(2013), we also calculate heteroskedasticity robust standard errors, i.e. Huber-White and 

Davidson-MacKinnon, and cluster robust standard error. 

To determine at what scale to cluster standard errors, we estimate multiple measures of 

within-cluster correlation and calculate the Breusch-Pagan test of independence for each of the 

four cluster groups identified. See Table 4 for measures of within cluster correlation for the four 

possible clustering levels: author group, primary author, estimation method, and primary 

model. Using all data points in the study, we find little evidence that damage estimates are 

correlated within author groups; this is confirmed when we test for independence using the 

Breusch-Pagan test of independence. However, if we look at primary author instead, we find 

strong evidence of dependence using all three measurements. Similarly, we find strong 

evidence of dependence at the method and primary model scales. Using only damage estimates 

corresponding to low temperature increases (3.2 °C or below), we find less evidence of 

dependence. While we still reject independence at the primary author and primary model 

levels, we now fail to reject dependence at both the author group and method cluster levels.  
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Based on these results, we focus our clustering at the primary-author and primary-method 

levels in the basic, complex, and damage meta-regressions.34  

Complex meta-analysis 

The complex meta-analysis extends this analysis in two ways. First, OLS and panel (fixed effects, 

random effects, and hierarchical) estimates are utilized with Huber-White standard errors to 

address heteroskedasticity and dependence of error terms. These meta-regressions run the 

above specifications with an intercept and no interaction terms; these regressions are not 

meant for prediction. Due to the small sample size, the analysis is conducted with two sets of 

variables: (1) the full set of relevant variables, and (2) a reduced set of variables determined by 

the significance of coefficients in the previous regression. Using the theoretically important 

variables discussed above, the relevant variables are determined using correlation-coefficients; 

variables with correlations below 10% are dropped from all meta-analyses. 

Table 3a displays correlation coefficients for all theoretically important variables using the full 

dataset. Only a handful of variables are strongly correlated with climate damages. Clearly, 

temperature and temperature squared are highly correlated with climate damages. As 

theorized, damage estimates for temperature increases relative to the current period are 

strongly positively correlated with climate damages. Also as theorized, omitted damages, driven 

by omitted market damages, are strongly negatively correlated with climate damages. 

Additionally, time is strongly positively correlated with damages. Given that this is the opposite 

result found by Tol (2009), this indicates the potential need for linear and quadratic time 

variables. Finally, cross-section estimates at the national scales appear to be biased 

downwards. All other variables are weakly correlated (below 10%) with damages.  

Table 3b displays correlation coefficients using data points for low temperature increases only. 

The key differences to note are that (1) non-market damages estimates are negatively 

correlated with damages, and (2) current period is no longer correlated with damages.  

Based on these results, T2_new, current, omit, cross, Time, and Time2 are included in the 

complex meta-analysis and damage function regressions. Given that both Market and Non-

market are negatively correlated with damages, these variables are combined into the omit 

variable to preserve degrees of freedom. cat is not included in this analysis because for the 

main specifications, catastrophic impacts are removed from the estimates. 

Estimating a new damage function 

                                                           
34

 In addition to failing to reject the null hypothesis at the author group level using the data corresponding to low 

temperature, we also decide to not utilize the estimation approach (i.e. Method) to cluster standard errors 

because the primary model captures method-author specific effect making this measurement somewhat 

redundant. Sensitivity analysis will be included with respect this decision. 
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To re-estimate the DICE-2013 damage function, several specific changes are necessary to the 

above analysis. First, it is necessary to restrict the damage function such that there are no 

climate damages for a zero degree temperature increase. Second, we must adjust the damage 

estimates to account for omitted damages. Third, we must include catastrophic impacts.   

Together, these three adjustments result in a new damage function. 

Damage function restriction. Because the goal of the meta-analysis in this sub-section, i.e. the 

re-estimation of the DICE-2013 damage function, is for in and out of sample prediction, it is 

necessary to restriction the damage function in order to be consistent with reality: there are no 

economic damages from zero degree Celsius increase above pre-industrial temperatures. For 

this to hold, we restrict the meta-regression to have no constant. Additionally, we interact the 

methodological variables in our regression with temperature squared; these methodological 

variables are only included as interaction terms.  

Add 25%. Nordhaus and Sztorc (2013) multiply the damage estimates cited in Tol (2009) by 1.25 

to account for omitted climate impacts. According to Nordhaus and Sztorc (2013), these 

omitted damages include: the loss of biodiversity, ocean acidification, political reactions to 

climate change, environmental tipping points, damages for high temperatures, and uncertainty. 

In addition to these damages, there are many other climate impacts systematically omitted 

from climate damage estimates, including slower economic growth due to labor and total 

factor productivity declines, forced migration, and violence (Howard, 2014; IPCC, 2014). The 

magnitude of the adjustment is arbitrary according to the authors.  

Instead of multiply the damage estimates by 1.25, we add a 25% adjustment in order to avoid 

increasing in magnitude both omitted benefits and omitted damages. As currently constructed, 

the 25% adjustment increases the short-run benefits in those studies, such as Tol (2002) and 

FUND 3.6, that find net climate benefits for low temperature increased. Considering that 

Nordhaus and Sztorc (2013) do not list any short-term benefits in their list of significant missing 

damages and omitted climate benefits should be more than canceled out by omitted 

damages,35 it seems that a multiplicative adjustment is unjustified. Instead we add a 25% 

adjustment. The exception made is the Weitzman estimates because they are estimated using a 

scientific technique that likely captures these omitted damages more generally and the 

estimate for a 12 °C estimate is already at the upper limit of willingness to pay. 

                                                           
35

 Tol (2009) argues that smaller missing damages can be ignored because their omission is balanced out by 
missing benefits. According to Tol (2009), these minor missing damages include: increased strength of extratropical 
storms and tropical storms, sea level rise on the salinization of groundwater and redesigning water systems, and 
higher water temperatures on the costs of cooling energy plants. There are also several minor missing benefits: 
higher winds speeds will decrease the costs of renewable energies, less ice will decrease shipping costs and make 
some previously unavailable minerals available, and higher temperatures will lower clothing costs and decrease 
traffic delays due to snow and ice. 
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Catastrophic Impacts. We include catastrophic damages in addition to the 25% adjustment 

discussed above because this adjustment is insufficient to cover both omitted non-catastrophic 

impacts and omitted catastrophic impacts. Using the 25% adjustment, Nordhaus and Sztorc 

(2013) implicitly assume omitted damages account for a 0.34% decline in GDP for a 2.5 °C 

increase and 1.94% decline in GDP for a 6 °C increase.36 In contrast, catastrophic damages in 

DICE-1999 are 1.02% at 2.5 °C and 6.94% °C according to Nordhaus and Boyer (2000), while 

they are 1.16% at 2.5 °C and 4.72% at 6 °C in DICE-2007.37 To achieve the levels of catastrophic 

damages observed in DICE-1999, Nordhaus and Sztorc (2013) would have to have chosen a 

missing damage adjustment of between 77% and 91%. Similarly, to achieve the catastrophic 

damages observed in DICE-2007, the authors would need to have chosen a missing damage 

adjustment of between 62% and 87%. Therefore, if we believe that the certainty equivalent 

measure of catastrophic damages are anywhere near the scale proposed in these earlier 

versions of DICE, the 25% arbitrary increase by Nordhaus is nowhere near sufficient to account 

for the potential of catastrophic impacts, let alone the other omitted damages. In addition to 

adding the 25% adjustment, an adjustment of 75% is made to account for catastrophic impacts 

equivalent to DICE-2007. Again, the only exception made is the Weitzman estimates because 

(1) it is unclear whether the Weitzman damage estimate corresponding to a 6 °C increase 

includes or excludes catastrophic impacts, and (2) the Weitzman damage estimate 

corresponding to a 12 °C increase is already at the upper limit of willingness to pay of 100% of 

GDP.38 

Standard errors. As for all of the parameters in the DICE-2013 model, Nordhaus and Sztorc 

(2013) model damages as certain. In addition to Tol (2009) demonstrating the large 

uncertainties surrounding the damage estimates in his meta-analysis, the 95% confidence 

interval for the Nordhaus and Sztorc (2013) estimates imply a range of damage estimates from 

0.58% to 2.75% of GDP for a 2.5 degree Celsius increase. Furthermore, Tol (2009) underscores 

that this standard measurement of uncertainty understates the level of uncertainty due to the 

large number of omitted damages. Therefore, when discussing the results, emphasis is placed 

on the underlying uncertainty.  

Sensitivity analyses  

Currently, we redo the analysis for the regression corresponding to all data (i.e. low and high 

temperatures) to account for catastrophic impacts. This test is necessary due to the difficulty of 

                                                           
36 Without making a 25% adjustment, the Nordhaus and Sztorc (2013) damage function would have been 

            , which implies damage estimates of 1.33% of GDP at 2.5 °C and 7.67% of GDP at 6 °C. 
37

 The lower catastrophic damages in DICE-2007 compared to DICE-1999 result from Nordhaus no longer 
accounting for risk aversion when calculating catastrophic damages. 
38

 Due this lack of adjustment, it could potentially be argued that the complex regression estimates provided in this 
paper for all data points (low and high temperatures) are invalid. However, the corresponding analysis for low 
temperature is valid. To address this concern, sensitivity analysis is conducted. 
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removing catastrophic impacts from the Weitzman estimates. We test the sensitivity of the 

results by including an indicator variable for whether the damage estimate includes 

catastrophic impacts, i.e. cat. This latter sensitivity analysis requires the use of the unadjusted 

damage estimate (D_new) as the endogenous variable, which potentially includes catastrophic 

impacts. Thus, the endogenous variable represents a mix of non-catastrophic and total (i.e. 

non-catastrophic and catastrophic) climate impacts. 

While not currently conducted, many additional runs will be completed to check the robustness 

of the current results. First, we will re-run the preferred specification dropping each 

observation once. This covers dropping the effect of dropping Nordhaus (1994a), which was 

identified as potentially not meeting the quality standards of this paper. Second, we will test 

the effect of dropping studies that potentially are affected by cross-sectional bias. Third, we will 

re-estimate the preferred specification after selecting one estimate from each of the studies 

than including multiple estimates: Nordhaus (1994b), Mendelsohn et al (2000), and Roson and 

van der Mensbrugghe (2012). Fourth, sensitivity analysis will be conducted with respect to the 

functional form of the temperature variable. Three additional functional forms will be fit: linear 

and quadratic temperature variables, the Weitzman function, and the quintile temperature 

variables; see above. Fifth, we currently adjust the G-ECON temperature data assuming that 

Nordhaus (2006; 2008b) estimates climate damage for a 3°C increase in land surface 

temperature, and we will re-estimate the preferred specification after adjusting the 

temperature variable corresponding to  these studies to a 3°C increase in global mean surface 

temperature. Sixth, we will test the sensitivity of the results to the inclusion of the willingness 

to pay estimate from Maddison and Rehdanz (2011). Seventh, in addition to the sensitivity 

analysis conducted above, we vary the omitted damage adjustment term from 25% to 0% and 

50% and the catastrophic adjustment term from 75% to 50% and 100%. Last, even after 

adjusting for heteroskedasticity and dependence, the uncertainty underlying the damage 

estimates is under-estimated because many of the point estimates of global damages are 

merely the central estimate of the studies from which they are drawn. Therefore, we will 

bootstrap our standard errors to correctly account for the uncertainty underlying the point 

estimates.  

Results 

This section discusses the results from three sets of regressions discussed above. The section 

demonstrates that selection bias is potentially a more significant issue that heterogeneity and 

dependent errors with respect to the omission of climate damage estimates corresponding to 

high temperatures. It also demonstrates that controlling for heterogeneity in study effects due 

to differing estimation methodologies and strategies is key, particularly with respect to the 

reference period and whether only market or non-market impact are included.  Furthermore, it 

demonstrates that the fixed-effect regression is potentially the preferred panel method, and 
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that the inclusion of fixed effects decreases the coefficient corresponding to temperature – at 

least using the small sample available.  Finally, it demonstrates that the DICE-2013 damage 

function potentially underestimates climate damages, particularly due to its omission of 

catastrophic impacts. 

Basic Results 

To start, we re-estimate the simple regression from Nordhaus and Sztorc (2013) without the 

25% adjustment using four datasets: the original Tol (2009) dataset - see column (1) in Table 5; 

the Tol (2009) dataset corrected for citation errors – see column (2) in Table 5; our expanded 

dataset for low temperature increases only – see column (3) in Table 5; and our expanded 

dataset for low and high temperature increases – see column (4) in Table 5. For each estimate, 

we calculate four standard errors: homoscedastic standard errors, the Davidson and MacKinnon 

adjustment for heteroskedasticity; clustered standard errors at the primary author level, and 

clustered standard errors at the primary model level. 

Re-estimating the DICE-2013 damage function after correcting for the errors in the data 

discussed above does not significantly change the damage function with respect to Nordhaus 

and Sztorc (2013). This is due to the multiple errors in Tol (2009) canceling out. While 

heteroskedasticity is not present, hence the heteroskedasticity corrected standard errors are 

almost identical, clustering errors at the primary author and primary model levels significantly 

decreases the resulting standard errors. Similar results hold when re-estimating the DICE-2013 

damage function using the expanded dataset for low temperatures except that the standard 

errors do not decline as significantly with clustering, and in fact increase when clustering at the 

primary-model level.  

When we re-estimate the DICE-2013 damage function using the fully expanded dataset (i.e. 

including damage estimates for low and high temperature increases), the damage function 

significantly differs from the Nordhaus and Sztorc (2013) damage function, and increases by a 

magnitude of three. Furthermore, heteroskedasticity is found to be present, such that standard 

errors more than double when calculating Davidson-MacKinnon standard errors and increases 

by 50% when using clustered standard errors. These preliminary results indicate that while 

dependence of errors is an issue for all groupings of the data, heteroskedasticity appears to 

only be an issue when damage estimates corresponding to high temperature increases are 

included. While controlling for both of these econometric issues is important, it also appears 

that selection bias, particularly with respect to the inclusion of high temperate damage 

estimates, may be more of a problem in estimating the DICE-2013 damage function than using 

the correct econometric methodologies in estimating the DICE damage function. 

Additionally, while the error distributions are skewed for the Tol (2009) dataset, we fail to 

reject the null of hypothesis that the error terms are non-skewed for the new datasets. More 
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importantly, we fail to reject the null hypothesis that the error terms is normally distributed 

(i.e. “total”).  

Complex Regressions 

Using the low temperature increase and all data, we re-conduct the meta-analyses using OLS, 

fixed effects, random effects, and hierarchical models. For each of the models, we calculate 

cluster robust standard errors, and we do not impose normality for the hierarchical models. To 

start, we use these estimators with the full set of the pre-selected variables (using the 

correlation matrices above) - T2_new, current, omit, cross, Time, and Time2 - and the pre-

selected clusters (using the Breusch-Pagan test of independence) - primary author and primary 

model. We then re-estimate the models with the consistently significant variables, including the 

intercept term. 

Low temperature data. Table 6a displays the full set of regressions for the data points 

corresponding to the low temperature increases. The only relatively consistently significant 

variables across the specifications are T2_new, current, Time, and Time2; T2_new and current 

switch alternate in significance based on the specification. Each of these variables has the 

theoretically correct sign. A test of whether fixed or random effects models are more 

appropriate is not possible because the random effects model collapses to a pooled model in 

both cases; hence, the coefficients corresponding to the OLS, random effects, and hierarchical 

models are equivalent. Re-estimating these fixed-effects, random-effects, and hierarchical 

models with only the significant variables produces similar results; see Table 6b.  While one of 

the models again collapse to pooled regressions (i.e. models 3 and 4), the random effects 

model clustered at the primary author scale does not collapse; in this case, we reject the null 

hypothesis that the random effects model is consistent.  

The clear result is that damage estimates at low temperatures do suffer from a bias resulting 

from the inconsistent use of pre-industrial time period as a reference point, damage estimates 

follow a quadratic form over time (i.e. declined as noted by Tol (2009) and then have increased 

again), and that damages increase with temperature squared.  

The fixed effect specification of model (3), i.e. primary-model fixed effects are included, is the 

preferred specification.39 However, the magnitudes of the coefficients between model (2), i.e. 

primary-author fixed effects are included, and model (3) are similar, particularly with respect to 

temperature squared. While the fixed-effect specification does not address non-normal error 

distributions, we fail to reject the null hypothesis that the errors are symmetric and that the 

errors are normally distributed. 

                                                           
39

 Given that fixed effect models are consistent, the rejection of the random effects model, and the frequent 
collapse of the random effects models, the fixed effect models are preferred over the random or hierarchical 
models.  Model (3) is chosen as the preferred specification given its higher R-squared and pseudo-likelihood value. 
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All data. Table 7a displays the full set of regressions for all data points, including damages from 

high temperature increases. Due to the effect of outlier estimates from Weitzman, the damage 

function is now only a significant function of T2_new. As before, the random effects models 

collapsed to pooled regressions. Re-estimating these fixed-effects, random-effects, and 

hierarchical models with the only significant variable and the intercept produces similar results; 

see Table 6b. While one of the random effects models again collapses to a pooled regression, 

the other – clustered at the primary model level – does not collapse; again, we reject the null 

hypothesis that the random effects model is consistent. The key results from these regressions 

is that including high damage estimates based on the scientific limits of human, i.e. Weitzman, 

dramatically increases damage estimates and drives the results. Also, methodologically 

speaking, the use of panel methods, specifically fixed effects, reduces the magnitude of the 

temperature coefficient.  

The fixed effect specification of model (3) again is the preferred specification.40 Again, the 

magnitudes of coefficients are almost identical between model specification (2) and model 

specification (3). Again, we fail to reject the null hypothesis that the errors are symmetric and 

that the errors are normally distributed. 

Damage Function 

Using the low temperature increase and all data, we re-conduct the meta-analyses using OLS, 

fixed effects, random effects, and hierarchical models setting the coefficient corresponding to 

the constant equal to zero; the endogenous variable is damages adjusted to account for 

omitted non-catastrophic and catastrophic impacts, i.e. dam_25_75. For each of the models, 

we calculate cluster robust standard errors, and we do not impose normality for the random 

effect or hierarchical models. To start, we use these estimators with the full set of the pre-

selected variables - T2_new, current, omit, cross, Time, and Time2 – interacted with 

temperature squared, and we again include fixed and random effects using the pre-selected 

clusters - primary author, primary model, and method approach levels. We then re-estimate 

the models with the consistently significant variables. 

Low temperature data. Table 8a displays the full set of regressions for the data points 

corresponding to the low temperature increases. As in the case of the complex regression, the 

only consistently signed variables across the specifications include T2_new, current, Time, and 

Time2; each of these variables has the theoretically correct sign. While re-estimating these 

fixed-effects, random-effects, and hierarchical models with only the significant variables, 

produces similar results, the indicator variable accounting for whether damages are relative to 

current temperatures is no longer significant; see Table 8b.   

                                                           
40

 This decision is based on an identical reasoning as specified in footnote 67. 



27 
 

As before, model (3) is the preferred specification.41 While normally the random effects model 

would be chosen for out of sample prediction, the fixed effects model is selected because the 

random effects model again collapses to a pool specification. Again, the magnitudes of 

coefficients are almost identical between the fixed effect specifications of model (2) and model 

(3). Calculating the updated total damage function coefficient for temperature squared relative 

to pre-industrial temperatures (current=0 and Time=18) using the preferred specification, we 

find that the coefficient corresponding to temperature squared is now 0.0055; this is over 

double the size of the DICE-2013 damage function coefficient.  

We reject the null hypothesis that the error term is non-skewed. However, we fail to reject the 

null that the error terms are normally distributed; this lends support to the use of this current 

model. Alternatively, if we utilize the original version of this specification in Table 8a which is 

not characterized by skewedness, we find that the coefficient on the damage function increases 

to 0.0067. 

All data. Table 9a displays the full set of regressions for all data points, including damages from 

high temperature increases. Unlike earlier, the damage function is now a significant function of 

omit in addition to T2_new. Re-estimating these fixed-effects, random-effects, and hierarchical 

models with the only significant variables produces similar results; see Table 9b.  

Just as before, the fixed effect specification of model (3) is the preferred specification. Again, 

the magnitudes of coefficients are similar between model specification (2) and model 

specification (3), though they differ slightly for the temperature variables.  Calculating the 

updated total damage function coefficient for temperature squared relative to pre-industrial 

temperatures (omit=0 and Time=18) using the preferred specification, we find that the 

coefficient corresponding to temperature squared is now 0.0061; this is similar to the previous 

result estimated with low temperatures only. Because the Weitzman damage estimates were 

not adjusted for omitted or catastrophic impacts, the robustness of the damage estimate 

indicates that these estimates may in fact be consistent with the low temperature impact 

estimates. 

Sensitivity Analysis - Alternative Specification for Meta-Regressions using All Data 

We may be concerned that our adjustments by 25% and 75% for omitted and catastrophic 

impacts are driving the results. We can test the sensitivity of our results by including an 

indicator variable for whether the damage estimate includes catastrophic impacts, i.e. cat. For 

these sensitivity tests, we utilize damage estimates that do not adjust Nordhaus and Boyer 

(2000), Nordhaus (2008), and Hanemann (2013) to eliminate catastrophic impacts, i.e. we 
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 Given that fixed effect models are consistent, the rejection of the random effects model, and the frequent 
collapse of the random effects models, the fixed effect models are preferred over the random or hierarchical 
models.  Model (3) is chosen as the preferred specification given its higher R-squared and pseudo-likelihood value. 
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utilize the damage variable D_new instead of damage or d_25_75. In these sensitivity analysis 

regressions, we assume that the scientific estimates derived by Weitzman and used in CRED 1.4 

include catastrophic impacts. Furthermore, we do not make our 25% and 75% adjustments to 

the measurement of damages. 

We re-estimate the complex meta-analysis and the damage function using all data points, i.e. 

tables 7b and 9b respectively, including the indicator variable for catastrophic impacts, i.e. cat. 

In the latter set of regressions, we include cat interacted with temperature squared. In the 

complex meta-analysis regression, we find that the temperature squared and catastrophic 

impacts significantly increase damage estimates as expected; see table 10a. The fixed effect 

specification of model (3) is again the preferred specification.  

Also re-estimating the DICE-2013 damage function with catastrophic impacts, we again find 

that the inclusion catastrophic impacts significantly increase impacts; however, the omitted 

damage indicator variable is no longer consistently significant. Again, the fixed effect regression 

of specification (3) is the preferred model specification. Using this specification, we find a 

temperature squared coefficient equal to 0.0062 without adjusting for omitted damages. With 

an adjustment upwards of the non-catastrophic impact estimates, i.e.                

       
        , by 25%, we find that the coefficient corresponding to temperature 

squared in the DICE-2013 damage function is now 0.0066; this is nearly triple the size of the 

DICE-2013 damage function coefficient. However, it is close to the previous estimates of 0.0055 

and 0.0061 presented earlier in this paper.  

Thus, the results of this paper indicate that that the central DICE-2013 damage function should 

be approximately equal to 

                   
 . 

This new damage function will significantly increase the SCC estimate from DICE-2013. 

However, future work will need to determine an appropriate measure of uncertainty 

surrounding this estimate accounting for: uncertainty in the underlying damage estimates, 

uncertainty in the model specification, and uncertainty of the resulting meta-analysis estimates. 

Additional Sensitivity Analyses – Future Work 

Future work will conduct the sensitivity analyses outlined in previous section. Particular focus 

on the accurate calculation of damage estimate variance is necessary, including how to account 

for non-normal error terms.42 

Conclusion 
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 The Cameron & Trivedi's decomposition of IM-test was run for all OLS specifications in Table 6-10, and no 
evidence of non-normal skewness or kurtosis was found. 
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This paper’s primary goal is to improve the technique used for estimating the DICE-2013 

damage function. In particular, this paper aims to apply the latest techniques for meta-analysis 

developed in the three recent sets of standards developed for conducting meta-analysis to 

improve the DICE-2013 damage function. This includes the transparent assembly of a dataset to 

avoid selection and publication bias, and the adjustment of damages and inclusion of control 

variables to ensure that the same effect is analyzed across all studies. Finally, estimators that 

control for heteroskedasticity and dependence are necessary for consistent estimates, 

particularly given the small sample size. This analysis is critically important because (1) DICE is 

the pre-eminent integrated assessment model used to analyze the economics of climate 

change, and (2) the DICE model, along with FUND and PAGE, is used to calculate the U.S. social 

cost of carbon. With regards to this latter point, the paper demonstrates how DICE-2013 

damage function should be re-estimated to meet the standards set by the EPA (2006) for meta-

analysis. 

Several key findings result from this analysis. First, this paper demonstrates that the 

adjustments of damage estimates are necessary to ensure that climate impact meta-analyses 

are not comparing apples and oranges. In particular, specific focus must be paid to the inclusion 

of catastrophic impacts in some studies, such that the meta-analyses focus on non-catastrophic 

impacts exclusively.  

Second, this analysis provides evidence of heterogeneity treatment across studies with respect 

the reference period, i.e. the pre-industrial versus the current period, and with respect to the 

inclusion of market or nonmarket damages. However, the statistical significance of the impacts 

of these different modeling decisions and estimation methods on climate damage estimates is 

not robust across all specifications. With regards to the reference period, the significance of this 

effect may be inconsistent due the (1) second order importance of this effect, particularly at the 

low temperature increases commonly observed, and (2) the small sample size of this study. 

With regards to omitted impacts, the indicator variable for omitted impacts may have an 

inconsistent significance because (1) whether the author omits market and non-market 

impacts, which are combined here, effects the magnitude of the climate impact estimate, 

and/or (2) the studies that only capture market or non-market climate impacts, which all 

correspond to statistical studies, may capture market and non-market impacts omitted by other 

estimation approaches, primarily the enumerative approach. With respect to this latter point, 

while many, if not all, of these damage estimates are missing the cost of some climate impacts, 

the climate impacts missing from a particular estimate depends greatly on the estimation 

strategy employed by the corresponding author.  

Third, while Tol (2009) finds evidence of the magnitude of damage estimates declining over 

time, we find evidence of this decline reversing in recent years. Fourth, the previous damage 

estimates in Tol (2009) and Nordhaus and Sztorc (2013) suffer from selection bias due to the 
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omission of many climate impact studies. While Tol (2013) corrects for many impact omissions, 

the authors still omit critical impact estimates corresponding to medium and high temperature 

increases. As a result, the current impact estimates are biased downwards. Future work is 

necessary to refine damage estimates corresponding to high temperatures using this scientific 

approach given their potential importance in determining the shape of the damage function. 

Last, this paper re-estimates the DICE-2013 damage function using panel methods and 

heteroskedasticity-robust standard errors. Using fixed effects at the primary model scale, this 

study produces three estimates of the DICE damage function for non-catastrophic and 

catastrophic impacts. Including catastrophic impacts, we find that the new damage function is 

approximately three times the magnitude of the damage function included in Nordhaus and 

Sztorc (2013). Future work is still necessary to further test the robustness of this damage 

function estimate and to estimate the corresponding uncertainty underlying these estimates. 

While this paper focuses on the improving the meta-analysis used to estimate the DICE-2013 

damage function, we should emphasize the shortcomings of this technique. First, there are few 

data points of the cost of climate change at the global scale, and few of these estimates are 

truly independent. As a result, these damage estimates overly rely on a handful of models 

estimated by only a small group of economics. In addition to issues of dependence, this creates 

an incentive to include all available impact estimates, including incomparable damage 

estimates and estimates that are out-of-date and potentially biased. Additionally, many of the 

estimators rely on asymptotic theory, and as a consequence are biased due to the small sample 

size. By expanding the dataset, we hoped to address these shortcomings along with selection 

bias. 

Second, it is difficult to determine what damages are actually included in the resulting damage 

function due to its reliance on multiple estimates that capture different impacts. In particular, 

what does it mean for a fraction of the studies included in a meta-analysis to account for a 

particular impact, such as the effect of climate change on vector-borne disease? A solution is to 

control for these differences using indicator variables. However, given the small sample size 

discussed above, it is impossible to control for all of the differences between climate impact 

estimates. Thus, if the meta-analysis is omitting methodological variables correlated with 

temperature, the resulting estimates may be biased. The use of model specific fixed effects and 

an adjustment for omitted impacts potentially addresses this shortcoming. 

Third, sampling and publication bias are extremely difficult to address, particularly because 

climate damage estimation is not a large field and there are few unpublished global damages 

estimates easily found. Therefore, it is difficult to trust that the sample is representative of the 

true population. As a consequence, it is difficult to trust out-of-sample prediction upon which 

Nordhaus and Sztorc (2013) and this paper rely. To address this shortcoming we have 
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attempted to expand the dataset, but further efforts to expand the set of climate damage 

estimates are necessary. 

Fourth, the following damage curve represents a willingness to pay damage curve. However, a 

willingness to accept curve, which will imply higher damages per temperature increase, is more 

appropriate. In some ways, the current climate is “owned” by the current generation and they 

are being asked to accept a future climate, which in most cases, is less desirable. As a 

consequence, willingness to accept is potentially a more appropriate welfare measurement. As 

a result, the current damage function likely underestimates the social cost of climate change, 

and thus the resulting SCC. Few willingness to accept estimates exist in the literature and future 

work must expand this set of estimates. At a minimum, a ratio between willingness to pay and 

willingness to accept estimates must be determined to adjust the current willingness to pay 

damage function. 

Last, Tol (2009) argues that these studies should not be treated as time-series data, and 

cautions that any analysis attempting to estimate a damage function should be interpreted 

cautiously.43 In fact, he only uses his meta-analysis to illustrate that there are slight initial 

benefits from climate change followed by significant future damages. However, this is exactly 

what Nordhaus and Sztorc (2013) and we set out to do; as do Tol (2012) and Tol (2013). We are 

sympathetic to those who question whether such an analysis is worthwhile given that this 

analysis is potentially methodologically unjustifiable. However, we believe that if analysts in the 

field of climate change damage choose to embrace meta-analysis technique, we should at least 

ensure that that the climate damage studies meet the minimum guidelines set by the meta-

analysis field. 

An alternative to a meta-analysis a global scale is to conduct meta-analyses at the sector level 

where a sufficient number of studies are available. For example, there are a multitude of 

agricultural studies on the costs of climate change, and a meta-analysis to estimate a regional-

agricultural or global-agricultural damage function would be possible. Another alternative, laid 

out by Kopp, Hsiang, and Oppenheimer (2013) is to develop an infrastructure that uses 

statistical (for example, Bayesian) methods to update damage functions as new estimates 

become available. Future work should aim to improve global climate damage estimates (the top 

down approach) and region-sector climate damage estimates (a bottom up approach), and 

utilize meta-analyses to determine whether these approaches are converging in magnitude. 
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 Specifically, he states that “Of course, it is something of a stretch to interpret the results of these different 
studies as if they were a time series of how climate change will affect the economy over time, and so [a meta-
analysis of this type] should be interpreted more as an interesting calculation than as hard analysis.” 



32 
 

References 

Ackerman, F., Stanton, E. A., & Bueno, R. (2012). CRED v. 1.4 Technical Report. 

Anthoff and Tol. 2012. “The Climate Framework for Uncertainty, Negotiation and Distribution 

(FUND), Technical Description, Version 3.6.” http://www.fund-model.org/versions.  

Ayres, R. U., & Walter, J. (1991). The greenhouse effect: damages, costs and 

abatement. Environmental and Resource Economics, 1(3), 237-270. 

Bosello, F., De Cian, E., Eboli, F., & Parrado, R. (2009). Macro economic assessment of climate 

change impacts: a regional and sectoral perspective. Impacts of Climate Change and 

Biodiversity Effects. 

Brouwer, R., & Spaninks, F. A. (1999). The validity of environmental benefits transfer: further 

empirical testing. Environmental and resource economics, 14(1), 95-117. 

Cameron, C. A. and Trivedi, P., K. (2010). Microeconometrics using Stata: Revised Edition. 

[CRU, 1992] Commission of European Communities, Climate Research Unit and Environmental 

Resources Limited. (1992). “Development of a Framework for the Evaluation of Policy Options 

to Deal with the Greenhouse Gas Effect: Economic Evaluation of Impacts and Adaptive 

Measures in the European Communities.” Report for the Commission of European 

Communities, Climate Research Unit and Environmental Resources Limited. University of East 

Anglia, Norwich. 

[EPA, 1988] US Environmental Protection Agency. (1988).The potential effects of global climate 

change on the United States. Draft Report to Congress. 

[EPA, 2006] U.S. Environmental Protection Agency. (2006). Report of the EPA Working Group on 

VSL Meta-analysis. Available at http://yosemite.epa.gov/ee/epa/eerm.nsf/vwAN/EE-0494-

01.pdf/$file/EE-0494-01.pdf 

Erickson, J. D. (1993), 'From Ecology to Economics: The Case against CO2 Fertilization', 

Ecological Economics 8, 157-175. 

Fankhauser, S. (1995). Valuing Climate Change: the Economics of the Greenhouse. London: 

Earthscan.  

Field, A. P. (2001). Meta-analysis of correlation coefficients: a Monte Carlo comparison of fixed-

and random-effects methods. Psychological methods, 6(2), 161. 

Ford, M., Jakeman, G., Phipps, S. J., Brede, M., Finnigan, J. J., Gunasekera, D., & Ahammad, H. 

(2008). Assessment of future global scenarios for the Garnaut Climate Change Review: an 

application of the GIAM framework. CSIRO Marine and Atmospheric Research. 

http://www.fund-model.org/versions
http://yosemite.epa.gov/ee/epa/eerm.nsf/vwAN/EE-0494-01.pdf/$file/EE-0494-01.pdf
http://yosemite.epa.gov/ee/epa/eerm.nsf/vwAN/EE-0494-01.pdf/$file/EE-0494-01.pdf


33 
 

Gondek, A. (2013). Possibility of using meta-analysis in econometrics. Ekonometria, (3 (41), 15-

23. 

Hanemann, W.M. (2008). What is the Economic Cost of Climate Change? eScholarship. 
Berkeley, CA: UC Berkeley. Available at http://repositories.cdlib.org/are_ucb/1071/. 

Harbord, R. M., & Higgins, J. P. (2008). Meta-regression in Stata. Meta, 8(4), 493-519. 

Hope, C. (2006). The marginal impact of CO2 from PAGE2002: An integrated assessment model 

incorporating the IPCC's five reasons for concern. Integrated assessment, 6(1). 

Hope, C. 2011a. The PAGE09 integrated assessment model: A technical description. Cambridge 
Judge Business School Working Paper, 4(11). 

Hope, C. 2011b. The social cost of CO2 from the PAGE09 model. Economics Discussion Paper, 

(2011-39). 

Howard, P. H. (2014). Omitted Damages: What’s Missing From the Social Cost of Carbon. The 

Cost of Carbon Pollution Project. Available at http://costofcarbon.org/reports/entry/omitted-

damages-whats-missing-from-the-social-cost-of-carbon. 

[IPCC, 2013] Stocker, D. Q. (2013). Climate change 2013: The physical science basis.Working 

Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change, Summary for Policymakers, IPCC. 

[IPCC, 2014] Field, C. B., Barros, V., & Dokken, D. J. (2014). Climate change 2014: impacts, 

adaptation, and vulnerability. Volume I: Global and Sectoral Aspects. Contribution of Working 

Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

ChangeCambridge University Press, Cambridge and New York.  

[IWG, 2010] Interagency Working Group on Social Cost of Carbon. (2010). Social Cost of Carbon 

for Regulatory Impact Analysis Under Executive Order 12866. United States Government. 

Available at http://www.epa.gov/oms/climate/regulations/scc-tsd.pdf. 

[IWG, 2013] Interagency Working Group on Social Cost of Carbon. (2013). Social Cost of Carbon 

for Regulatory Impact Analysis Under Executive Order 12866. United States Government. 

Available at 

http://www.whitehouse.gov/sites/default/files/omb/inforeg/social_cost_of_carbon_for_ria_20

13_update.pdf. 

[IWG, 2013 Revised] Interagency Working Group on Social Cost of Carbon. (2013). Social Cost of 

Carbon for Regulatory Impact Analysis Under Executive Order 12866. United States 

Government. Available at 

http://www.whitehouse.gov/sites/default/files/omb/assets/inforeg/technical-update-social-

cost-of-carbon-for-regulator-impact-analysis.pdf. 

http://repositories.cdlib.org/are_ucb/1071/
http://costofcarbon.org/reports/entry/omitted-damages-whats-missing-from-the-social-cost-of-carbon
http://costofcarbon.org/reports/entry/omitted-damages-whats-missing-from-the-social-cost-of-carbon
http://www.epa.gov/oms/climate/regulations/scc-tsd.pdf
http://www.whitehouse.gov/sites/default/files/omb/inforeg/social_cost_of_carbon_for_ria_2013_update.pdf
http://www.whitehouse.gov/sites/default/files/omb/inforeg/social_cost_of_carbon_for_ria_2013_update.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-of-carbon-for-regulator-impact-analysis.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-of-carbon-for-regulator-impact-analysis.pdf


34 
 

Johnston, R. J., & Rosenberger, R. S. (2010). Methods, trends and controversies in 

contemporary benefit transfer. Journal of Economic Surveys, 24(3), 479-510. 

Karp, L. (2005). Global warming and hyperbolic discounting. Journal of Public Economics, 89(2), 

261-282.  

Kopp, R. E., Hsiang, S. M. & Oppenheimer, M. (2013). Empirically calibrating damage functions 

and considering stochasticity when integrated assessment models are used as decision tools. in 

Impacts World 2013 Conf. Proc. (Potsdam Institute for Climate Impact Research, 2013). 

Maddison, D. (2003). The amenity value of the climate: the household production function 

approach. Resource and Energy Economics, 25(2), 155-175. 

Maddison, D., & Rehdanz, K. (2011). The impact of climate on life satisfaction. Ecological 

Economics, 70(12), 2437-2445. 

Manne, A. S., & Richels, R. G. (2005). MERGE: an integrated assessment model for global 

climate change. In Energy and Environment (pp. 175-189). 

Mendelsohn, R, Morrison, W., Schlesinger, M. E., & Andronova, N. G. (2000). Country-specific 

market impacts of climate change. Climatic change, 45(3-4), 553-569. 

Mendelsohn, R., & Neumann, J. E. (Eds.). (2004). The impact of climate change on the United 

States economy. Cambridge University Press. 

Nelson, J. P., & Kennedy, P. E. (2009). The use (and abuse) of meta-analysis in environmental 

and natural resource economics: an assessment. Environmental and Resource Economics, 42(3), 

345-377. 

Nordhaus, W. D. (1991). To slow or not to slow: the economics of the greenhouse effect. The 

economic journal, 101(407), 920-937. 

Nordhaus, W.D. (1993). “Optimal greenhouse gas reductions and tax policy in the ‘DICE’ 

model.” American Economic Review, Papers and Proceedings 83:313-317. 

[Nordhaus, 1994a] Nordhaus, W. D. (1994). Managing the global commons: the economics of 

climate change (Vol. 31). Cambridge, MA: MIT press. 

[Nordhaus, 1994b] Nordhaus, William D. (1994). “Expert Opinion on Climate Change.” American 

Scientist, 82(1):45–51. 

Nordhaus, W. D. (2006). Geography and macroeconomics: New data and new 

findings. Proceedings of the National Academy of Sciences of the United States of 

America, 103(10), 3510-3517. 

Nordhaus, W.D. (2008a). A Question of Balance: Economic Modeling of Global Warming. New 

Haven, CT: Yale University Press.  



35 
 

Nordhaus, W. (2008b). New metrics for environmental economics: Gridded economic 

data. Integrated Assessment, 8(1). 

Nordhaus, W. D., & Boyer, J. (2000). Warning the World: Economic Models of Global Warming. 

MIT Press (MA). 

Nordhaus, W. D., & Sztorc, P. (2013). Introduction and User’s Manual. Available at 
http://www.econ.yale.edu/~nordhaus/homepage/documents/Dicemanualfull.pdf. 

Nordhaus, W. D., & Yang, Z. (1996). A regional dynamic general-equilibrium model of 

alternative climate change strategies. The American Economic Review, 741-765. 

Peck, S. C., & Teisberg, T. J. (1993). CO2 emissions control: Comparing policy 

instruments. Energy Policy, 21(3), 222-230. 

Plambeck, E. L., & Hope, C. (1996). PAGE95: An updated valuation of the impacts of global 

warming. Energy Policy, 24(9), 783-793. 

Rehdanz, K., & Maddison, D. (2005). Climate and happiness. Ecological Economics, 52(1), 111-
125. 

Rhodes, W. (2012). Meta-Analysis An Introduction Using Regression Models. Evaluation 
review, 36(1), 24-71. 

Roson, R., & Mensbrugghe, D. V. D. (2012). Climate change and economic growth: impacts and 
interactions. International Journal of Sustainable Economy, 4(3), 270-285.  

Rothstein, H. R., Sutton, A. J., & Borenstein, M. (Eds.). (2006). Publication bias in meta-analysis: 
Prevention, assessment and adjustments. John Wiley & Sons. 

Sherwood, S. C., & Huber, M. (2010). An adaptability limit to climate change due to heat 
stress. Proceedings of the National Academy of Sciences, 107(21), 9552-9555. 

Smith, V. K., & Pattanayak, S. K. (2002). Is meta-analysis a Noah's ark for non-market 

valuation?. Environmental and Resource Economics, 22(1-2), 271-296. 

Stanley, T. D., Doucouliagos, H., Giles, M., Heckemeyer, J. H., Johnston, R. J., Laroche, P., ... & 

Rost, K. (2013). Meta‐analysis of economics research reporting guidelines. Journal of Economic 

Surveys, 27(2), 390-394. 

Szijártó, N. (2012). Cost-benefit analysis of climate change–A methodological overview of 

recent studies. 

Tol, R. S. J. (1993a), The Climate Fund - Survey of Literature on Costs and Benefits, Institute for 

Environmental Studies W93/01, Vrije Universiteit, Amsterdam 

Tol, R. S. J. (1994b), The Climate Fund - Optimal Greenhouse Gas Emission Abatement, Institute 

for Environmental Studies W94/08, Vrije Universiteit, Amsterdam. 

http://www.econ.yale.edu/~nordhaus/homepage/documents/Dicemanualfull.pdf


36 
 

Tol, R. S. J. (1995). The damage costs of climate change toward more comprehensive 
calculations. Environmental and Resource Economics, 5(4), 353-374. 

Tol, Richard S. J. (2002a). “Estimates of the Damage Costs of Climate Change—Part 1: 

Benchmark Estimates.” Environmental and Resource Economics, 21(1): 47–73. 

Tol, Richard S. J. (2002b). “Estimates of the Damage Costs of Climate Change—Part II: Dynamic 

Estimates.” Environmental and Resource Economics, 21(2): 135–60. 

Tol, R. S. J. (2009). The economic effects of climate change. The Journal of Economic 

Perspectives, 23(2), 29-51. 

Tol, R. S. J. (2009). The economic effects of climate change. The Journal of Economic 

Perspectives, 23(2), 29-51. 

Tol, R. S. (2011). The social cost of carbon. Annu. Rev. Resour. Econ., 3(1), 419-443. 

Tol, R. S. (2012). On the uncertainty about the total economic impact of climate 

change. Environmental and Resource Economics, 53(1), 97-116. 

Tol, R. S. (2013). Bootstraps for Meta-Analysis with an Application to the Impact of Climate 
Change (No. 6413). 

van der Ploeg, F. and C.Withagen (2012), 'Too much coal, too little oil', Journal of Public 
Economics, 96, (1-2), pp. 62-77. 

Weitzman, M.L. (2009). On modeling and interpreting the economics of climate change. Review 
of Economics and Statistics, 91, 1-19. doi:10.1162/rest.91.1.1 

Weitzman, M.L. (2011). Fat-Tailed Uncertainty in the Economics of Catastrophic Climate 
Change. Review of Environmental Economics and Policy, 5, 275-292. doi:10.1093/reep/rer006 

Weitzman, M. L. (2012). GHG targets as insurance against catastrophic climate 

damages. Journal of Public Economic Theory, 14(2), 221-244. 

Yohe, G. 1990. The cost of not holding back the sea: Toward a national sample of economic 

vulnerability. Coastal Management. 18:403-432.  

 

  



37 
 

Table 1a. Damage Studies Cited in Tol (2009) and Nordhaus and Sztorc (2013) 

Study 

Temperature 
Increase 
(Degrees 
Celsius) 

Damage 
-Tol 

(2009) 

Damage - 
Nordhaus 

and 
Sztorc 
(2013) 

Corrected 
Temperature 

Corrected 
Damage - 

Tol 
(2009) 

Nordhaus (1994a) 3 1.30% 1.63% 3 1.30% 

Nordhaus (1994b) 3 4.80% 6.00% 3 3.60% 

Fankhauser (1995) 2.5 1.40% 1.75% 2.5 1.40% 

Tol (1995) 2.5 1.90% 2.38% 2.5 1.90% 

Nordhaus and Yang 
(1996) 

2.5 1.70% 2.13% 2.5 1.70% 

Plambeck and Hope 
(1996) 

2.5 2.50% 3.13% 2.5 2.50% 

Mendelsohn, 
Schlesinger, and 
Williams (2000) 

2.5 

0.00% 0.00% 

2.5 

0.00% 

-0.10% - -0.10% 

Nordhaus and Boyer 
(2000) 

2.5 1.50% 1.88% 2.5 1.50% 

Tol (2002) 1 -2.30% -2.88% 1 -2.30% 

Maddison (2003) 2.5 0.10% 0.13% 2.5 0.10% 

Rehdanz and 
Maddison (2005) 

1 0.40% 0.50% 1.024 0.29% 

Hope (2006) 2.5 -0.90% -1.13% 2.5 0.86% 

Nordhaus (2006) 2.5 0.90% 1.13% 2.07 1.05% 
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Table 1b. Damage Studies Cited in Tol (2013) 

Study 

Temperature 
Increase 
(Degrees 
Celsius) 

Damage 
-Tol 

(2009) 

Corrected 
Temperature 

Corrected 
Damage - 

Tol 
(2009) 

Nordhaus (1994a) 3 1.30% 3 1.30% 

Nordhaus (1994b) 3 4.80% 3 3.60% 

Fankhauser (1995) 2.5 1.40% 2.5 1.40% 

Tol (1995) 2.5 1.90% 2.5 1.90% 

Nordhaus and Yang 
(1996) 

2.5 1.70% 2.5 1.70% 

Plambeck and Hope 
(1996) 

2.5 2.50% 2.5 2.50% 

Mendelsohn, 
Schlesinger, and 
Williams (2000) 

2.5 

0.00% 

2.5 

0.00% 

-0.10% -0.10% 

Nordhaus and Boyer 
(2000) 

2.5 1.50% 2.5 1.50% 

Tol (2002) 1 -2.30% 1 -2.30% 

Maddison (2003) 2.5 0.10% 2.5 0.10% 

Rehdanz and 
Maddison (2005) 

1 0.40% 1.024 0.29% 

Hope (2006) 2.5 0.90% 2.5 0.86% 

Nordhaus (2006) 2.5 0.90% 2.07 1.05% 

New Damage Estimates 

Nordhaus (2008a) 3 2.50% 2.5 1.77% 
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Rehdanz and 
Maddison (2011) 

3.2 11.50% 3.2 17.23% 

Bosello et al. (2012) 1.92 0.50% 1.92 0.50% 

Roson and van der 
Mensbrugghe (2012) 

2.3 1.80% 2.3 1.80% 

4.9 4.60% 4.9 4.60% 
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Table 1c. Data 
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Table 2. Data Summary 

         

 
Variable Obs Mean Std. Dev. Min Max Predict 

 

 
Damage 26 0.07554 0.211985 -0.023 0.99 NA 

 

 
D_new 26 0.076771 0.211641 -0.023 0.99 NA 

 

 
dam_25_75 26 0.154018 0.422731 0 1.98 NA 

 

 
T_new 26 3.076308 2.195809 1 12 - 

 

 
T2_new 26 14.0998 27.99608 1 144 + 

 

 
Current 26 0.384615 0.496139 0 1 + 

 

 
Market 26 0.269231 0.452344 0 1 - 

 

 
nonmarket 26 0.115385 0.325813 0 1 - 

 

 
Omit 26 0.384615 0.496139 0 1 - 

 

 
Cross 26 0.153846 0.367947 0 1 ? 

 

 
Year 26 2004.077 6.945059 1994 2012 + 

 

 
Time 26 10.07692 6.945059 0 18 + 

 

 
WTA 26 0.038462 0.196116 0 1 + 

 

 
Arbitrary 26 0.038462 0.196116 0 1 - 

 

 
Product 26 0.115385 0.325813 0 1 + 
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Table 3a. Correlation coefficients - all data 

               

 
  

damag
e 

T2_ne
w 

T_new pre_idr current Time omit market cross 
produc

t 
arbitrar

y 
nonmarke

t   

 

damage 1                         

 

T2_new 0.9481 1                       

 

T_new 0.9102 0.9609 1                     

 

pre_idr -0.3687 -0.3032 -0.2688 1                   

 

current 0.3687 0.3032 0.2688 -1 1                 

 

Time 0.3161 0.2326 0.1722 -0.1814 0.1814 1               

 

omit -0.221 -0.1993 -0.2223 -0.1319 0.1319 0.2917 1             

 

market -0.1774 -0.1456 -0.1314 0.0965 -0.0965 0.3066 0.8315 1           

 

cross -0.1231 -0.1285 -0.1788 -0.2359 0.2359 -0.0615 0.4924 0.0439 1         

 

product -0.0852 -0.043 -0.0053 -0.2359 0.2359 0.4453 0.4924 0.5922 -0.1364 1       

 

arbitrary -0.0567 -0.0383 -0.0066 0.1531 -0.1531 -0.2942 -0.1531 -0.1273 -0.0754 -0.0754 1     

 

nonmarke
t 

-0.0974 -0.1117 -0.1759 -0.3932 0.3932 0.0087 0.3932 -0.1839 0.7985 -0.1089 -0.0602 1 
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Table 3b. Correlation coefficient - low temperature data 

  damage T_new T2_new Time omit cross nonmar~t market current pre_idr arbitrary product 

damage 1                       

T_new 0.679 1                     

T2_new 0.663 0.9873 1                   

Time -0.2612 -0.3975 -0.4313 1                 

omit -0.2394 -0.228 -0.2996 0.3278 1               

cross -0.2358 -0.1903 -0.1831 -0.0275 0.5204 1             

nonmarket -0.1715 -0.2879 -0.2687 0.0462 0.4136 0.7947 1           

market -0.1459 -0.058 -0.1475 0.3223 0.8062 0.043 -0.2052 1         

current -0.0873 -0.3353 -0.3302 -0.0924 0.155 0.3443 0.513 -0.1667 1       

pre_idr 0.0873 0.3353 0.3302 0.0924 -0.155 -0.3443 -0.513 0.1667 -1 1     

arbitrary 0.0674 0.2756 0.3388 -0.3201 -0.1754 -0.0913 -0.0725 -0.1414 -0.1414 0.1414 1   

product 0.0612 -0.0946 -0.1495 0.4547 0.4136 -0.1325 -0.1053 0.513 0.1539 -0.1539 -0.0725 1 
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Table 4a. Test of dependence - all data 

Group 

Intra-class correlation for author 
groups 0.04172669   
Correlation for adjoining method 0.02123163   
Breusch-Pagan LM test of 
independence chi2(3) = 2.509 

Pr = 
0.4737 

Author 

Intra-class correlation for author 
groups 0.42455132   
Correlation for adjoining method 0.02526504   
Breusch-Pagan LM test of 
independence 

 chi2(28) = 
56.000 

Pr = 
0.0013 

Method 

Intra-class correlation for author 
groups 0.92770677   
Correlation for adjoining method 0.98486002   
Breusch-Pagan LM test of 
independence 

chi2(10) =    
20.000 

Pr = 
0.0293 

Model 

Intra-class correlation for author 
groups 0.3721171   
Correlation for adjoining method 0.90744753   
Breusch-Pagan LM test of 
independence 

chi2(36) = 
72.000 

Pr = 
0.0003 
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Table 4b. Test of dependence - low temperature data 

Group 

Intra-class correlation for author 
groups 0.117616   

Correlation for adjoining method -0.10238377   
Breusch-Pagan LM test of 
independence chi2(3) = 5.138 

Pr = 
0.1620 

Author 

Intra-class correlation for author 
groups 0.20628843   

Correlation for adjoining method 0.4612997   
Breusch-Pagan LM test of 
independence 

chi2(15) = 
30.000 

Pr = 
0.0119 

Method 

Intra-class correlation for author 
groups -   

Correlation for adjoining method -0.03431927   
Breusch-Pagan LM test of 
independence chi2(3) = 2.810 

Pr = 
0.4219 

Model 

Intra-class correlation for author 
groups 1.19E-01   

Correlation for adjoining method -0.40194432   
Breusch-Pagan LM test of 
independence 

chi2(15) = 
30.000 

Pr = 
0.0119 

 

  



46 
 

Table 5. Linear Regressions 

       

 
  (1) (2) (3) (4) 

 

 
VARIABLES D_orig Damage damage damage 

 

 
          

 

 
T2 0.00213***       

 

 
  (0.000640)       

 

 
T2_new   0.00207*** 0.00195*** 0.00671*** 

 

 
OLS SE   (0.000512) (0.000412) (0.000470) 

 

 

Davidson-MacKinnon  
SE   (0.000522) (0.000409) (0.000987) 

 

 
Cluster SE - author   (0.000328) (0.000359) (0.000654) 

 

 
Cluster SE - model   (0.000215) (0.000468) (0.000625) 

 

 
          

 

 
Observations 13 13 21 25 

 

 
R2 0.480 0.576 0.528 0.895 

 

 
Adjusted R-squared 0.437 0.541 0.505 0.890 

 

 
Liklihood 37.08 40.24 64.85 30.20 

 

 
F-statistic 11.08 16.32 22.39 204.0 

 

 
Prob>F 0.00601 0.00164 0.000128 0 

 

 
Cameron & Trivedi's decomposition of IM-test: p-values 

 

 
heteroskedasticity 0.2381 0.1606 0.1415 0.0001 

 

 
Skewness 0.0851 0.065 0.1098 0.1505 

 

 
Kurtosis 0.8753 0.9925 0.6069 0.1507 

 

 
Total 0.21 0.1326 0.1507 0.0001 

 

 
Standard errors in parentheses 

    

 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 6a. Complex meta-analysis - Panel regression techniques using data corresponding to low 

temperature increases 
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Table 6b. Complex meta-analysis - Simplified panel regression techniques using data 
corresponding to low temperature increases 
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Table 7a. Complex meta-analysis - Panel regression techniques using all data 
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Table 7b. Complex meta-analysis – Simplified panel regression techniques using all data 
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Table 8a. Damage function estimation - Panel regression techniques using data corresponding 

to low temperature increases 
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Table 8b. Damage function estimation – Simplified panel regression techniques using data 

corresponding to low temperature increases 
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Table 9a. Damage function estimation - Panel regression techniques using all data 
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Table 9b. Damage function estimation – Simplified panel regression techniques using all data  
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Table 10a. Complex meta-analysis – Simplified panel regression techniques using all data and 
including catastrophic indicator variable 
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Table 10b. Damage function estimation – Simplified panel regression techniques using all data 

and including catastrophic indicator variable 
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Figure 1a. Tol (2009) data points – original and corrected 
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Figure 1b. Data points corresponding to low temperature increases 
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Figure 2a. The 3 Major Updates of DICE from 0 °C to 12 °C 

 

 

Figure 2b. The 3 Major Updates of DICE from 0 °C to 6 °C 
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Figure 3. Venn Diagrams of enumerative and statistical impact studies 
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Appendix – Methodologies for Estimating Global Climate Damages 

There are five general ways to estimate climate damages. Each of these methods relies on 

significant arbitrary judgments by the analysts. 

Statistical approach. The first approach, the statistical approach, utilizes econometric methods 

to estimate climate damages using current observations of the climate. In this approach, 

authors rely on current spatial variation of climate and economic activity to identify the effect 

of climate on economic activity. Of the studies cited in Tol (2009), four estimates are based on 

the statistical approach; this number is expanded to six in the expanded dataset.44   

While the statistical approach is advantageous in that it directly captures current levels of 

adaptation and does not require benefit transfer, it has several shortcomings due to their cross-

sectional nature. First, these studies often rely on cross-sectional analysis, and thus suffer from 

omitted variable bias. In particular, cross-sectional analyses can be problematic when they are 

at the national or regional (above-national) scales, because it can be difficult, if not impossible, 

to separate non-climatic factors at the national and regional scales from climatic factors. 

Therefore, climate damage estimates may, and likely do, suffer from omitted variable bias. Of 

the four statistical studies cited in Tol (2009), only Nordhaus (2006) conducts analysis at a sub-

regional scale to avoid this complication. Second, cross-sectional analyses often omit various 

climate impacts. Because these studies rely on current spatial variation, these studies omit 

effects that do not vary spatially (e.g., the direct effects of sea level rise which occurs globally), 

have not yet occurred (e.g. catastrophic impacts, CO2 fertilization, and ocean acidification), or 

that do not capitalize into the studies market. For example, Redhanz and Maddison (2005) 

utilizes a hedonic approach that fails to capture market damages and non-market damages that 

do not capitalize into local land markets; this includes ecosystem services, recreational values of 

non-residents, many ecosystem services, and non-use and existence values. Finally, many of 

these studies only aim to capture the effect of climate change on market or non-market 

benefits. In Tol (2009) and the expanded dataset used in this paper, all of the statistical 

estimates of climate damages represent incomplete climate damage estimates. In particular, in 

the expanded dataset, three studies capture only market impacts and the remaining three 

capture only non-market impacts.  This represents a serious complication for meta-analysis 

studies. 

                                                           
44

 Mendelsohn, Morrison, Schlesinger, and Williams (2000), Nordhaus (2006), Maddison (2003), and Redhanz and 
Maddison (2005) rely on the statistical approach. Mendelsohn et al (2000) is a hybrid approach in that the authors 
combine experimental evidence, which corresponds to the second approach discussed, and cross-sectional 
evidence in a computer general equilibrium model. Additional statistical estimates in my expanded dataset are 
Nordhaus (2008b) and Rehdanz and Maddison (2011), which are updates of Nordhaus (2006) and Redhanz and 
Maddison (2005), respectively.   
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Enumerative approach. The second approach, the enumerative approach, utilizes physical 

impact studies from the sciences (climate models, impact models, and/or laboratory 

experiments), and then assigns these impacts a price using market prices or economic models. 

In the case of non-market services (health, biodiversity, etc.), benefit transfer is often necessary 

to apply values derived in non-climate studies, such as the value of a human life, to the climate 

literature. Many of the scientific and/or valuation studies in developed nations or regions, often 

the United States or Europe, so benefit transfer is also employed to elicit the value globally. 

Many of the enumerative valuation studies rely heavily on author discretion. Eight estimates in 

Tol (2009) are based on the statistical approach, and this number is expanded to twelve in the 

expanded dataset; several of these estimates are explicitly based on or updates of other cited 

estimates.45 

While the enumerative approach is advantageous in that it is based on scientifically estimated 

effects, the enumerative approach has several disadvantages. First, as discussed in the previous 

paragraph, these studies rely on the benefit transfer approach to transfer benefits over space 

and time. In addition to the possibility of substantial estimation error from the use of benefit 

transfer methods (Brouwer and Spaninks 1999), enumerative studies often transfer damage 

estimates to significantly different regions against the consensus in the benefit transfer 

literature (Johnston and Rosenberger, 2010). Second, these models often unrealistically model 

adaptation. These estimates underestimate or overestimate adaptation, often assuming that 

there is no or perfect adaptation (Tol, 2009).46 Third, enumerative studies often rely on sector 

by sector analysis whereby the damages are pulled from disparate studies. According to Tol 

(2009), this may result in overlap of sector damages, such as in agriculture and water resources. 

However, many other economists argue that inter-sector damages are missing, such as the 

effect of water resources on agriculture (Howard, 2014). Fourth, many types of climate impacts 

and market and non-market sectors are omitted from the damage estimates, and uncertainties 

are large (Howard, 2014). Fifth, the enumerative approach often relies on economists drawing 

on physical impact studies without working directly with scientists; this piecemeal approach, 

which ignores the advantage of scientists and economists working together, and can result in 

the misuse of scientific data. In particular, results from one to two case studies are often 

extrapolated deep into the future with temperature and income levels that far exceed what the 

original case studies intended (Howard, 2014). Last, many of the non-market values are derived 

                                                           
45

 In Tol (2009), Fankhauser (1995), Nordhaus (1994a), Tol (1995), Nordhaus and Boyer (2000), and Tol (2002a; 
2002b) use the enumerative approach. In addition, several of the studies cited by Tol (2009), indirectly utilize the 
enumerative approach by calibrating their damage function using a previous enumerative study’s damage 
estimates: Nordhaus and Yang (1996), Plambeck and Hope (1996), and Hope (2006). The extended dataset in this 
paper includes four additional enumerative studies - Hope (2009), Nordhaus (2008a), Tol (2013), and Ackerman 
and Stanton (2012) – of which the first three are updates to previously included enumerative studies. 
46

 According to many economists, enumerative studies error on the side of too much adaptation. 
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using willingness to pay measurements, rather than willingness to accept. Given that the former 

is often lower than the latter, current measurements may be underestimating damages. 

Interviews. Damage estimates can also be derived by interviewing experts; Nordhaus (1994b) is 

the only study in Tol (2009) that employs this strategy. While this approach may be 

advantageous in that it can capture difficult to estimate (catastrophic and non-market impacts), 

it suffers from several disadvantages. First, like stated preference studies, the resulting 

estimates are based on opinions, rather than market observations. Second, in a related 

problem, individuals have difficulty considering low probability, high damage events, e.g. black 

swan events; as a consequence, interviewees may be prone to underestimate climate damages.  

Third, interviewees may be biased if they know the interviewers opinion on the topic, as 

Nordhaus mentions that they do (Nordhaus, 1994b). Last, in a related problem, the pool of 

interview subjects maybe non-random, and may overly represent the bias of the 

interviewer/author. 

Computer general equilibrium. Though none of the estimates discussed in Tol (2009) utilized a 

computer general equilibrium model (CGE), which is a model of the world economy calibrated 

with data and specifying how various regional production and consumption sectors in the 

economy interact such that prices are endogenously determined, several estimates included in 

the extended dataset, i.e. Bosello et al. (2012) and Roson and van der Mensbrugghe (2012), 

utilize them.47 Both studies employ the enumerative strategy of plugging in region-sector 

damages, but unlike the enumerative strategy, assume that damages effect economic growth 

rather than consumption. Introducing these climate impacts into the CGE model framework 

allows analysts to observe how various climate impacts interact to produce a comprehensive 

estimate of climate damages (Bosello et al., 2012; Roson and van der Mensbrugghe, 2012). 

Science. The scientific approach is to estimate the temperature at which the planet becomes 

uninhabitable to humans; this produces a damage estimate for high temperature increases. 

While none of the papers discussed in Tol (2009) rely on scientific approach, the extended 

dataset used in this paper includes one such study, Ackerman and Stanton (2012). In this study, 

the authors utilize damage estimates drawn from Weitzman (2010) who develops damage 

estimates based on the physiological limits of human adaptation to rising temperatures 

estimated in Sherwood and Huber (2010).48 

 

                                                           
47

 Following Tol (2013), two estimates are drawn from Roson and van der Mensbrugghe (2012): one for a 2.3 °C 
increase and another for a 4.9 °C increase. 
48

 Two estimates are drawn from Weitzman (2010): one for a 6 °C increase and another for a 12 °C increase. 


