Wheat Diversity and Productivity in Indian Punjab after the Green Revolution

Melinda Smale, International Food Policy Research
Joginder Singh, Punjab Agricultural University, India E-mail: ravibaba@satyam.net.in
Salvatore Di Falco, University of East Anglica
Patricia Zambrano International Food Policy Research

Poster paper prepared for presentation at the International Association of Agricultural Economists’ Conference, Gold Coast, Australia, August 12-18, 2006

Copyright 2006 by authors. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Wheat Diversity and Productivity in Indian Punjab
After the Green Revolution

1. Introduction

The center of origin of wheat is “diffuse” (Harlan, 1992). Though India is not considered a primary center of diversity, evidence suggests that farmers have cultivated wheat in India since 3000 B.C (Tomar et al., 2004). Until the early 1990s, farmers are thought to have grown a wide range of landraces and landrace mixtures. Some of these served as the basis for the Indian breeding program, initiated with the establishment of the Agricultural Research Institute in 1905. Since then, India has contributed important wheat genetic resources to modern plant breeding programs in numerous countries, as demonstrated in the recorded pedigrees of modern wheat varieties (see, for example, Zeven and Zeven-Hissink, 1976).

The Green Revolution in wheat began in Indian Punjab during the late 1960s, as did the concern for genetic erosion caused by the displacement of local landraces (Harlan, 1972; Frankel, 1970; Hawkes, 1983). Even during the Green Revolution and post-Green Revolution periods, however, farmers maintained wheat variety diversity by continuing to grow local strains for home consumption and to minimize any risks associated with successive introductions of high-yielding varieties.

Genetic erosion is not easy to quantify, in any case. In regions with high productivity potential like the Indian Punjab, much of the area was already planted with earlier products of modern plant breeding programs when the Green Revolution began (Jain, 1994). These cultivars were more genetically similar and less productive than the semi-dwarf wheat varieties that succeeded them.
Seeking resistance to wheat diseases was a central motivation for early plant breeding programs. Since the Green Revolution, plant breeders have sought to diversify genetic resistance to diseases in modern wheat varieties in order to reduce the vulnerability of the crop to epidemics. Nonetheless, from year to year, diversifying the mix of varieties grown can generate costs in terms of annual yield losses relative to yield potential, especially in favored environments (Heisey et al., 1997). Challenging the efficacy of centralized breeding programs, Witcombe (1999) has argued that productivity gains might be achieved by delivering more diverse varieties to farmers, even in high potential production environments such as the Punjab of India.

In this paper, we define and summarize indices of variety change and genetic diversity for the modern wheat varieties released and grown in Indian Punjab since 1980. We then test the effects of the two indices on wheat productivity in the post-Green Revolution period. The first is the area-weighted average of varieties grown. This index measures the rate of variety change, adjusting for the spatial distribution of varieties. In modern, intensified farming systems, the speed of variety change substitutes to some extent for the spatial heterogeneity found in landrace systems, and is an important means of countering the uniformity that can lead to pathogen mutation and plant diseases. Variety change is determined in large part by variety release and seed industry policies. The second is the average coefficient of diversity, computed from the average coefficient of parentage. This index measures the extent of dissimilarity among wheat varieties conferred by inheritance, or plant breeding. A generalized Cobb-Douglas production function is estimated with these indices specified as technical efficiency parameters, after testing for the exogeneity of each index.
The next section defines diversity in modern wheat systems, along with the diversity concepts and indices used in this paper. Descriptive summaries of the indices follow, with interpretation. The econometric model is then specified, and the estimation procedure detailed. Findings are reported. Conclusions and policy implications are drawn in the final section.

2. Measuring diversity in modern wheat systems

The Green Revolution in wheat refers specifically to the rapid adoption of varieties with semi-dwarf stature (conferred by Rht1 and Rht2 genes) during the late 1960s and early 1970s. Other dwarfing genes and other cultivars of short stature exist in wheat, and taller varieties produced by modern plant breeding programs were released before 1960 and have been released since. When grown with increased levels of fertilizer and a controlled water supply, these varieties performed significantly better than the varieties they replaced. Initially, they spread rapidly throughout many of the irrigated zones of the developing world where wheat cultivation was concentrated and where population densities were high—often replacing improved varieties with tall stature. Later, more widely adapted descendants of these varieties spread gradually into less favorable environments, including rainfed areas with relatively modest production potential —often replacing landraces. This paper focuses on this later period, often called the post-Green Revolution.

Meng et al. (1998) summarize the issues related to measurement of diversity for economic analysis. A panoply of diversity indices are found in the crop science and ecological literature. No single index of diversity is inherently superior to another.
Different indices represent different concepts and can be constructed with various types of raw data. Meng et al. (1998), in addition to an extensive technical literature in the crop sciences, discuss the advantages and disadvantages of various indices employed to study the genetic diversity of crop plants. More recently, Brock and Xepezades (2003) have also analyzed classes of more generalized classes of diversity indices from the perspective of a unified, theoretical economics framework.

To characterize the diversity on farms in production systems with modern varieties, three concepts are relevant. Spatial diversity refers to the geographical distribution of varieties. A second, the rate of variety change, substitutes to some extent in modern systems for the spatial diversity found in landrace systems (Apple, 1977; Plucknett and Smith, 1986). Spatial diversity and variety change among modern varieties in farmers’ fields is determined in large part by the economic factors affecting their profitability and the performance of agricultural research institutions and seed industries. A number of issues related to variety change in modern wheat systems have been analyzed in previous work (Heisey, 1990; Heisey and Brennan, 1991). Brennan and Byerlee (1991) developed and applied the area-weighted average age used here.

Pedigree analysis has been used by crop scientists to assess the latent genetic variability among a set of modern varieties, such as those grown in a district of Indian Punjab in one cropping season. A practical method for incorporating pedigree information into a usable form is through calculating a coefficient of diversity, equivalent to one minus the coefficient of parentage. In wheat, the coefficient of parentage (COP) measures the probability that two cultivars are identical by descent for a character that varies genetically (Malecot, 1948). In calculating the average coefficient of parentage for
a set of cultivars, each pair has equal weight. Average coefficients of parentage plotted over time provide an indication of the relative change in diversity due to plant breeding. The average coefficient of diversity was developed and applied to an analysis of wheat varieties in Pakistani Punjab by Souza et al. (1994).

3. Wheat Diversity in Indian Punjab

The number of different parental combinations and the number of distinct landrace ancestors in the pedigrees of modern wheat varieties grown in Indian Punjab from 1970 are shown in Table 1, ordered by date of release and variety name. There is a positive, step trend in the number of different parental combinations, illustrating the role of plant breeders in continuing to bring in new materials and make new crosses. The number of different landrace ancestors in the pedigrees of the varieties has a statistically significant, but imperceptible trend. Comparing the ratios of the figures at different time periods suggests that a declining number of new landraces are used in parental combinations. For example, the ratio of unique landraces to unique parental combinations is nearly two-thirds in 1966, as compared to one-third after 3 decades.

The average and area-weighted average age of wheat varieties, representing the speed of variety change, are shown for Indian Punjab from 1970 to 2001 in Figure 1. In this generally high potential production environment, the unweighted and weighted average ages move closely together in a cyclical pattern, suggesting that varieties are fairly uniformly distributed spatially over the time period as they are introduced into the system and others are discarded by farmers. The exception to this pattern is visible from
about 1998, when fewer varieties are grown and they tend to be older, leading to an increase in the average age.

The average and area-weighted average coefficients of diversity (for brevity and to distinguish these from temporal diversity, we refer to them in the remainder of the paper as genetic diversity conferred through breeding) constructed from the pedigree data are shown in Figure 2. The pattern in the area-weighted indices echoes that observed for area-weighted variety age, but with sharper peaks and troughs, diverging more in direction from about 1990. A downturn is evident at the end of the period, rather than the upturn that is observed in the rate of variety change. Hence, in the final years of the 1990s, the relatively fewer varieties grown were not only older in age, but more similar in parentage than those of the first half of the decade. The area-weighted coefficient of diversity lies everywhere below the unweighted average, and is at its lowest since the early 1970s in 2000-01. The fact that Indian wheat breeders drew in more dissimilar parentage over the 1970-2000 period is also apparent, since the average coefficient of diversity among all varieties grown in Indian Punjab has generally floated upward to over 85%. For purposes of comparison, the coefficient of diversity between a parent and offspring would be 25%, and would be close to 50% for a sibling, while the coefficient of diversity for varieties with no ancestors in common would be 1.

4. Analytical approach

Initial attempts to link diversity in modern cultivars to productivity are Gollin and Evenson (1998); Smale et al. (1998) and Widawsky and Rozelle (1998). Widawsky and Rozelle (township data for Zhejiang and Jiangsu Provinces) used a generalized Cobb-
Douglas production function with a stochastic specification to test the effects of diversity on mean and variance of rice yields (Just and Pope, 1979). Diversity was measured using a Solow/Polasky distance index constructed from pedigree data, and the diversity index was entered as an intercept shift in the regression equation. Smale et al. (1998) used a Cobb-Douglas function with Just and Pope specification to test the effects of wheat diversity on mean and variance of yields in the irrigated and rainfed districts of Punjab (1979-1985).

Consistent with these earlier studies, we test the effects of variety change and genetic diversity on crop productivity by adopting a Generalized Cobb-Douglas specification. Along with a set of conventional inputs (e.g. chemical inputs, labour, capital), the area-weighted average variety age and the average coefficient of diversity were specified as separate explanatory variables. To analyze the interplay between the diversity conferred breeding and the variety change in farmers’ fields, which is due variety release and seed supply, we added an interaction term. The introduction of an interaction term also generalizes the Cobb-Douglas function by relaxing the restrictive assumption of unitary elasticity of substitution between inputs.

Let \(y = f(x) \) denote the production function, where \(y \) is quantity of durum wheat and \(x \) is a \(n \times 1 \) vector of inputs. In the single output case, the Cobb-Douglas production function is written as:

\[
y = A \prod_{i=1}^{n} x_i^{\alpha_i}, \quad \text{where } \alpha_i > 0, \quad \forall \quad 1 = 1, \ldots, n
\]

(1)

By taking logarithms we have an expression that is linear in parameters,

\[
\ln (y) = \alpha_0 + \alpha_i \Sigma_i \ln (x_i)
\]

(2)

where \(\alpha_0 = \ln (A) \).
This specification implies that \(\left(\frac{\partial y/\partial x_i}{y/x_i} \right) = \alpha_i \). The estimated \(i-th \) coefficient can be readily interpreted as the marginal productivity of the \(i-th \) input. We are interested in the estimated coefficients for variety change, genetic diversity and their interaction.

5. Data
The Farm Management Extension Wing of Punjab Agricultural University regularly collects data regarding the wheat varieties planted from a sample of 600-700 farmers distributing among the districts and different agro-climatic conditions of the state, with a rotating sample. Variety data were compiled for the period 1981-82 to 2001-02. The costs of various inputs were based on the data collected every year from 300 farmers under the Govt. of India sponsored “Comprehensive Scheme of Cost of Cultivation of Major Crops in Punjab”. The data on cost items are expressed in Rs/ha. Observations are district by year.

6. Econometric estimation
The cross sectional and longitudinal nature of the data at hand suggests the appropriateness of a panel data estimator with fixed effects to control for district characteristics. After dividing all the variables per land size so that all variables are expressed in per hectare base, and performing a logarithmic transformation, we estimated

\[
Y_{it} = \alpha + \beta X_{it} + u_i + \epsilon_{it}
\]

where \(X \) is a matrix of explanatory variables, \(u_i \) is the region-specific residual and \(\epsilon_{it} \sim IID (0, \sigma^2) \).

We also examined whether the model may be subject to endogeneity due to correlations of variety change and genetic diversity indices with the error terms. If these
indices were correlated with the error term, the least-squares estimates of the effects of indices on wheat yield would be biased. Endogeneity of the two indices was tested with the Durbin-Wu-Hausman method, which compares ordinary least squares estimates with estimates obtained from an instrumental variable estimator. Lagged values were used to build up the instruments and the results compared to the same model estimated using OLS. We failed to reject the null hypothesis that the ordinary least squares (OLS) estimate yields consistent estimates. Thus, endogeneity among the regressors has no deleterious effects on OLS estimates and instrumental variables method was not required.

Finally, purchased fertilizers and purchased pesticides were aggregated as purchased chemicals, in order to reduce multicollinearity.

7. Hypotheses
Consistent with economic theory, conventional inputs are hypothesized to be positively related to wheat yields per hectare. These include machinery costs per hectare, costs for fertilizers and pesticides, and costs for hired labor (all in current Rs.) More rapid variety change on farms, is thought to contribute positively to wheat productivity through mitigating the buildup of biotic pressures and bolstering yield potential. When weighted by area, the index also accounts for relative abundance of some newer releases. The average coefficient of diversity, calculated from the coefficients of percentage, is expected to positively affect wheat productivity through breeding advances.

8. Results
Regression results are presented in Table 2. The signs and significance of conventional inputs are as expected, contributing positively to marginal productivity. Capital, labor and
chemicals use they all have positive marginal productivity, although the latter is statistically not significant. Dissimilarity of parentage in wheat varieties, augmented through successful breeding, clearly enhances wheat productivity in Indian Punjab from 1980 to 2000. Slower variety change, taking into account the spatial distribution of varieties, decreases productivity. The negative interaction effect also shows that slower variety change offsets breeding successes.

9. Conclusions

The Punjab of India is an historical source of key wheat genetic resources in national and global plant breeding. This region has also been a focus of concerns about some of the negative externalities of the Green Revolution, including the abandonment of local varieties and genetic erosion.

In this paper, we used a production function framework to test the role of genetic diversity conferred through plant breeding and the rate of variety change in the Indian Punjab during the Post-Green Revolution period. The study is one of the few that tests related hypotheses using a combination of diversity indices constructed from detailed pedigree data, variety area data, and data on conventional inputs. Econometric findings demonstrate that continued in fusion of diverse genetic materials through planting breeding has enhanced productivity in the wheat fields of Punjab in the Post-Green Revolution period. Slower rates of variety change dampen productivity, and also offset the positive impact of diversifying the genetic base through plant breeding. Clearly, policies that speed up variety change on farms, and encourage more diverse spatial distributions, would reinforce rather than counteract the progress made through crop
improvement. Even within a system that is characterized by modern varieties, continued investments in breeding and seed supply are critical to sustain crop productivity.

References

Gollin, D. and Evenson R.E., 1998. An application of hedonic pricing methods to value rice genetic resources in India. In Evenson R.E., Gollin D. and Santanie Ilo V. (Eds.), Agricultural Values of Plant Genetic Resources. FAO, the Center for International Studies on Economic Growth—Tor Vergata University, Rome, and CABI Publishing, UK.

Tomar, SMS, Vinod and Singh B.2004. Distant hybridization in wheat. IARI, New Delhi, India.

<table>
<thead>
<tr>
<th>Name</th>
<th>Release year</th>
<th>Number of different parental combinations in pedigree</th>
<th>Number of different landrace ancestors in pedigree</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV18</td>
<td>1966</td>
<td>58</td>
<td>37</td>
</tr>
<tr>
<td>S 308</td>
<td>1966</td>
<td>90</td>
<td>39</td>
</tr>
<tr>
<td>HD 1553</td>
<td>1967</td>
<td>90</td>
<td>39</td>
</tr>
<tr>
<td>KALYANSONA</td>
<td>1967</td>
<td>58</td>
<td>37</td>
</tr>
<tr>
<td>SONALIKA</td>
<td>1967</td>
<td>90</td>
<td>39</td>
</tr>
<tr>
<td>WG 357</td>
<td>1973</td>
<td>61</td>
<td>40</td>
</tr>
<tr>
<td>WG 377</td>
<td>1973</td>
<td>60</td>
<td>39</td>
</tr>
<tr>
<td>WL 1562</td>
<td>1979</td>
<td>88</td>
<td>43</td>
</tr>
<tr>
<td>WL 711</td>
<td>1979</td>
<td>106</td>
<td>45</td>
</tr>
<tr>
<td>DWL5023</td>
<td>1982</td>
<td>91</td>
<td>40</td>
</tr>
<tr>
<td>PBW 120</td>
<td>1982</td>
<td>150</td>
<td>55</td>
</tr>
<tr>
<td>PBW54</td>
<td>1983</td>
<td>121</td>
<td>52</td>
</tr>
<tr>
<td>HD 2285</td>
<td>1985</td>
<td>188</td>
<td>59</td>
</tr>
<tr>
<td>HD 2329</td>
<td>1985</td>
<td>153</td>
<td>58</td>
</tr>
<tr>
<td>PBW 34</td>
<td>1985</td>
<td>65</td>
<td>38</td>
</tr>
<tr>
<td>PBW 138</td>
<td>1986</td>
<td>112</td>
<td>51</td>
</tr>
<tr>
<td>HD 2428</td>
<td>1989</td>
<td>109</td>
<td>46</td>
</tr>
<tr>
<td>PBW 154</td>
<td>1989</td>
<td>144</td>
<td>54</td>
</tr>
<tr>
<td>PBW 226</td>
<td>1989</td>
<td>74</td>
<td>42</td>
</tr>
<tr>
<td>PBW 222</td>
<td>1990</td>
<td>112</td>
<td>48</td>
</tr>
<tr>
<td>PDW 215</td>
<td>1991</td>
<td>70</td>
<td>39</td>
</tr>
<tr>
<td>CPAN 3004</td>
<td>1992</td>
<td>164</td>
<td>57</td>
</tr>
<tr>
<td>HD 2009</td>
<td>1993</td>
<td>71</td>
<td>37</td>
</tr>
<tr>
<td>WH 542</td>
<td>1993</td>
<td>163</td>
<td>52</td>
</tr>
<tr>
<td>WH 542</td>
<td>1993</td>
<td>163</td>
<td>52</td>
</tr>
<tr>
<td>PBW 343</td>
<td>1995</td>
<td>192</td>
<td>65</td>
</tr>
<tr>
<td>PBW 373</td>
<td>1995</td>
<td>192</td>
<td>65</td>
</tr>
<tr>
<td>PDW 233</td>
<td>1996</td>
<td>103</td>
<td>41</td>
</tr>
<tr>
<td>UP 2338</td>
<td>1997</td>
<td>140</td>
<td>49</td>
</tr>
</tbody>
</table>

Source: Variety names from Punjab Agricultural University, pedigrees from CIMMYT Wheat Impacts database and Pedigree Management System.
Table 2
Estimated production function with temporal and genetic diversity

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficients</th>
<th>Std. Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal</td>
<td>-0.42**</td>
<td>0.189</td>
</tr>
<tr>
<td>Genetic diversity</td>
<td>0.71**</td>
<td>0.35</td>
</tr>
<tr>
<td>Temporal*Genetic</td>
<td>-0.125*</td>
<td>0.7</td>
</tr>
<tr>
<td>Capital</td>
<td>0.107***</td>
<td>0.398</td>
</tr>
<tr>
<td>Labor</td>
<td>0.0000503**</td>
<td>0.0000239</td>
</tr>
<tr>
<td>Chemicals</td>
<td>0.17</td>
<td>0.97</td>
</tr>
<tr>
<td>Constant</td>
<td>2.12***</td>
<td>0.3</td>
</tr>
</tbody>
</table>

R squared: 0.52; F Test: 16.47, Significance code: ***=1%, **=5%, *=10%;
N: 108. All conventional inputs are in Rs/ha. See text for calculation of temporal and genetic diversity variables.
Figure 1. Average and area-weighted average age of wheat varieties grown in Indian Punjab, 1970-2001

Source: Data from Punjab Agricultural University. Calculations based on Brennan and Byerlee (1991).
Source: Data from Punjab Agricultural University. The average coefficient of diversity (acod) is the average of 1 -cop(ij) where cop(ij) is the pairwise coefficient of parentage between any two varieties of the j varieties grown in each year. The area-weighted average coefficient of diversity (wcod) is the average of 1 -cop(ij) where cop(ij) is the pairwise coefficient of parentage between any two varieties of the j varieties grown in each year, weighted by the areas planted to them (Souza et al 1994).