Are Pesticide Buffers Expensive? Using Positive Mathematical Programming to Estimate the Cost of Proposed Pesticide Buffers in California

Peter H. Howard, Rachael E. Goodhue, Richard Howitt, and Pierre R. Mérel
Agricultural and Resource Economics
University of California, Davis
howard@primal.ucdavis.edu

Copyright 2012 by Peter H. Howard, Rachael E. Goodhue, Richard Howitt, and Pierre R. Mérel. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Are Pesticide Buffers Expensive? Using Positive Mathematical Programming to Estimate the Cost of Proposed Pesticide Buffers in California

Peter H. Howard, Rachael E. Goodhue, Richard Howitt, and Pierre R. Merel
Department of Agricultural and Resource Economics
University of California, Davis

Introduction

- Agricultural production in California currently relies on the use of pesticides to control for weeds, insects, and pathogens.
- Pesticide drift and runoff affect water quality.
- On February 1, 2010, the California Department of Pesticide Regulation (DPR) proposed draft regulations to reduce surface water contamination from pesticides.
- A key provision is the requirement of pesticide buffers of 25, 100, and 150 feet around sensitive aquatic sites dependent on the pesticide application method and active ingredient (AI).

Methods

- A positive mathematical programming model is utilized to study the effects of pesticide buffers (Howitt 1995). The model structure is similar to the fixed-proportion model used in Merel, Simon, and Yi (2011), and the calibration methods used are developed in Merel, Simon, and Yi (2011) and Garnache and Merel (2012).
- The model has 31 water districts and 24 crop groups.
- The amount of land in water buffers is calculated using GIS for each crop-district pair using DWR land and NHD water data.
- Two different simulations: growers respond by (1) using alternative AIs (yield and cost shocks) in buffers or, (2) not planting in buffers

Questions

For these proposed pesticide buffer regulations:
- What is the overall cost to California agriculture?
- What are the regional costs?
- How will California agriculture adapt?
- How will the change in crop patterns differ by region?

Results and Discussion

- The cost to California is between $27.2 to $457.1 million in lost revenue. The exact amount depends on the proportions of growers that respond to the regulations as modeled in Scenarios 1 and 2.
- The relative cost of the policy differs by region. Percentage wise, the Central Coast is the least affected region and the Sacramento Valley is the most affected region.

Citations