

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

# The Changing Distribution of Farms by Size: A Markov Analysis 

By Clark Edwards, Matthew G. Smith, and R. Neal Peterson*


#### Abstract

Farm numbers and average farm size in the United States have held about constant since the 1974 Census, but the proportion of mid-sized farms has decreased This pattern follows four decades of a strong trend toward fewer and larger farms Markov analysis is a standard procedure for projecting changes in the number and distribution of firms in an industry based on observations of recent changes Previous applications to the US farm sector have met with difficulty because of a lack of appropriate data This artıcle apphes Markov analysis to a recently avalable longitudinal data set for 1974-78 from the Census of Agriculture The model predicts reasonably well the actual changes during $1978-82$ and indicates that the future distribution of farms by acres per farm will be more like the present than the present is like the past


## Keywords

Markov, agriculture, distribution, projection, size of farm, structure

The number of farms in the United States reached a peak in the thirties and then declined The 1935 Census of Agriculture reported 681 million farms, by 1974 the number had dropped to 231 million, an average annual decrease of 273 percent If the 1935-74 trend is projected to 2000 , the number of farms decreases substantially to about 113 million Total land in farms changed little, so the average farm size increased rapidly during 1935-74, and the distribution of farms by acres per farm shifted steadıly toward the larger size classes The number of farms between 50 and 259 acres declined from 1935 on, the number of farms between 260 and 499 acres continued to increase until the midfifties and then began to decline, and the number of farms be-, tween 500 and 999 acres peaked in the 1969 Census of Agriculture The trend during 1935-74 characterized an agricultural industry whose firms were steadily becoming fewer in number and larger in size

[^0]During the seventies this pattern changed The last three Censuses of Agriculture, 1974, 1978, and 1982, show little change in farm numbers with no appreciable change in average farm size between 1974 and 1982 In 1982, there were $2 \cdot 24$ million farms, an average annual rate of decrease of only 04 percent since 1974 If the 1974-82 trend is projected to 2000 , the number of farms moderately decreases to about 208 million

The distribution of farms by size continued to evolve, however The number of farms of $1,000-1,999$ acres peaked in 1978 and then declined in 1982, but the number of farms of 2,000 acres or more continued to increase Farms of fewer than 50 acres began increasing in number in 1974, reversing the longstanding decline 'The experience of the seven-

[^1]ties thus suggested a somewhat different future for US agriculture a relatively stable number of farms moving toward a bimodal structure with a large and increasing proportion of small farms, a small but increasing proportion of large farms, and a decreasing proportion of midsized farms

This article analyzes changes in size among individual US farms during 1974-78 to explore the process of structural change in $\mathrm{U} S$ agriculture How strong a trend toward bimodality is reflected by recent data? What sort of future structure do the changes imply?

## Markov Analysis of Structural Change

A variety of methods may be used to project the, structure of an industry on the basis of historical data.' Among these are simple trend extrapolation (linear or nonlinear), age cohort analysis, dynamic systems sımulation, and Markov analysis Each of these'procedures offers advantages and disadvantages depending on the context of inquiry, the nature of the system under study, and the data available (10) ${ }^{2}$ Markov analysis is well suited to examining shifts among classes of farm size However, the data requirement is stringent, and most Markov analyses of US agriculture have employed imputed data This study applies Markov analysis to unıque, recently available data from the Census of Agriculture covering 1974-78

A finite Markov chain is one in which a population at time $t$ has the distribution $S^{i}$ over the discrete states, $S_{1}, S_{2}, \quad S_{n}$, and in which the probability $P_{1 j}$ of moving from state $S$, at one point in time to state $S_{\mathrm{j}}$ at a later time is dependent only on the initial state $S_{1}$ and not.on any prior state The transition probabilities $P_{1 j}$ form the transition probability matrix $P$, where $\sum_{j} P_{1 j}=1$ and $P_{i j} \geq 0$ for all 1 and J Together with an initial distribution of states $S^{\downarrow}$, these properties completely define a finite Markov chain (8) ${ }^{3}$

One can obtain the distribution of states after one time interval $\mathrm{S}^{1+1}$ by multiplying the initial distribu tion vector $\mathrm{S}^{\prime}$ by 'the transition probability matrix

[^2]$P$ Let $S^{1}$ be a row vector, then $S^{i+1}=S^{\prime} P$ One can obtain the distribution of states after k intervals $\mathrm{S}^{\text {t+k }}$ by multiplying the initial distribution vector $\mathrm{S}^{t}$ by the matrix $P^{k}$, that is, $P$ raised to the $\mathrm{k}^{\text {th }}$ power, $S^{l+k}=S^{1} P^{k}$ The appendix shows how to evaluate $S^{t+k}$ when $k$ is any rational fraction The system converges toward an equilibrium distribution as $k$ approaches infinty In a Markov process the equilibrium distribution depends only on the transi tion probability matrix and is independent of the initial distribution

In economic analysis, use of the Markov chain carries, several important assumptions First, a continuous variable such as farm size may reasonably be classified into discrete states, and the choice of states does not appreciably affect the results Second, the specified transition probabilities remain constant over time Third, a process that is continuous may be modeled as occurring at discrete points in time, and the choice of time intervals does not appreciably affect the results Markovian projections represent the implications of behavior observed during a given period persisting into the future This representation implies that the exogenous conditions affecting the observed be-havior-for example, shocks from a food or energy crisis, or relative rates of unemployment and wages affecting entry and exit-would also persist

Markov analysis has been used frequently in agricultural economics research Farris and Padberg projected the structure of the Florida citrus packing industry, based on actual longitudinal data (6)

Several researchers have employed Markov analysis to investigate the implications of structural change in the U S farm sector. Krenz projected the distribution of farms in North Dakota by size in acres to the year 2000 (9) Daly, Dempsey, and Cobb projected U S farms by sales class to the year 2000 (3). Lin, Coffman, and Penn projected U S farms by both acreage and sales class, also to the year 2000 (10) Those three farm structure studies were not based on longitudinal data Transition probabilities were imputed from published Census data The assumptions made in imputing transition probabilities have a substantial impact on the behavior of the resulting Markov system In each study the transition matrices were assumed to be upper triangular, that is, farms were assumed to grow or
to exit the industry, but never to contract in size ( $9,9,10$ ). Although these assumptions appeared reasonable on the basis of aggregate trends and the limited avallable data on individual farm behavior, they led to modeling structural change as a Markov process in which the largest size class and the exit from agriculture are absorbing states This necessarily implies a longrun equilibrium distribution with all surviving farms in the largest size class This implication is consistent with the popular characterization of the 1935-74 trend that U S agriculture will eventually become one (or a few) very large farm(s)

## The Data

The data set used in this analysis consists of longitudinal records from the 1974 and 1978 Censuses of Agriculture (12) The Agriculture Division, Bureau of the Census, created the data set from the control file of the 1978 Census of Agriculture The control file, a normal part of recent censuses, ands in data collecting and processing It contains only a limited number of economic variables thought to be helpful in identifying farms and avoiding duplication Individual farm records were matched by the use of Census File Number (CFN) codes attached to each address label on the Census questionnare CFN codes for 1978 were based largely on responses to the 1974 Census, farm records were included in the longitudinal set when a match was found between the two censuses All primary data processing was performed on Census Bureau computers under the supervision of Census Bureau employees so that the confidentiality of individual data was maintained

The longitudinal data may include some farms that underwent significant ownership, organizational, or management changes between 1974 and 1978 Changes could be missed if, a new operator returned the 1978 questionnare, addressed to the previous operator, with the mailing label uncorrected Similarly, the data set may exclude farms that continued in operation from 1974 to 1978, but for which a different CFN was assıgned For example, a sole proprietorship becoming a partnership, a partner ship incorporating, a different partner responding to the second census, a maling address changing, duplicate questionnarres being received in 1978, or the maling label provided not being used, all could
have been cause for assigning a different CFN in 1978 than in 1974 Thus, the 1974-78 longitudinal data used in this analysis are nether a complete enumeration of all US farms continuing in operation during the period nor a random sample of them

Nevertheless, a large number of farms were matched: between the two censuses The total number of , farms reported in 1974 was $2,314,013$ (table 1) The. $1,200,252$ farms which were matched to the 1978 Census represent 52 percent of all farms enumerated in 1974. This leaves $1,113,761$ of the 1974 farms for which the 1978 status is not known These farms are listed as nonlongitudinal in table $1 \hat{\imath}$ If exit rates in $U S$ agriculture during this period were comparable to those in Canada, where 36 percent of all 1971 operators had exited by 1976 and 30 percent of 1976 operators had exited by 1981 (5), approximately one-quarter of all U S farm operators counted in the 1974 Census probably left agriculture by 1978 This conjecture suggests that . the longitudinal data set may capture approximately two-thirds of all "true" longitudinal farms That is, about half the farms in the 1974 nonlongitudinal row of table 1 may actually have left agriculture. This sample represents the first comprehensive longitudinal data base ever avalable for U S farms .

The proportion of 1974 farms represented in the 1974-78 longitudinal set varies by farm size, with medium- and large-sized farms more highly represented than smaller farms Among the 507,797 farms of fewer than 50 acres in 1974, 41 percent were included in the 1974-78 longitudinal set, while 60 percent of farms of 260 acres or more were included Similarly, the longitudinal set includes 43 , . percent of all farms with 1974 sales of less than $\$ 2,500$ and 65 percent of farms with 1974 sales of $\$ 100,000$ or more: Varying rates of inclusion by farm size may approximately reflect the farm sector In Canada, small farms have much higher entry, and exit rates than do large farms (5)

Four economic variables were collected in the longitudinal set farm size by acres per farm, by value of, sales, by tenure, and by standard industrial classification The measure of farm size in acres avoids problems posed by inflation when constructing intertemporal farm size classes based on sales, and it allows U S farm structure to be thought of

Table 1-Longitudinal and nonlongitudinal farms, 1974 and 1978, and allocation of nonlongitudinal farms between continuing and entering/exiting states

| Item | Unit | Acres per farm |  |  |  |  |  |  |  | Total farms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 1-49 \\ \text { acres } \end{gathered}$ | $\begin{aligned} & 50-99 \\ & \text { acres } \\ & \hline \end{aligned}$ | $\begin{gathered} 100-179 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 180-259 \\ \text { acres } \end{gathered}$ | $260-499$ acres | $\begin{gathered} 500999 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 1,000-1,999 \\ \text { acres } \end{gathered}$ | 2,000 plus acres |  |
| 1974 |  |  |  |  |  |  |  |  |  |  |
| All farms | Number | 507.797 | 384,762 | 443,122 | 253,232 | 362,866 | 207,297 | 92,712 | 62,225 | 2,314,013 |
| Longitudinal | do | 209,987 | 180,175 | 230.473 | 143,539 | 217.189 | 126,881 | 55,718 | 36,290 | 1,200,252 |
| Nonlongitudinal | do | 297,810 | 204,587 | 212,649 | 109,693 | 145,677 | 80,416 | 36,994 | 25,935 | 1,113,761 |
| MAX OUT | do | 297.810 | 204,587 | 212,649 | 109,693 | 145,677 | 80,416 | 36,994 | 25,935 | 1,113,761 |
| Nonlong/long | Ratio | 14182 | 11355 | 09227 | 07642 | 06707 | 06338 | 06640 | 07147 | 09279 |
| Continuing farms | Number | 131,074 | 112,466 | 143,862 | 89,597 | 135,570 | 79,199 | 34,779 | 22,652 | 749,200 |
| MIN OUT | do | 166,736 | 92,121 | 68,787 | 20,096 | 10,107 | 1,217 | 2,215 | 3,283 | 364,561 |
| . 1978 |  |  |  |  |  |  |  |  |  |  |
| All farms | do | 542.787 | 355.755 | 403,292 | 233,854 | 347,777 | 213,209 | 97,800 | 63,301 | 2.257775 |
| Longitudinal | do | 212,452 | 181,951 | 225,922 | 138,202 | 212,536 | 131,270 | 59,326 | 38,593 | 1,200,252 |
| Nonlongitudinal | do | 330,335 | 173,804 | 177,370 | 95,652 | 135,241 | 81,939 | 38,474 | 24,708 | 1,057,523 |
| MAX IN | do | 330,335 | 173;804 | 177.370 | 95,652 | 135,241 | 81,939 | 38,474 | 24,708 | 1,057,523 |
| Nonlong/long | Ratio | 15549 | 09552 | 07851 | 06921 | 06363 | 06242 | 06485 | 06402 | 08811 |
| Continuing farms | Number | 132,613 | 113,574 | 141,021 | 86,266 | 132,665 | 81,939 | 37031 | 24,090 | 749,200 |
| MIN IN | do | 197,722 | 60,230 | 36,349 | 9,386 | 2,576 | 0 | 1.443 | 618 | 308,323 |
| Net change, MAX | do | 32,525 | $-30,783$ | - 35,279 | -14,041 | - 10,436 | 1,523 | 1,480 | - 1,227 | -56,238 |
| Net change, MIN | do | 30,986 | -31,891 | -32,438 | $-10,701$ | -7,531 | -1,217 | - 772 | - 2,665 | -56.238 |

as a constantly changing number and mix of farms on a nearly fixed land base Total US land in farms decreased by only 02 percent from 1974 to 1978 and by only 8 percent from 1940 to 1982

## Results

Markov analysis was applied first to the 12 million longitudinal farms However, the longitudinal set alone fails to account for changes in the total number of farms during the period and does not reflect the size distributions in 1974 and 1978 of farms not included in the set, shown as nonlongitudinal farms in table 1 A subsequent reformulation of the problem accounts for the presence of continuing farms excluded from the longitudinal sample and for entry and exit

## Longitudinal Farms Only

The Markov transition matrix for the longitudinal set appears in table 2 The table shows for each size class in 1974 how many farms moved into the varıous sıze classes by 1978 These are the only unpublished data used in this article Several points
stand out in the transition matrix The matrix has near symmetry around the main diagonal Numbers on the diagonal are relatively large, 68 percent of the longitudinal farms were in the same class at the end of the period as at the beginning Numbers of farms off the diagonal approximately balance, sym metrically, cell by cell, thus indicating that growth in some farms is about offset by decline in others The upper right and lower left triangles are not empty, indicating that small farms can become very large from one census to the next and also that large farms can become very small For example, 432 farms went from under 50 acres to over 2,000 , while 395 others went from over 2,000 acres to under 50 The central tendencies of the system are thus quite stable

The transition probability matrix in table 3 differs significantly from the transition matrices imputed in the studies reviewed earher, which were assumed to be upper triangular The flows indicated in the table are greater than one would expect from the low rates of farm real estate sales, implying that most of the large fluctuations, both up, and down, were accomplished via land rental rather

Table 2-Transition matrix, farm size in acres per farm, 1974-78

| $\begin{gathered} 1974 \\ \text { acres } \\ \text { per farm } \\ \hline \end{gathered}$ | 1978 acres per farm |  |  |  |  |  |  |  | Total farms 1978 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 1-49 \\ \text { acres } \end{gathered}$ | $\begin{array}{r} 50-99 \\ \text { acres } \end{array}$ | $\begin{gathered} 100179 \\ \text { acres } \\ \hline \end{gathered}$ | $\begin{gathered} 180-259 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 260499 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 500-999 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 1,000-1,999 \\ \text { acres } \end{gathered}$ | $\begin{aligned} & 2,000 \text { plus } \\ & \text { acres } \end{aligned}$ |  |
|  | Number of farms |  |  |  |  |  |  |  |  |
| 1-49 | 163,914 | 22,985 | 12,040 | 4,385 | 4,066 | 1,592 | 573 | 432 | 209,987 |
| 50-99 | 24,385 | 122,100 | 21,819 | 5,922 | 4,237 | 1,324 | 277 | 111 | 180,175 |
| 100-179 | 12,664 | 25,134 | 154,083 | 20,960 | 13,477 | 3,237 | 683 | 235 | 230,473 |
| 180-259 | 4,494 | 6,185 | 21,563 | 82,386 | 24,092 | 3,997 | 639 | 183 | 143,539 |
| 260-499 | 4,322 | 4,126 | 13,097 | 20,850 | 144,220 | 27,080 | 2,860 | 634 | 217,189 |
| 500-999 | 1,705 | 1,040 | 2,527 | 3,028 | 20,004 | 83,550 | 13,456 | 1,571 | 126,881 |
| 1,000-1',999 | 573 | 267 | 556 | 478 | 1,933 | 9,277 | 36,724 | 5,910 | 55,718 |
| 2,000 plus | 395 | 114 | 237 | 193 | 507 | 1,213 | 4,114 | 29,517 | 36,290 |
| Total, 1974 | 212,452 | 181,951 | 225,922 | 138,202 | 212,536 | 131,270 | 59,326 | 38,593 | 1,200,252 |

Source Spectal longitudinal tabulation, 1974 and 1978 Censuses of Agriculture, Bureau of the Census, U S Department of Commerce
than purchase This conclusion is consistent with the observations that 41 percent of US farmland was operated by someone other than the owner in 1982 and that there are more farmland owners than operators

If the 12 million farms in the longitudinal sample were to have moved again during 1978-82 as they did during 1974-78 and then were to move again and again in subsequent 4 -year intervals according to the probabilities in table 3, a steady state would eventually be reached in which additional moves will each bring the system back to the same distribution it had before the additional move Table 4 compares the steady-state, longrun equilibrium distribution of farms implied by the 1974-78 transition probability matrix with the actual distributions of farms in the longitudinal set in 1974 and 1978

These distributions for the longitudinal sample sug. gest that the tendency among the longitudinal farms was toward a moderately lower proportion of farms under 500 acres and a higher proportion of farms with more than 500 acres And, the longl tudinal data reflect a slight trend toward a shrinking of the middle-sized classes of farms However, these tendencles observed for 1974-78 are not dramatic, they imply a longrun equilibrium distribu tion not'very different from the origanal 1974 distribution

## Allowance for Entry, Exit, and Continuing Farms Excluded from the Sample

"Neither economic theory nor applied economic studies in agriculture adequately consider the subject of exit and entry of firms," according to Conneman and Harrington (2, p 40) They emphasize the importance of relable data on exit and entry for Markov analysis The longitudinal data set includes only about half the farms in US agriculture in 1974-78 The other half is composed of (1) farms present in 1974, but not present in 1978 (exiting farms), (2) farms not present in 1974, but present in 1978 (entering farms), and (3) farms present in both years, but not picked up in the longitudinal sample (continuing/excluded farms) Dealing with entry and exit raises two issues how to allocate the nonlongltudinal farms between the continuing/excluded and entry/exit states, and how to model the population of potential and former farmers

In earlier studies, Farris and Padberg (6) had complete information on entry and exit, so there were no imputational problems The following studies imputed transition matrices from aggregate data, and they assumed that there were no entrants so there was no need to model the population of potential farmers Krenz (9), Daly, Dempsey, and Cobb (3), and Lin, Coffman, and Penn (10) assumed farms either remained in the initial state, moved up one or two size classes, or exited Dean, Johnson, and

Table 3-Transition probabiliti matrix. farm wize in acres per farm, 1974-78

| $\begin{gathered} 1974 \\ \text { acres } \\ \text { per farm } \end{gathered}$ | 1978 acres per farm |  |  |  |  |  |  |  | Total farms 1978 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 1-49 \\ \text { acres } \end{gathered}$ | $\begin{array}{r} 50-99 \\ \text { acres } \end{array}$ | $\begin{gathered} 100-179 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 180-259 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 260499 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 500-999 \\ \text { acres } \end{gathered}$ | $\begin{gathered} \text { 1,000-1,999 } \\ \text { acres } \end{gathered}$ | $2,000 \text { plus }$ acres |  |
|  | Probabiluty |  |  |  |  |  |  |  |  |
| 1-49 | 07806 | 01095 | 00573 | 00209 | 00194 | 00076 | 00027 | 00021 | 10000 |
| 50-99 | 1353 | 6777 | 1211 | 0329 | 0235 | 0073 | 0015 | 0006 | 10000 |
| 100-179 | 0549 | 1091 | 6686 | 0909 | 0585 | 0140 | 0030 | 0010 | 10000 |
| 180.259 | 0313 | 0431 | 1502 | 5740 | 1678 | 0278 | 0045 | 0013 | 10000 |
| 260499 | 0199 | 0190 | 0603 | 0960 | 6640 | 1247 | 0132 | 0029 | 10000 |
| 500-999 | 0134 | 0082 | 0199 | 0239 | 1577 | 6585 | 1061 | 0124 | 10000 |
| 1,000-1,999 2,000 plus | 0103 | 0048 | 0100 | 0086 | 0347 | 1665 | 6591 | 1061 | 10000 |
| 2,000 plus | 0109 | 0031 | 0065 | 0053 | 0140 | 0334 | 1134 | 8134 | 10000 |

Table 4-Relative distributions of longitudinal farms. bs sıe of farm. 1974 1978, and projected equilibrium

| Year | Acres per farm |  |  |  |  |  |  |  | Total farms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 149 \\ \text { acres } \end{gathered}$ | $\begin{aligned} & 5099 \\ & \text { acres } \end{aligned}$ | $\begin{gathered} 100179 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 180259 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 260499 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 500999 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 1,000-1,999 \\ \text { acres } \end{gathered}$ | 2,000 plus |  |
|  | Percent |  |  |  |  |  |  |  |  |
| 1974 | 175 | 150 | 192 | 120 | 181 | 106 | 46 | 30 | 1000 |
| 1978 | 177 | 152 | 188 | 115 | 177 | 109 | 49 | 32 | 1000 |
| Equilibrium | 175 | 145 | 171 | 103 | 167 | 121 | 66 | 52 | 1000 |

Carter (4) used similiar assumptions, but showed, in addition, some moves to the next smaller size class

The entry, exit, and nonfarm population constraints can be treated by the addition of a row and a column to the matrices in tables 2 and 3 One can compute the gross flows of nonlongitudinal farms by farm size from published Census data by subtracting longitudinal farms from all farms in each size class We used two sets of assumptions about the nonlongitudinal farms First, the longitudinal farms are a complete count of all continuing farms so that the nonlongitudinal farms represent solely entry and exit (tables 5 and 6) This assumption overestimates turnover, it indicates the maximum that could have entered or exited each farm class during 1974-78 Second, the number of continuing/excluded farms is maximized (and the number of entries and exits minimized) tor each farm size subject to the restriction that the distribution of continuing/excluded farms among the farm size classes is iden-
tical to the distribution of longitudinal farms (tables 7 and 8) The calculations pertaining to the second assumption are explained below In this case, entry and exit by size class are at a minimum subject to the proportionality assumption This assumption probably underestımates actual turnover

Table 1 presents the maximum and minimum flows of entry and exat computed under the above assumptions In the first case, when the number of continuing/excluded farms is assumed to be zero, entries and exits are labeled MAX OUT and MAX IN and are equal to the number of nonlongitudinal farms in 1974 and 1978 , respectively In the second case, imputed entries and exits are labeled MIN OUT and MIN IN, and the implied continuing/excluded farms for each year are also identified We derived these values as follows The smallest ratio of nonlongltudinal to longitudinal farms (labeled Nonlong/long in the table) was for the 500-999 acre class in 1978, the ratıo was 06242 For each class, the estimated
number of continuing/excluded farms in 1978 is 6242 percent of the number of longitudinal farms, and the MIN IN row is the residual This calcula tion yields zero entrants for the 500-999-acre class and positive levels of entry for each of the other classes To distribute the 749,200 continuing farms among size classes in 1974, we made parallel computations For each class, the estimated number of continuing/excluded farms is 6242 percent of the 1974 distribution of longitudinal farms, and the MIN OUT row is the residual. This calculation yields positive levels of exit for each size class The last two rows of table 1 show the net changes in each size class under the two sets of assumptions These net changes are similar despite differences in the gross flows from which they were derived Both show most of the net entries under 50 acres For farms of 500-1,999 acres, the maximum case shows net entries, whereas the minimum case shows net exits

Table 5 shows an expanded transition probability matrix reflecting the assumption of maximum flows in and out of agriculture The matrix in table 5 is derived from a transition matrix which has the MAX IN row from table 1 as a new top row and the MAX OUT row as a new first column Similarly, table 7 shows an expanded transition probability matrix reflecting the minimum flow assumptions The matrix in table 7 is derived from a transition matrix which has the MIN IN and MIN OUT rows of table 1 as an extra row and column However, in this case we increased the 8 -by- 8 portion of the new
transition matrix by 749,200 farms, to reflect the farms assumed to be continuing/excluded, by raising each entry in table 2 by the ratio of all continuing farms to longitudinal sample farms - that is, by multiplying by 16242 This procedure treated about two-thirds of the nonlongitudinal farms as continuing and the other one third as entry and exit This set of calculations associated with our second assumption implies more stability than suggested by the Canadian experience cited above, whereas the MAX IN and MAX OUT assumption clearly imphes too much turnover

One further problem remains in accounting for farms outside the longitudinal data set The logic of Markov analysis requires information about the total size of the nonfarm population of potential farm oprators from which entrants come and to which exiters go This problem did not arise in earher studies using imputed transition probabilities and with entries to agriculture assumed to be zero, in such cases the number of potential entrants is irrelevant Farris and Padberg (6) arbitrarily assumed a population of potential entrants over three times larger than the actual number of firms in the industry From the logical viewpoint, the population of potential entrants can be any finite, nonnegative number, for example, it can be zero Or. for a study of this type, one might suppose it equal to the number of nonfarm households in the United States or to the number of households in rural areas of the United States This arbitrary choice has no effect on the longrun equilibrium

Table ${ }^{\text {B }}$-Transition probability matrix assuming maxımum flows of entry and exıl, 1974-78

| $\begin{gathered} 1974 \\ \text { acres } \\ \text { per farm } \\ \hline \end{gathered}$ | Nonfarm population | 1978 acres per farm |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 149 \\ \text { acres } \end{gathered}$ | $\begin{array}{r} \hline 50-99 \\ \text { acres } \end{array}$ | $\begin{gathered} 100-179 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 180-259 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 260-499 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 500-999 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 1,000-1,999 \\ \text { acres } \\ \hline \end{gathered}$ | $\begin{gathered} 2,000 \text { plus } \\ \text { acres } \\ \hline \end{gathered}$ |
|  | Probability |  |  |  |  |  |  |  |  |
| Nonfarm | 07885 | 00661 | 00348 | 00355 | 00191 | 00270 | 00164 | 00077 | 00049 |
| 1-49 | 5865 | 3228 | 0453 | 0237 | 0086 | 0080 | 0031 | 0011 | 0009 |
| 50.99 | 5317 | 0634 | 3173 | 0567 | 0154 | 0110 | 0034 | 0007 | 0003 |
| 100-179 | 4799 | 0286 | 0567 | 3477 | 0473 | 0304 | 0073 | 0015 | 0005 |
| 180-259 | 4332 | 0177 | 0244 | 0852 | 3253 | 0951 | 0158 | 0025 | 0007 |
| 260-499 | 4015 | 0119 | 0114 | 0361 | 0575 | 3974 | 0746 | 0079 | 0017 |
| 500-999 | 3879 | 0082 | 0050 | 0122 | 0146 | 0965 | 4030 | 0649 | 0076 |
| 1,000-1,999 | 3990 | 0062 | 0029 | 0060 | 0052 | 0208 | 1001 | 3961 | 0637 |
| 2,000 plus | 4168 | 0063 | 0018 | 0038 | 0031 | 0081 | 0195 | 0661 | 4744 |

percentage distribution (1, pp 899, 901) However, the shortrun time path of distributions is sensitive to the choice, as is the total number of farms in equilibrium Stanton and Kettunen show algebralcally that'the equilibrium number of farms is a function of the number of potential entrants, a larger nonfarm population results in a larger equilibrium farm population (11) However, as Stanton and Kettunen explain, as the number of potential entrants is increased, the net effect on the resulting projections decreases at a decreasing rate They add that a larger choice may suit a competitive market situation, but that a smaller choice may better represent oligopoly By experiment, we found that the shortrun time path was particularly sensitive to smaller numbers, such as zero, or 1 million, but that choices above 5 million made little difference after the first few transitions Consequently, we chose to complete the modification of table 2 by assuming an initial nonfarm population of 5 million potential operators in 1974 Appending the new first row and column reflecting the gross flow assumptions to table 2 and assuming a 1974 nonfarm population of 5 million produce the transition probability matrix in table 5

The number of farms that entered agriculture during 197478 farled to offset the number that left, so the augmented probability matrix suggests a moderately decreasing number of farms However, the projected decrease is slow, tending toward a longrun equilibrium only slightly below the initial level The number of farms entering at the smaller and larger sizes exceeded the number leaving, whereas the number leaving at the middle sizes ex-
ceeded the number entering This situation indicates a stronger tendency toward bimodality than appeared in projections using farms from the longitudinal sample alone, with more farms under 50 acres and over 500 acres and with fewer in be tween The tendency is not great, however, and the overall stability implied by the longitudinal data alone continues to hold (table 6)

The above analysis assumes that all contınuing farms were captured in the longitudinal sample In the alternative formulation, the maximum number of continuing farms, consistent with the distribution of the longitudinal set, was assumed to have been excluded from the longitudinal set Minımum entrants are appended as a new first row to table 2 , and minimum exiters are appended as a new first column The continuing/excluded farms were incorporated into the remaining eight rows and columns of the transition matrix in the same proportion as the farms in the longitudinal sample The result is the new transition probability matrix shown in table 7

The first row of table 7 shows no farms entering the $500-999$-acre class and very few in any size class over 260 acres The first column of the table shows that the proportion of farms exiting is highest at sizes below 180 acres and that it rises slightly for farms above 1,000 acres Table 8 shows the past and projected distributions

Compared with the earlier analysis, this one suggests a longrun equilibrium with somewhat fewer farms, about 15 percent below the present number

Table 6-Projected number of farms, by size for 1982, 1990, 2000, and equilibrium when maximum flows of entry and exit are assumed

| Year | Nonfarm population | Acres per farm |  |  |  |  |  |  |  | Total farms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 1-49 \\ \text { acres } \end{gathered}$ | $50-99$ acres | $\begin{gathered} 100179 \\ \text { acres } \end{gathered}$ | $\begin{array}{\|c\|} \hline 180-259 \\ \text { acres } \end{array}$ | $\begin{gathered} 260-499 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 500-999 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 1,000-1,999 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 2,000 \text { plus } \\ \text { acres } \end{gathered}$ |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 1974 | 5,000,000 | 507,797 | 384,762 | 443,122 | 253,232 | 362,866 | 207,297 | 92,712 | 62,225 | 2,314,013 |
| 1978 | 5,056,238 | 542,787 | 355,755 | 403,292 | 233,854 | 347,777 | 213,209 | 97,800 | 63,301 | 2,257,775 |
| 1982 | 5,076,885 | 554,384 | 347,231 | 388,534 | 225,846 | 340,892 | 215,331 | 100.492 | 64,418 | 2,237,128 |
| 1990 | 5,087,286 | 559,732 | 343,893 | 380,797 | 221,212 | 336,368 | 216,328 | 102,494 | 65,721 | 2,226,726 |
| 2000 | 5,088,762 | 560,437 | 343,537 | 379,811 | 220,368 | 335,383 | 216,443 | 102,999 | 66,226 | 2,225,203 |
| Equilibrium | 5,088,921 | 560,496 | 343,504 | 379,681 | 220,260 | 335,236 | -216,454 | 103.097 | 66,366 | 2,225,094 |

Table 7-Transition probability matrix assuming minimum flows of entry and exit. 1974-78

| 1974 <br> acres per farm | Nonfarm population | 1978 acres per farm |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & 1-49 \\ & \text { acres } \end{aligned}$ | $\begin{aligned} & 5099 \\ & \text { acres } \end{aligned}$ | $\begin{gathered} 100-179 \\ \text { acres } \\ \hline \end{gathered}$ | $\begin{gathered} 180-259 \\ \text { acres } \\ \hline \end{gathered}$ | $\begin{gathered} 260499 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 500-999 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 1,000 \quad 1,999 \\ \text { acres } \end{gathered}$ | 2,000 plus |
|  | Probability |  |  |  |  |  |  |  |  |
| Nonfarm | 09383 | 00396 | 00121 | 00073 | 00019 | 00005 | 0 | 00003 | 00001 |
| 149 | 3284 | 5243 | 0735 | 0385 | 0140 | 0130 | 0051 | 0018 | 0014 |
| 5099 | 2395 | 1029 | 5154 | 0921 | 0250 | 0179 | 0056 | 0012 | 0005 |
| 100-179 | 1554 | 0464 | 0921 | 5647 | 0768 | 0494 | 0119 | 0025 | 0009 |
| 180-259 | 0794 | 0288 | 0397 | 1383 | 5284 | 1545 | 0256 | 0041 | 0012 |
| 260-499 | 0279 | 0193 | 0185 | 0586 | 0933 | 6455 | 1212 | 0128 | 0028 |
| 500-999 | 0060 | 0134 | 0081 | 0198 | 0237 | 1567 | 6545 | 1054 | 0123 |
| 1,000-1,999 | 0242 | 0100 | 0047 | 0097 | 0084 | 0339 | 1625 | 6432 | 1035 |
| 2,000 plus | 0533 | 0103 | 0030 | 0062 | 0050 | 0132 | 0316 | 1073 | 7700 |

In the intermediate run, from 1978 to 2000 , the reduction in farm numbers'is projected at an average annual rate of 04 percent, which, by coincidence, is the same average annual rate observed from Census data during 1974-82 The implied equilibrium distribution shows a greater tendency toward bimodality than the other projections, with a much larger proportion of farms under 100 acres and a slight increase in farms over 1,000 acres The projected rate of concentration by farm size is not great even in the long run, however, and implies relatively little change from the initial distribution ${ }^{1}$

## Projections to 1982 Based on 1974-78 Transition Probabilities

Both the augmented Markov transition matrices produced reasonable estimates of 1982 from the 1974 distribution by using 1974-78 probabilities Table 9 compares the projections with the actual 1982 distribution The minimum flow matrix came a bit closer to the actual 1982 distribution than the maximum flow matrix did In both projections to 1982, the number of farms under 50 acres was underestimated and the number of farms in each of the other size classes was slightly overestimated ${ }^{5}$ More farms werestimated toward the center of the distribution than were actually there, indicating

[^3]that the trend toward bimodahty was somewhat more pronounced in 1978-82 than in 1974-78

Table 10 shows the relative distributions associ ated with the data in table 9 It also shows a distribution quotient measuring how close one relative distribution is to another The distribution quotient is the sum of the positive first differences between the the elements of a parr of relative distributions (7, pp 252-53) The quotients are calculated with actual 1982 data as the base distribution, so each quotient compares a distribution with the actual 1982 distribution Distribution quotients computed in this way range from zero to unity A zero value indicates two relative distribu-

[^4]Table 8-Projected number of farms. by size for 1982, 1990, 2000. and equilibrium when minimum flows of entry and exit are assumed

| Year | Nonfarm popu lation | Acres per farm |  |  |  |  |  |  |  | Total farms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 1-49 \\ \text { acres } \end{gathered}$ | $\begin{aligned} & 50-99 \\ & \text { acres } \end{aligned}$ | $\begin{gathered} 100-179 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 180-259 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 260-499 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 500-999 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 1,0001,999 \\ \text { acres } \end{gathered}$ | $\begin{aligned} & 2,000 \text { plus } \\ & \text { acres } \end{aligned}$ |  |
|  | People |  |  |  |  |  |  |  |  |  |
| 1974 | 5,000,000 | 507:797 | 384,762 | 443,122 | 253,232 | 362,866 | 207,297 | 92,712 |  |  |
| 1978 | ,5,056,238 | 542,787 | 355,755 | 403,292 | 233,854 | 347,77,7 | 213,209 | 97,800 | 62,220 | 2,314,013 |
| 1982 | 5,105,636 | 557,846 | 339,406 | 376,525 | 219,268 | 334,161 | 215,111 | 101,488 | 64,571 | 2,208,377 |
| 1990 | 5,182,459 | 566,707 | 322,901 | 345,105 | 199,738 | 311,747 | 212,818 | 105,356 | 67,182 | 2,131,554 |
| 2000 | 5,246,947 | 568,238 | 313,986 | 326,019 | 185,987 | 291,703 | 205,776 | 106,030 | 69,326 | 2,067,066 |
| Equilibrium | 5 412,574 | 572,957 | 305,201 | 300,520 | 162,444 | 242,159 | 168,187 | 89,078 | 60,893 | 1,901,439 |

Table 9—Actual and projected number of farms, by acres per farm, 1974, 1978, 1982

| Year | Acres per farm |  |  |  |  |  |  |  | Total farms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 1.49 \\ \text { acres } \end{gathered}$ | $\begin{aligned} & 50-99 \\ & \text { acres } \end{aligned}$ | $\begin{gathered} 100-179 \\ \text { acres } \end{gathered}$ | $180-259$ acres | $\begin{gathered} 260-499 \\ \text { acres } \end{gathered}$ | $\begin{gathered} \text { 500-999 } \\ \text { acres } \end{gathered}$ | $\begin{gathered} 1,000-1,999 \\ \text { acres } \\ \hline \end{gathered}$ | $\begin{gathered} 2,000 \text { plus } \\ \text { acres } \end{gathered}$ |  |
|  | Number of farms |  |  |  |  |  |  |  |  |
| 1974 actual | 507,797 | 384,762 | 443,122 | 253,232 | 362,866 | 207,297 | 92,712 | 62,225 | 2,314,013 |
| 1978 actual | 542,787 | 355,755 | 403,292 | 233,854 | 347,777 | 213,209 | 97,800 | 63,301 | 2,257,775 |
| 1982 actual | 636,917 | 343,775 | 367,877 | 211,485 | 315,025 | 203,925 | 97,395 | 64,577 | 2,240,976 |
| 1982 maxımum | 554,384 | 347;231 | 388,534 | 225,846 | 340,892 | 215,331 | 100,492 | 64,418 | 2,237,128 |
| 1982 minımum | 557,846 | 339,406 | 376,525 | 219,268 | 334,161 | 215,111 | 101,488 | 64,571 | 2,208,377 |

Table 10-Relative distributions and quotients for actual and projected farms, 1974, 1978, 1982

| Year | Acres per farm |  |  |  |  |  |  |  | Distri bution quotient |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 1-49 \\ \text { acres } \\ \hline \end{gathered}$ | $\begin{aligned} & 50-99 \\ & \text { acres } \end{aligned}$ | $\begin{gathered} 100-179 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 180-259 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 260-499 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 500-999 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 1,000-1,999 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 2,000 \text { plus } \\ \text { acres } \end{gathered}$ |  |
| , | Distribution |  |  |  |  |  |  |  | uotrent |
| 1974 actual | 02194 | 01663 | 01915 | 01094 | 01568 | 00896 | 00401 | 00269 | 00715 |
| 1978 actual | 2404 | 1576 | 1786 | 1036 | 1540 | 0944 | 0433 | 0280 | 0447 |
| 1982 actual | 2842 | 1534 | 1642 | 0944 | 1406 | 0910 | 0435 | 0288 | 0000 |
| 1982 maximum | 2478 | 1552 | 1737 | 1010 | 1524 | 0963 | 0449 | 0288 | 0365 |
| 1982 minımum | 2526 | 1537 | 1705 | 0993 | 1513 | 0974 | 0460 | 0292 | 0316 |

tions are identical, unity indicates they are quite different

The distribution quotient for the minimum flow projection to 1982 is smaller than that for the maximum flow projection, indicating that the minimum flow projection more closely approximated the actual The quotient which compares the actual 1974 with the actual 1982 distribution is 00715 , indicating that the distribution of $U S$ farms by acres per farm did not change much during the 8 -year interval Both projections from 1974 to 1982 are closer to the actual 1982 distribution than to the 1974 distribution, indicating that the 1974-78 trend forms a useful basis for characterizing the entire 1974-82 period

## Assessing the Applicability of the Transition Matrix to Earlier Periods

The pattern of structural change described by the 1974-78 probabilities explains changes between previous censuses reasonably well Three censuses, 1974, 1969, and 1964, were projected from their previous censuses The distribution quotients compare the actual distribution with the associated projection in each of the 3 years The minimum flow matrix consistently made better predictions than the maximum flow matrix (table 11)

In each case, the actual proportion of farms under 50 acres was below the projected level enough to account for most of the value of the quotient, the projections also consistently overestimated farms above 500 acres and underestimated farms from 50 to 500 acres. These divergences are consistent with the view that the trend toward a reduced proportion of farms in the middle-sized classes has acceler-

Table 11-Distribution quotients for 1974, 1969, and 1964 projected from the previous Census

| Projection | Maxımum <br> flow | Mınımum <br> flow |
| :--- | :---: | :---: |
|  | Quotıent |  |
|  | 00266 | 00237 |
| 1974 from 1969 | 0301 | 0222 |
| 1969 from 1964 | 0281 | 0088 |

ated since the sixties. That acceleration is reflected in the pattern of divergences encountered in the projections to 1982 , which underestimated the proportion of farms in the smaller size class and overestimated the proportion of farms in the middle range However, the divergences between the actual and projected proportions are relatively small in all cases and seem to be closely related to fluctuations in the smallest size class which, as noted earlier, appears to be very sensitive to definitional changes

Several things affect the outcome for shortrun projections the structure of the longitudinal farms, the structure of the nonlongitudinal farms, the arbitrary assumption of the size of the pool of potential operators from which entrants come and to which exiters go, the size classes and time interval selected for analysis, and the initial distribution of farms All these factors changed during the 1959-74 interval under consideration, and each doubtless had an effect on the outcome However, the last mentioned - the initial distribution of farms-affects the shortrun path in a predictable way Any initial distribution will be moved toward equilibrium Inasmuch as the 1964 distribution is closer to equilibrium than the 1959 distribution, it is not surprising that the projection from 1959 to 1964 moved the distribution in the correct direction The same phenomenon occurs with projections from the actual 1935 distribution Each projected distribution is closer to the projected longrun equilibrium, which in turn is not far from the actual 1974 distribution That is, the Markov chain estimated for 1974-78 moves the actual 1935 distribution toward the actual 1974 distribution The projections make the adjustment more rapidly than actually occurred, however, in about half the actual number of years

## A Longrun Perspective

Figure 1 shows the number of farms by size in acres per farm since 1935 The figure makes clear the rapid descent in farm numbers during 1935-74 and the subsequent leveling It also indicates projections to 2000 using the maximum flow matrix Figure 2 shows the relative distributions associated with the data in figure 1, and the data appear'in table 12 Table 12 also reports the distribution quotient which compares each distribution with the actual 1982 distribution As one traces these quotients

Figure 1

## Farms by Size, 1935-82, with Projections



Historical dala from Bureau of the Census, projections from table 6
backwards through time from 1982, the difference from 1982 increases, indicating that the farther one looks into the past, the greater the difference in farm structure becomes

The proportion of farms under 50 acres increased in 1982 to about.that of 1959 Hence, from 1964 to 1978, the proportion of such farms was smaller than in 1982, and from 1935 to 1954 the proportion was larger The absolute share of these farms was large, and the rate of change from one census to the next was rapid, so this difference is the most important single contributor to the size of the distribution quotient from 1935 through 1978, with the single exception of 1959 After 1959, the second major difference is that there were proportionately fewer farms of 50-180 acres than in 1982 Before 1959, the second major difference is that there were proportionately more farms of 260-500 acres than in 1982

The distribution quotients for projected distributions for 1990, 2000, and longrun equilibrium, under
both sets of assumptions, illustrate the extent to which the change in farm size distribution stabilized during 1974-78 (table 12 and see figs 1 and 2) When the 1974-78 trends are projected forward, they sug. gest that the future number and distribution of farms by acres per farm will be more like the present than the present is like the past

## Conclusions

We analyzed longitudinal data on US farms to evaluate changes in size by acres per farm during 1974-78 The data reveal considerable stability among these farms, both at the individual and aggregate levels For individual farms remaning in operation, the most likely outcome after 4 years was that each would remain in the same size class as before Among those changing size classes, most changed into an adjacent.class Only a small fraction of continuing farms exhibited dramatic changes in acreage during 1974-78 However, the number of shifts in size was more than one would expect from

Figure 2

## Percentage Distribution of Farms by Size, 1935-82, with Projections

Percent


Historical data from Bureau of the Census, projections from table 6
the number of transactions per year in farm real estate, suggesting that leasing is important in explaining the changing structure of farms Changes in farm size displayed a great deal of symmetry. For every farm moving up from a smaller to larger class, another farm was likely to move in the other direction Relative stability in the size distribution is suggested when the $1974-78$ pattern of change is assumed to continue indefintely This symmetry and stability suggest a substantially different view of structural change in agriculture than the 1935-74 trend toward fewer and larger farms would suggest

Tendencies toward a bimodal distribution are evident, but longrun projections suggest they are moderate The 1974-78 data do not support the view that the mid-sized farms will disappear. Based on the $1974-78$ data, projections to 1982 also suggest that the comparative stablization of structural change occurring in 1974-78 continued in 1978-82

One projection examined here uses longitudinal farms only, and two others make alternative assumptions about entry and exit of nonlongitudinal farms We experimented with other assumptions about nonlongitudinal farms, and found that all methods treating nonlongitudinal farms in a uniform and consistent manner led to approximately the same results Even so, none of the assumptions used exactly captures the actual distribution of nonlongitudinal farms, and projections were sensitive to nonuniform assumptions, such as that losses were concentrated among mid-sized farms

The longrun implications of this analysis turn on the stability of the transition probability matrix estimated for 1974-78 If the longrun transition probabilities remain close to those estimated here, then the structure of US agriculture will change little from what it is today. However, the transition probabilities could change. The significantly changed conditions in US. agriculture-from the

Table 12-Relative distribution bv sife in acres per farm 1935 to longrun equibrium, and quotients with $1982=$ batqe year

| Year | Acres per farm |  |  |  |  |  |  |  | Distribution quotient |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 1-49 \\ \text { acres } \end{gathered}$ | $\begin{aligned} & 5099 \\ & \text { acres } \end{aligned}$ | $\begin{gathered} 100-179 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 180-259 \\ \text { acres } \\ \hline \end{gathered}$ | $\begin{gathered} 260499 \\ \text { acres } \\ \hline \end{gathered}$ | $\begin{gathered} 500-999 \\ \text { acres } \end{gathered}$ | $\begin{gathered} 1,000-1,999 \\ \text { acres: } \\ \hline \end{gathered}$ | $\begin{gathered} 2,000 \text { plus } \\ \text { acres } \end{gathered}$ |  |
|  | $\qquad$ |  |  |  |  |  |  |  |  |
| Actual |  |  |  |  |  |  |  |  |  |
| 1935 | 03955 | 02120 | 02111 | 00744 | 00695 | 00246 | 00130 | 0 | 02168 |
| 1940 | 3755 | 2116 | 2147 | 0797 | 0752 | 0268 | 0165 | 0 | $\begin{array}{r}2000 \\ \hline\end{array}$ |
| 1945 | 3838 | 1975 | 2048 | 0842 | 0808 | 0297 | 0193 | 0 | 1844 |
| 1950 | 3652 3549 | 1945 | 2047 | 0905 | 0887 | 0338 | 0225 | 0 | 1627 |
| 1954 | 3549 | 1807 | 1993 | 0970 | 1008 | 0401 | 0273 | 0 | 1356 |
| 1959 | 2850 2597 | 1773 | 2082 | 1117 | 1271 | 0539 | 0213 | 0154 | 0861 |
| 1969 | 2597 2328 | 1718 1685 | 2004 | 1126 1124 | 1429 1536 | 0666 0790 | 0269 | 0191 | 0752 |
| 1974 | 2194 | 1663 | 1915 | 1094 | 1568 | 0790 | 0333 | 0219 | 0804 |
| 1978 | 2404 | 1576 | 1786 | 1036 | 1540 | 0944 | 0433 | 0280 | 0447 |
| 1982 | 2842 | 1534 | 1642 | 0944 | 1406 | 0910 | 0435 | 0288 | 0000 |
| Maximum flow |  |  |  |  |  |  |  |  |  |
| 1990 | 2514 | 1544 | 1711 | 0993 | 1511 | 0972 | 0460 | 0295 | 0328 |
| 2000 | 2519 | 1544 | 1707 | 0990 | 1507 | 0973 | 0463 | 0298 | 0324 |
| Equilibrium | 2519 | 1544 | 1706 | 0990 | 1507 | 0973 | 0463 | 0298 | 0323 |
| Minımum flow |  |  |  |  |  |  |  |  |  |
| 1990 | 2559 | 1515 | 1619 | 0937 | 1463 | 0998 | 0494 | 0315 | 0232 |
| 2000 | 2749 | 1519 | 1577 | 0900 | 1411 | 0996 | 0513 | 0335 | 0217 |
| Equilibrium | 3015 | 1606 | 1581 | 0850 | 1274 | 0885 | 0469 | 0320 | 0310 |

${ }^{4}$ Includes all farms of 1000 acres or more, 193554
low real interest rates and rising asset values, exports, and farm income of the seventies to the high real interest rates, declining asset values, and lower exports and farm income of the eighties-suggest that the pattern of change sınce 1982 may differ from the pattern of 1974-82 Yet, the relative stabilsty exhibited by U S agriculture during 1974-82 makes it less likely that its structure in the near future will be as radically different as had been expected based on 1935-74 trends For example, Lin, Coffman, and Penn projected on the basis of trends through 1974 that between then and the year 2000 the number of $100-499$-acre farms would drop by 493,000, a 47-percent decline (10, p 11) Projections based on 1974-78 data suggest a drop in this size class of less than one-third that figure over the same period

The general stability observed during 1974.78 points to the critical role in structural change played by entry, exit, and the few continuing farms
undergoing rapid change Relatively minor changes among these farms have potentially significant longrun implications We are now developing more detailed data on the characteristics of continuing as well as entering and exiting farms in the 1974-78 and $1978-82$ periods from Census data These additional data will allow an exploration of questions such as the stability of the transition probabilities estimated here, the characteristics of changing versus stable farms, the patterns of change among other variables such as sales, tenure, and enterprise mix, and the interrelationships among changes an these variables

## References

(1) Adelman, Irma G "A Stochastic Analysıs of the Size Distribution of Firms," Journal of the American Statıstıcal Assoczation, Vol 53, Dec 1958, pp 893-904
(2) Conneman, G J , and David H. Harrington "Implications of Exit and Entry of Farm Firms in Agricultural Supply Analysis," Agricultural Economics Research, Vol 21, No 2, Apr 1969, pp 40-44
(3) Daly, Rex F., J A Dempsey, and C W Cobb "Farm Numbers and Size in the Future," Size, Structure, and Future of Farms (ed. A Gordon Ball and Earl 0 Heady) Ames. Iowa State Unıv Press, 1972, pp 314-32
(4) Dean, Gerald W, Stanley S Johnson, and Harold 0 Carter. "Supply Functions for Cotton in Imperial Valley, Cahforna," Agricultural Economics Research, Vol 15, No. 1, Jan 1963, pp 1-14
(5) Ehrensaft, Philip, Pierre LaRamee, Ray D Bollman, and Frederick H. Buttel "The Microdynamics of Farm Structural Change in North America The Canadian Experience and Canada-U S A. Comparisons," American Journal of Agricultural Economics, Vol 66, No 5, Dec 1984, pp 823-28
(6) Farris, Paul L , and Damel I Padberg "Measures of Market Structure Change in the Florida Fresh Citrus Packing Industry," Agricultural Economics Research, Vol 16, No 4, Oct 1964, pp 93-102
(7) Isard, Walter Methods of Regional Analysıs An Introduction to Regronal Science Cambridge, MA. MIT Press, 1960
(8) Kemeny, J G , and J L Snell Finite Markov Chains New York Van Nostrand, 1959
(9) Krenz, Ronald D "Projections of Farm Numbers for North Dakota with Markov Chains," Agricultural Economics Research, Vol 16, No 3, July 1964, pp 77-83
(10) Lin, Willam, George Coffman, and J B Penn US Farm Numbers, Sizes, and Related Structural Dimensions Projections to Year 2000 TB-1625 U S Dept Agr, Econ Stat. Coop Serv, July 1980
(11) Stanton, Bernard F , and Laurı Kettunen "Potential Entrants and Projections in Markov Process Analysis," Journal of Farm Economics, Vol 49, No. 3, Aug 1967, pp 633-42
(12) U.S. Department of Commerce, Bureau of the Census. 1982 Census of Agriculture 1982 (and earler issues)
(13) Waugh, Frederick V , and Martin E Abel "On Fractional Powers of a Matrix," Journal of the American Statzstical Association, Vol 62, Sept 1967, pp. 1018-21

## Appendix: Raising a Matrix to Fractional Powers

One problem encountered in projecting farm size distributions was that of raising a probability transition matrix estimated on a 4 -year interval to fractional powers in order to produce transition matrices describing periods not in 4 -year multiples No generally available microcomputer software of which we are aware offers direct procedures for taking fractional powers of an asymmetric matrix This section briefly describes the method used here to project 5 -, 16 -, and 26 -year intervals from a 4 -year matrix, as well as some alternative methods

A method described by Waugh and Abel (13) adapts matrices to the binomial expansion and approximates the final value from the first few terms of the expansion. Their algorithm has the advantage of being relatively easy to write in a programming language such as BASIC if more efficient software is not available

A second method for calculating the square root of an asymmetric matrix $P$ of rank $n$ is to think of it as the product of two identical matrices $B$, where each element of the original matrix may be written

$$
P_{v}=\sum_{k=1}^{n} b_{1 \cdot k} b_{k j}
$$

This method yields a system of $n^{2}$ equations in $n^{2}$ unknowns Lloyd Teigen suggested to us that one can solve this system using commercially available microcomputer software for solving nonlinear simultaneous systems, such as TK'Solver We found
the method to work well for a 3 -by- 3 test, but coding and iterating for the 9 -by- 9 problem became tedıous.

A third approach allows us to write

$$
P=A \Gamma A^{-1}
$$

where $A$ is a matrix of eigenvectors of $P$ and $\Gamma$ is the associated diagonal matrix of eigenvalues of $P$ The inverse of the matrix of eigenvectors will exist of the transition probability matrix $(\mathrm{P})$ is not defective The eigenvectors ( $A$ ) will be linearly independent, and the inverse ( $A$ ) will therefore exist, if there are as many distinct eigenvalues as there are rows in the transition probability matrix ( P ) In the case of the asymmetric matrices used here, most commercial software packages do not offer direct solution procedures for calculating eigenvalues and eigenvectors Most of the software for both manframe and microcomputers calculate eigenvectors only for symmetric matrices One exception is SPEAKEASY, in both the mainframe and microcomputer versions

The integer power $\mathrm{P}^{2}$ can be written

$$
\begin{aligned}
\mathbf{P}^{2} & =A \Gamma A^{1} A \cdot \Gamma A^{1} \\
& =A \Gamma I \Gamma A{ }_{1}^{1} \\
& =A \Gamma^{2} A^{1}
\end{aligned}
$$

Sımılarly

$$
\mathbf{P}^{r}=A \Gamma^{r} A^{-1}
$$

for any integer r Therefore, once $A$ and $\Gamma$ have been derived, $\mathrm{P}^{\mathrm{r}}$ can easily be obtained by taking powers of scalars on the diagonal of $\Gamma$

Consider the square root $\mathrm{P}^{05}$ written as

$$
\mathbf{P}^{05}=\mathrm{A} \Gamma^{05} \mathrm{~A}^{-1}
$$

To show that $\mathrm{P}^{05}$ is indeed the square root, multiply the right hand side by itself

$$
\begin{aligned}
\mathrm{P} & =\mathrm{A} \Gamma^{0.5} \mathrm{~A}^{1} \mathrm{~A} \Gamma^{05} \mathrm{~A}^{1} \\
& =\mathrm{A} \Gamma^{0.5} \Gamma^{05} \mathrm{~A}^{-1} \\
& =\mathrm{A} \Gamma \mathrm{~A}^{-1}
\end{aligned}
$$

The procedure can be extended to the $\mathrm{q}^{\text {th }}$ root for any integer $q$

$$
\mathrm{P}^{1 / \mathrm{q}}=\mathrm{A} \Gamma^{1 / \mathrm{q}_{1}} \mathrm{~A}^{-1}
$$

Complex roots will not arise so long as the eigenvalues are positive $P$ can be raised to any rational power $k=r-q$ for any integer $r$ and $q$ by raising the scalar eigenvalues to the desired fractional power

$$
\mathrm{P}^{\mathrm{r} / \mathrm{T}}=\mathrm{A} \Gamma^{\mathrm{r} / \mathrm{q}} \mathrm{~A}^{-1}
$$

Four-year transition probability matrices estımated for this study were reduced to the fourth root to approximate 1 -year transition matrices Complex roots were not encountered, positive roots of the elgenvalues were used For both the 9 -by- 9 matrices developed to account for farms not included in the longitudinal set, the 1-year transition matrices contained negative elements The average annual move was, therefore, not a true Markov process One in terpretation is that the actual annual transition probabilities may not have been constant during 1974-78, it would take at least two different Markov chains with nonnegative probabilities to move annually from the 1974 to 1978 distribution Projec. tions incorporating annual patterns of farm growth, decline, entry, and exit, such as those reported here, imply that the apparent cycles within the 4 -year observation period will recur indefinitely The matrix $\mathrm{P}^{125}$ does behave as a Markov process, however, with all probabilities positive It was used to project the behavior of the system over 5 -year intervals Similarly, P raised to the 65 power was used to project from 1974 to 2000


[^0]:    *The authors are economists with the National Economics Divi sion, ERS They received helpiul comments from Dave Freshwater, Charlıe Hallahan, Bill Lin, Lester Myers, Agapı Somwaru, Lloyd Teigen, and Mike Weiss John Blackledge and staff at the Agriculture Division Bureau of the Census helped in data acquisition and processing

[^1]:    ${ }^{1}$ All U S summary data for 1978 used in this analysis were ad justed by the Census of Agriculture from totals published in the 1978 Census of Agriculture to account for the effects of the direct enumeration of sample areas conducted in 1978 The adjustments make the data from the 1978 Census more nearly comparable to those from prior and subsequent Censuses Without the ad justments, the number of farms in 1978 was slightly larger, and farms with fewer than 50 acres declined between 1978 and 1982 All 1978 summary data used in this analysis were drawn from the adjusted totals published in the 1982 Census volumes

[^2]:    ${ }^{2}$ Italicized numbers in parentheses refer to the items cited in the References at the end of this article
    ${ }^{3}$ Some Markov analyses use the transpose of matrix $P$ in which case the columns, not the rows, sum to unity

[^3]:    ${ }^{4}$ Under both sets of assumptions, projected distributions of farms by size in acres to the year 2000 imply a total acreage in farms within recent historical levels, assuming 1982 average farm sizes in each class

[^4]:    ${ }^{5}$ One factor almost certainly contributing to the wide fluctua tions observed in the number of farms in the smallest size class from census to census is, the practice of defining as farms all places meeting the minımum sales threshold (\$1,000 in 1974, 1978, and 1982) on the basis of potential as well as actual sales of agricultural products Using a poinl system derived by the Agricultural Research Service, the Census imputes potential sales values to each place on the basis of features such as cropland not harvested, pasture, and number of anmals Because of fluctuating product values, the number of points assigned to each item also varies from census to census As a result, even with no change in the characteristics of a given place, changing point allocations may classify it as a farm in one census and as a nonfarm place in another In addition, the inclusion in the point system of some common animals such as horses, for the first time in 1982 raises further difficulties for year to-year comparisons In 1982, for ex ample, farms with actual sales of less than $\$ 1,000$ increased by about 95000 from 1978 the only sales class below $\$ 80000$ to show an increase in numbers Although the Census does not publish data on the acreage distribution of farms classified under the point system, a significant portion of the increase in farms of fewer than 50 acres reported in 1982 was probably due to the point system

