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Abstract

This paper examines how a Regional Fisheries Management Organization
(RFMO) might successfully achieve effective control of a high seas fishery in
the context of partial cooperation. We analyse the feasible allocations of prop-
erty rights among members of a given RFMO and coalitions of potential en-
trants. We demonstrate that the modified Shapley value is an appropriate
device for the division of the gains from both partial and full cooperations.

Keywords: international fisheries, overexploitation, partial cooperation,
games in partition function form, competitive equilibrium, modified Shapley
value

1 Introduction
The oceans’ fish stocks have been exploited as never before. Most of the world’s
marine fishing areas have already reached their maximum potential for fish captures
(UN, 2002). FAO (2000) shows that about 47 to 50 percent of marine fish stocks are
fully exploited and are, therefore, producing catches that have either reached or are
very close to their maximum limits, with no room for further expansion. Another
15 to 18 percent are overexploited and there is an increasing likelihood that catches
from these stocks will decrease, if remedial action is not taken to reduce or revert
overfishing conditions.
The world catch of marine fish has continued to rise in spite of extensions of

fisheries jurisdictions (Exclusive Economic Zone or EEZ) in the mid-1970s to 200
miles, though at a slower rate. To regulate the exploitation of the ocean’s fish
stocks further, several international agreements have been concluded. The relevant
international law was codified, developed and enhanced through, inter-alia, the
entry into force of the UN Convention on the Law of the Sea in 1994, the adoption
of the Convention on Straddling Fish Stocks and Highly Migratory Fish Stocks in
1995 (abbreviated as 1995 UN Fish Stocks Agreement), and the adoption of the
FAO Code of Conduct for Responsible Fisheries in the same year. Moreover, an
international jurisprudence on fisheries related issues is slowly emerging through
the work of the International Tribunal on the Law of the Sea (for details see Green
Paper, 2001).
The 1995 UN Fish Stocks Agreement calls for those nations who wish to partic-

ipate in the harvesting of the fish resources in the high seas, but are not currently
members of the relevant Regional Fisheries Management Organization (RFMO), to
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declare a willingness to join and to enter into negotiations over mutually acceptable
terms of entry. Under the terms of the UN Convention on the Law of the Sea which
is of direct relevance to the 1995 UN Fish Stocks Agreement, coastal states (CSs)
and distant water fishing nations (DWFNs) shall apply the precautionary approach
to conservation, management and exploitation of straddling and highly migratory
fish stocks in order to protect the living resources and preserve the marine envi-
ronment. In addition, all states are obliged to take conservation and management
measures necessary for the conservation of the living resources of the high seas (Ar-
ticle 117). Moreover, international cooperation and negotiations are required for all
states involved in the exploitation of such resources (Article 118).
Although the 1995 UN Fish Stocks Agreement entered into force on 11 December

2001 (UN, 2002), the precise meaning of the provisions describing these obligations
is not clear nor the manner in which they will be applied. For example, Article 63
expresses that the states concerned should seek to agree on conservation measures
applicable beyond the EEZs, either directly or through appropriate RFMOs. Article
64 requires that coastal and other states whose nationals fish in the region ”shall
cooperate” directly or through appropriate international organizations with a view
to ensuring conservation and optimum utilization. Furthermore, Article 118 on high
seas stocks, referring to the need to establish RFMOs, provides that states exploiting
such stocks or different ones in the same area ”shall enter into negotiations” with
a view to taking the measures necessary for the conservation of the living resources
concerned.
Due to inter alia its ambiguities, the 1995 UN Fish Stocks Agreement provides

little or no guidance as to how cooperation, through a RFMO, is to be effected
(Munro, 2000). The lack of cooperation has resulted in conflicts1 between coastal
states and distant water fishing states (Bjφrndal and Munro, 2003). Moreover,
overexploitation has continued and the need for a cooperative management regime
is evident.2

The literature on the economic analysis of the 1995 UN Fish Stocks Agreement
notes that the new member or participant problem is one of the most important
problems in the high seas fishery management (Kaitala and Munro, 1995; Bjφrndal
and Munro, 2003), since the interests of current members of the RFMO and of
the applicants are often strongly opposed: the current members face the likelihood
of having to give up a portion of their present quotas to the newcomer, and the
applicant believes that it may be better off by staying outside of the coalition and
continuing harvesting while facing fewer constraints. According to Kaitala and
Munro (1997), the likelihood of achieving stable cooperation will be very low if the
new member problem is mishandled. In addition, Datta and Miraman (1999) show
that with an increasing number of countries, the inefficiency of the noncoopera-
tive equilibrium generated by the common access feature of high seas dominates
and overharvesting increases. Although the nations involved in a regional fishery
resource often recognize an advantage in cooperative management of the resource,
on-going negotiations over harvest allotments often have proven to be arduous and
frustrating, and interrupted by brief but astonishingly violent ’fish wars’.
This paper examines how a RFMO might successfully achieve effective control

of a high seas fishery. We consider the high seas fishery stock as common property
and assume that all nations are allowed to exploit it. We view concluding a feasible
Regional Fishery Agreement (RFA) as a game where countries freely decide whether

1According to these authors, the inadequacies of Part VII, section 2 (Articles 116-120), of the
UN Convention pertaining to the management of high seas fisheries are the source of the lack of
cooperation and conflicts.

2For a review of the history of the 1995 UN Fish Stocks Agreement as well as its implementation,
the reader is referred to Bjφrndal and Munro (2003).
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or not to join a coalition (i.e.a RFMO)3. The question that we deal with in this
paper is the feasibility of partial cooperation and its impacts on fishing efforts.
Moreover, we analyze how to allocate property rights among fishing nations that
have expressed an interest in sustainable exploitation of a fish stock in a partial
cooperative setting4. Particulary, we examine the feasible allocations of property
rights among members of a given RFMO and coalitions of potential entrants.
In this paper, the feasibility and impacts of partial cooperation are analyzed by

means of games in partition function form. This class of games was introduced in
Thral and Lucas (1963) and is a generalization of the charactersitic function form
games. The partition function game allows the complements to split into coalitions
in an arbitrary manner, while the classical characteristic function game is defined
only in terms of coalitions and their complements. We apply the modified Shapley
value as a device for the division of the gains from partial cooperation. We observe
that the emphasis in this paper is on the cost function rather than on the production
function.
The paper is organized as follows. The next section presents the basic model

and introduces notations and definitions. Section 3 analyses the effects of partial
cooperation in terms of fishing efforts. Section 4 demonstrates that the modified
Shapley value is a feasible solution concept for RFMOs. Concluding remarks follow
in the last section.

2 The model and definitions
We begin by specifying a static model5 of a common fishery resource as a n-person
game (c.f. Funaki and Yamato, 1999; and Cornes and Hartley, 2000). Let N =
{1, 2, ..., n} be the set of n fishing nations, with generic element j ∈ N . Let e =
(e1, e2, ..., en) be a vector of fishing efforts, where ej ≥ 0 is country j’s fishing effort,
and let eN =

Pn
j=1 ej be the aggregate fishing effort of all countries.

We introduce the production function f(eN ) that specifies the amount of fish
caught for each value of the total effort eN . We assume that effort as input is
homogenous and that all countries are equally likely to catch a fish per unit of
effort. This implies that the share of the total harvest obtained by country j is
directly proportional to the share of country j’s effort in total effort eN . In other
words, the harvest of country j is given by ej

eN
f(eN ) for a given fish stock6.

Different levels of technology efficiency among countries are represented by the
cost functions cj(ej), ∀ j ∈ N. Normalizing the price of the resource to unity, the
net rent or benefit of country j is given by

πj(e1, e2, ..., en) =
ej
eN

f(eN )− cj(ej), (1)

where πj(0, 0, ..., 0) = 0.

We make the following assumptions:

3For related application of cooperative game theoretic approaches on high seas fishery manage-
ment, see Kaitala and Lindroos (1998), Li (1998), Bjφrndal et al. 2000) and Pintassilgo (2003).

4 Since the free rider behaviour of nonmember countries, which tend to occur in the presence of
externalities is one of the main factors behind the difficulties faced by RFMOs for achieving the
cooperative management on the high seas (Kaitala and Munro, 1995, 1997). Therefore, if a RFMO
intends to adopt conservation strategies, it may either adopt a free rider strategy of nonmembers
or allow the extension of its RFMO.

5This is equivalent to countries choosing across different possible steady states, ignoring the
transitional dynamics.

6Note that the distribution of fish is not a result of negotiations among fishing countries; it is
simply a reflection of the dependence of harvesting on its effort level ei and eN .
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Assumption A1: f(eN ) is twice continuously differentiable, strictly concave7 for
eN > 0, and f(0) = 0.
Assumption A2: cj(.) is continuously differentiable, increasing and convex for

all j.
To simplify the analysis, we assume that cj(ej) = cjej, where cj > 0 for all

j ∈ N.
Assumption A3: 0 < cj < f 0(0), for all j ∈ N
This assumption guarantees the existence of an interior solution.

For every e = (e1, e2, ..., en), and i ∈ N we define e−i = (e1, ..., ei−1, ei+1, ..., en). In
a similar vein, a vector e = (e1, e2, ..., en) is written as e = (ei, e−i).

The above assumptions imply that the benefit function (1) is continuously differ-
entiable and strictly concave on ej . Moreover, from biological constraints it follows
that the benefit function is decreasing for eN large enough.

• A vector of effort e∗ = (e∗1, e∗2, ..., e∗n) is said to be a competitive equilibrium or
Nash equilibrium (NE) if ∀i ∈ N, and ∀ ei ≥ 0

πi(e
∗
i , e
∗
−i) ≥ πi(ei, e

∗
−i), (2)

where e∗i ≥ 0, ∀i ∈ N.

The assumptions A1-A3 guarantee that the existence of the competitive equi-
librium. Moreover, this equilibrium is unique (Theorem 1 and Corollary 1 in Watt,
1996).

Assumption A4: a country behaves cooperatively only inside its coalition in order
to maximize the aggregate payoff, whereas coalitions interact with one another in
a non cooperative way, and
Assumption A5: a country is free to enter or leave a coalition. When a country

defects from a coalition defectors either play as singletons or form a new coalition.

We introduce the following notions and definitions that will be used to analyse
partial cooperation.

• A coalition structure, κ, is a partition of the set N of countries. Let P(N) be
the set of all partitions of N. So, a coalition structure κ ∈ P(N) means that
κ = {S1, ..., Sm}, N ⊇ Sj 6= ∅, Sj ∩ Sk = ∅, for all j, k = 1, ...,m, j 6= k and
∪mj=1Sj = N.

For a given κ ∈ P(N), let I(κ) and |I(κ)| denote the index number and the
cardinality, respectively. The partition which consists of singleton coalitions only,
κ = {{1}, {2}, ..., {n}}, is denoted by [N ] whereas the partition which consists of
the grand coalition only is denoted by {N}.

• A pair (S, κ) which consists of a coalition S and a partition κ of N to which
S belongs is called an embedded coalition.

7This assumption implies that the additional catch from an extra unit of effort will clearly
decrease as the total effort expended increseases, i.e. there are decreasing returns to fishing effort.
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Let E(N) denote the set of embedded coalitions, i.e.

E(N) = {(S, κ) ∈ 2N × P(N)| S ∈ κ}.

Definition 2.1 A mapping

w : E(N) −→ R

that assigns a real value, w(S, κ), to each embedded coalition (S, κ) is called a
partition function. The ordered pair (N,w) is called a partition function form game.

The value w(S, κ) represents the payoff of coalition S, given that coalition struc-
ture κ forms. For a given partition κ = {S1, S2, ..., Sm} and a partition function w,
let w(S1, S2, ..., Sm) denote the m-vector (w(Si, κ))mi=1.
It will be convenient to economize on brackets and suppress the commas be-

tween elements of the same coalition. Thus, we will write, for example, w({i, j, k},
{{i, j, k}, {l, h}}) as w(ijk, {ijk, lh}), and w({ikj}, {lh}) as w(ijk, lh). The set of
partition function form games with player set N is denoted by PFFGN .

Definition 2.2 Let (N,w) be a partition function form game and κ ∈ P(N).

(i) coalition S ∈ κ is feasible under coalition structure κ if

w(S, κ) ≥
X
i∈S

w(i, [N ])

(ii) a coalition structure κ ∈ P(N) is a feasible structure if all coalitions are
feasible under coalition structure κ, i.e.

w(S, κ) ≥
X
i∈S

w(i, [N ]), for all S ∈ κ

A feasible coalition implies that the worth of its members is at least as much as
their worth under the stand-alone structure. In a similar vein, a coalition structure
is feasible if the worth of each coalition in the coalition structure is at least as much
as its stand-alone worth.

Example 2.1 Consider the game (N,w), where N = {1, 2, 3, 4}, the players
are identical and w is given as follows.

w(i, [N ]) = 3, w(i, {i, j,N\{ij}} = 2, w(i, {i, jkl}) = 3,
w(ij, {ij, k, l}) = 4, w(ij, {ij, kl}) = 5, w(ijk, {ijk, l}) = 10, w({N}) = 11.
In this example, every coalition formed by 3 players such as {i, j, k}, has
w(ijk, {ijk, l}) ≥ w(i, [N ]) + w(j, [N ]) + w(k, [N ]), while the value for a
singleton in this coalition structure is
w(l, {ijk, l}) = 3 = w(l, [N ]).
For every coalition consisting of 2 players, we have two cases:
(i) if κ = {ij, kl} then w({ij}, κ) < w({i}, [N ]) + w({j}, [N ]),
(ii) if κ = {ij, k, l}} then w({ij}, κ) < w({i}, [N ]) + w({j}, [N ]) and

w(i, {i, j,N\{ij}} = 2 < w(i, [N ]).

In addition, w({N}) <
P4

i=1w(i, [N ]).
Hence, only one coalition structure is feasible: {i, jkl}.

Definition 2.3 A solution of PFFGN is a function Ψ which associates with
each game (N,w) in PFFGN a vector Ψ(N,w) of individual payoffs in RN , i.e.
Ψ(N,w) = (Ψi(N,w))i∈N ∈ RN .
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We now turn to the case that some countries agree to form a coalition, say S,
S ⊆ N . Since countries have different technologies, we consider the case in which
cooperation among countries is possible in term of transferable technologies8 (c.f.
Norde et al. 2002). This implies that the cost function of coalition S, cS(.), is the
cheapest cost function which is available among members in their coalition, i.e.

cS(eS) = min{
j∈S

cj(eS)}, (3)

where eS =
P

j∈S ej is the total effort of S.

Suppose that a coalition structure κ = {S1, S2, ..., Sm} is formed. Total effort
for an admissible coalition structure Si in κ is denoted by eSi . The benefit function
of coalition Si is defined by

πSi(eSi , e−Si) =
eSi
eN

f(eN )− cSi(eSi), (4)

where e−Si = (eS1 , ..., eSi−1 , eSi+1 , ..., eSm)

• A non-negative vector e∗ = (e∗S1 , e
∗
S2
, ...e∗Sm) associated with coalition struc-

ture κ = {S1, S2, ..., Sm}, is called a competitive equilibrium under coalition
structure κ (or equilibrium under κ) if for all i ∈ I(κ), and eSi ≥ 0

πSi(e
∗
Si , e

∗
−Si) ≥ πSi(eSi , e

∗
−Si). (5)

Note that if m = n, then (5) is the definition of Nash equilibrium, and if m = 1
then it presents Pareto efficiency.
The existence of a unique competitive equilibrium under a given coalition struc-

ture is straightforward since the strategy sets are 1-dimensional and the m−person
game with payoff functions (3) is obtained9 from the n−person game with payoff
functions (1).

We are now in a position to define the fishery game in partition function form.

Definition 2.4 A fishery game in partition function form (FGPFF) is an or-
dered pair (N,π), whereN is the set of players and π is the partial (benefit) function
derived from competitive equilibrium e∗ under κ such that

π(Si, κ) = πSi(e
∗
Si , e

∗
−Si) for all (S, κ) ∈ E(N), (6)

with πSi(e) defined by (3).

Let κ(Si) denote a coalition structure κ, where Si belongs to. Note that π(Si, κ)
may differ from π(Si, κ

0) since there exist many coalition structures which a coali-
tion Si may belong to while the equilibria under coalition structures κ and κ0 are
different.
In the remainder of this paper, we use the notations π(i, [N ]) and π(Si, κ) to

denote the payoff of a single coalition {i} in the Nash equilibrium and the payoff of
a coalition Si under coalition structure κ, respectively.

8For example, cooperation may lead to an exchange of vessels or labor among coalition partners.
9The assumptions A1-A3 still hold for this game.
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3 Implications of partial cooperation
In this section we analyze various impacts of coalitions and coalition structures.
For each coalition structure κ = {S1, S2, ...Sk}, let e(k, κ) be total effort associated
with κ, i.e. e(k, κ) =

Pk
j=1 e

∗
Sj
, where {e∗S1 , e

∗
S2
, ..., e∗Sk} is the unique competitive

equilibrium under κ. Let π(e(k, κ)) =
Pk

j=1 π(Sj , κ) be total net rents or benefits
associated with κ at equilibrium e(k, κ), where π(Sj , κ), defined by (6), is the net
rent of coalition Sj under κ.
Without loss of generality, we assume that c1 ≤ c2 ≤ ... ≤ cn. Thus, condition A.2
implies: 0 ≤ cn < f 0(0).

For each coalition structure κ, a straightforward result is that in a competitive
equilibrium a coalition with lower cSi has a higher fishing effort level eSi .

Proposition 3.1 For every coalition structure κ, the lower the marginal cost cSi ,
the higher the effort level in the coalition structure equilibrium. That is, for every
Si, Sj ∈ κ, if cSi ≥ cSj then eSj ≥ eSi in the equilibrium.

Proof. Observe that in a coalition structure equilibrium e∗ = (e∗S1 , e
∗
S2
, ..., e∗Sm)

we have

cSi =
e∗Si

[e(k, κ)]2
[f 0(e(k, κ))e(k, κ)− f(e(k, κ))] +

f(e(k, κ))

e(k, κ)
, (7)

for all i ∈ I(κ), and e(k, κ) =
P

i∈I(κ) e
∗
Si
.

Strict concavity and assumption A1 imply10 that f 0(e∗N ) < f(e∗N )/e
∗
N . Hence,

f 0(e(k, κ))e(k, κ)− f(e(k, κ)) < 0, in the equilibrium. Moreover, from (7), we have
f(e(k,κ))
e(k,κ) ≥ cSi > 0 for every coalition structure equilibrium.

From (7), we obtain

cSi − cSj =
e∗Si − e∗Sj
[e(k, κ)]2

[f 0(e(k, κ))e(k, κ)− f(e(k, κ))].

Hence, if cSi − cSj ≥ 0 we have e∗Si ≤ e∗Sj .

Summing up (7), it follows that total effort e(k, κ) is determined by the following
equation:

f 0(e(k, κ)) + (k − 1)f(e(k, κ))
e(k, κ)

=
kX

j=1

cSj . (8)

Furthermore, from (7) and (8), it follows that

e∗Sj =
e(k, κ)[cSj −

f(e(k,κ))
e(k,κ) ]

f 0(e(k, κ))e(k, κ)− f(e(k, κ))

and

f 0(e(k, κ))e(k, κ)− f(e(k, κ)) =
kX

m=1

cSm − k
f(e(k, κ))

e(k, κ)
.

10f
0
(x)x− f(x) is decreasing and non-positive.
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Therefore, for every coalition structure κ = {S1, S2, ...Sk} we have:

e∗Sj = e(k, κ)

⎛⎝ f(e(k,κ))
e(k,κ) − cSj

k f(e(k,κ))e(k,κ) −
Pk

m=1 cSm

⎞⎠ , (9)

where e(k, κ) =
Pk

j=1 e
∗
Sj
, and e∗ = (e∗S1 , e

∗
S2
, ..., e∗Sk).

If the share of efforts of coalition Sj in the competitive equilibrium under struc-

ture κ is defined by sh(Sj) =
e∗Sj

e(k,κ) . Then from (9) it follows that

sh(Sj) =

f(e(k,κ))
e(k,κ) − cSj

k f(e(k,κ))e(k,κ) −
Pk

m=1 cSm
. (10)

The above equations (8) and (9) form an alternative to the proof of Proposition
3.1 and show how to calculate total effort and each coalition effort in coalition
structures. Hence, total effort can be predicted by the aggregate marginal cost
and the number of coalitions k. In the following example we will demonstrate how
to calculate total effort and the effort of each coalition, under a given coalition
structure in the competitive equilibrium.

Example 3.1 Consider four countries, indexed by i = 1, 2, 3, 4, with the pro-
duction function f(eN ) = (60 − eN )eN and marginal costs c1 = 2, c2 = 3, c3 = 6,
c4 = 9. Aggregate marginal costs, total effort and total benefits as calculated by
means of (8) and (9) are presented in Table 3.1. Consider, for example, the case
k = 3 with κ = {12, 3, 4}. Aggregate marginal cost of this coalition structure is
2 + 6 + 9 = 17.11 Since f 0(e(k, κ)) = 60 − 2e(k, κ) and f(e(k,κ))

e(k,κ) = 60 − e(k, κ),
equation (8) implies that

60− 2e(k, κ) + 2[60− e(k, κ)] = 17.

coalitions κ
Pk

m=1 cSm e(k, κ) π(e(k, κ))
k = 4 1− 2− 3− 4 20 44 514
k = 3 12− 3− 4 17 40.75 548.18
k = 3 13− 2− 4 14 41.50 602.75
k = 3 1− 23− 4 14 41.50 602.75
k = 3 14− 2− 3 11 42.25 603.68
k = 3 1− 24− 3 11 42.25 603.68
k = 3 1− 2− 34 11 42.25 603.68
k = 2 123− 4 11 36.33 684.51
k = 2 12− 34 8 37.33 704.81
k = 2 124− 3 8 37.33 704.81
k = 2 14− 23 5 38.33 735.71
k = 2 13− 24 5 38.33 735.71
k = 2 134− 2 5 38.33 735.71
k = 2 1− 234 5 38.33 735.71
k = 1 1234 2 29 841

Table 3.1. The possible coalition structures for the four countries.

11Observe that transferable technology within a coalition is assumed.
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Solving the above equation, the total effort in the competitive equilibrium is
obtained by e(k, κ) = 180−17

4 = 40.75.
Substituting e(k, κ) into (9) we have

e∗{12} = 40.75
³

60−40.75−2
3(60−40.75)−17

´
= 17.25,

e∗{3} = 40.75
³

60−40.75−6
3(60−40.75)−17

´
= 13.25, and

e∗{4} = 40.75
³

60−40.75−9
3(60−40.75)−17

´
= 10.25.

Similarly for all other coalition structures.

Corollary 3.1 For every coalition structure κ, the lower the marginal cost cSi , the
higher the net benefits in the coalition structure equilibrium.

Proof. Let e∗ = (e∗S1 , e
∗
S2
, ..., e∗Sm) be a coalition structure equilibrium. By

Proposition 3.1 above, if cSi ≥ cSj , then e∗Si ≤ e∗Sj . Moreover, at this equilibrium,
the difference in payoffs between coalitions Si and Sj is:

π(Si, κ)− π(Sj , κ) =
f(e(k,κ))
e(k,κ) (e

∗
Si
− e∗Sj )− cSi · e∗Si + cSj · e∗Sj =

f(e(k, κ))

e(k, κ)
(e∗Si − e∗Sj )− cSi(e

∗
Si − e∗Sj ) + e∗Sj (cSj − cSi) =

(
f(e(k, κ))

e(k, κ)
− cSi)| {z }

(+)

(e∗Si − e∗Sj| {z }
(−)

) + e∗Sj (cSj − cSi| {z })
(−)

.

Since in the competitive equilibrium f(e(k,κ))
e(k,κ) ≥ cSi , it follows that

π(Si, κ)− π(Sj , κ) ≤ 0.

Proposition 3.2 Let κ and κ0 be two coalition structures of a game (N,w) ∈
FGPFF, where κ is formed by values cSj , j ∈ I(κ) and κ0 is formed by cS0j , j ∈ I(κ0),

and |I(κ)| ≥ |I(κ0)|. Then

e(k, κ) ≥ e(k, κ0) if
X

j∈I(κ)
cSj ≤

X
j∈I(κ0)

cS0j
.

Proof. Suppose that |I(κ)| = k and |I(κ0)| = m, k ≥ m > 1, andP
j∈I(κ) cSj ≤

P
j∈I(κ0) cS0j

. By (8) we have

f 0(e(k, κ)) + (k − 1)f(e(k, κ))
e(k, κ)

≤ f 0(e(k, κ0)) + (m− 1)f(e(k, κ
0))

e(k, κ0)
. Hence

f 0(e(k, κ))−f 0(e(k, κ0))+(m−1)[ f(e(k,κ))e(k,κ) −
f(e(k,κ0))
e(k,κ0) ]+(k−m)

f(e(k,κ))
e(k,κ) ≤ 0 ( )

Assume to the contrary that e(k, κ) < e(k, κ0). Since f(x)
x and f 0(x) are decreasing

functions, it follows that

f 0(e(k, κ)) > f 0(e(k, κ0)) and f(e(k,κ))
e(k,κ) > f(e(k,κ0))

e(k,κ0) .

Moreover, k −m ≥ 0. Therefore the left hand side of inequation ( ) is positive
which is a contradiction.
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This Proposition shows that total fishing effort for a coalition structure depends
on the number of coalitions and aggregate marginal cost in the competitive equilib-
rium. This result is illuminated in Table 3.1:

(i) coalition structures {14, 2, 3} and {123, 4} have the same aggregate marginal
cost, i.e. 11, but e(3, {14, 2, 3}) > e(2, {123, 4}).
(ii) coalition structures {123, 4} and {124, 3} have the same number of coalitions,

i.e. k = 2, but aggregate marginal cost is 11 for {123, 4} which is larger than aggre-
gate marginal cost 8 for {124, 3}. Then the total effort e(2, {123, 4}) < e(2, {124, 3}).

Applying (6), the partition function form game (N,w) is obtained as follows

π(1, 2, 3, 4) = (196, 169, 100, 49);

π(12, 3, 4) = (297.56, 175.56, 105.06);
π(13, 2, 4) = π(1, 23, 4) = (272.25, 240.25, 90.25);
π(14, 2, 3) = π(1, 24, 3) = π(1, 2, 34) = (248.06, 217.56, 138.06); (G3.1)

π(123, 4) = (469.59, 214.92);
π(124, 3) = π(12, 34) = (427.25, 277.56);

π(1, 234) = π(13, 24) = π(14, 23) = π(134, 2) = (386.91, 348.20);

π(1234) = 841.

From this partition function it follows that for the case of k = 3 coalition structure
{14, 2, 3} is the only feasible12, while every coalition structure consisting of two
coalitions is feasible.

Corollary 3.2 The forming of coalitions will determine the situation of a fish stock.
Moreover, aggregate effort under a given coalition structure depends strongly upon
how coalitions are formed. For a given number of coalitions, the coalition structure
with lower aggregate marginal cost has higher total effort. In addition, for a given
coalition structure, the forming of coalitions with lower costs need not reduce the
total effort.

Observe that if countries are identical, i.e. ci = cj for all i 6= j, the equations
(8) and (9) in the unique equilibrium e∗ = (e∗Si , e

∗
S2
, ...e∗Sm) under κ satisfy:

f 0(e(k, κ)) + (k − 1)f(e(k,κ))e(k,κ) = k · c,

e∗Sj =
e(k,κ)
k > 0, for all j = 1, 2, ..., k, where e(k, κ) =

Pk
j=1 e

∗
Sj
.

This implies that the effort of each coalition only depends on the number k of
coalitions. Furthermore, for any coalition structure κ = {S1, S2, ...Sk}, total fish-
ing effort is an increasing function of the number of coalitions k, whereas total net
rents and the net rent of each coalition are decreasing functions of k (Theorem 2 in
Funaki and Yamato, 1999).

Corollary 3.3 For the case of identical countries, it follows that
12This is because π(14, {14, 2, 3}) = 248.06 > π(1, [N ]) + π(4, [N ]) = 245,
π(2, {14, 2, 3}) > π(2, [N ]) and π(3, {14, 2, 3}) > π(3, [N ]).
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(i) the minimum and maximum value of a coalition S ⊆ N are determined by

min
κ:S∈κ

π(S, κ) = π(S, S ∪ [N\S]),

max
κ:S∈κ

π(S, κ) = π(S, S ∪ {N\S}).

(ii) a coalition structure κ is feasible if the size of the largest coalition is feasible
under the equal sharing rule.

Proof. (i) We have min
κ:S∈κ

π(S, κ) ≤ π(S, κ
0
) ≤ max

κ:S∈κ
π(S, κ) for all coalition

structures κ
0 6= κ. Moreover, from Proposition 3.2, i.e. that fishing effort is an

increasing function of the number of coalitions, it follows that for any two coalition
structures κ = {S1, S2, ...Sk} and κ0 = {S01, S02, ...S0m} such that k < m

e(k, κ) < e(m,κ0);

π(e(k, κ)) > π(e(m,κ0));

and if S ∈ κ and S ∈ κ0

π(S, κ) > π(S, κ0)

where e(k, κ) =
Pk

j=1 e
∗
Sj
, e(m,κ0) =

Pm
i=1 e

∗
Si
. Thus, result (i) is obtained.

(ii) In a Nash equilibrium, e∗, the net benefits are:
π(i, [N ]) =

[f(e∗N )−c·e∗N ]
n for all i ∈ N, and

P
i∈S π(i, [N ]) =

|S|[f(e∗N)−c·e∗N ]
n .

Then, if countries have prudent perceptions (pessimistic expectations), a vector
z = (z1, z2, ..., zn) can be considered as a feasible payoff if

P
j∈S zj ≥

|S|[f(e∗N)−c·e∗N ]
n .

We observe that for a given coalition structure κ with k coalitions, a vector z is
a feasible payoff vector if zj =

c·e(k,κ)−f(e(k,κ))
|S|k ≥ [f(e∗N )−c·e∗N ]

n for all j ∈ S, where
e(k, κ) is the total effort in an equilibrium under κ, and e∗N is the Nash equilibrium.
Since π(S, κ) = f(e(k,κ))−c·e(k,κ)

k for all S ∈ κ, then, if

f(e(k,κ))−c·e(k,κ)
k|Sm| ≥ f(e∗N)−c·e∗N

n for the coalition Sm, where |Sm| = max
j∈I(κ)

|Sj |,

it follows that

f(e(k,κ))−c·e(k,κ)
k|Sj | ≥ f(e(k,κ))−c·e(k,κ)

k|Sm| ≥ f(e∗N)−c·e∗N
n for all Sj ∈ κ.

Example 3.2 Consider four identical countries, i = 1, 2, 3, 4, with marginal
cost c = 9 and production function f(e) = (60 − e)e. Since all countries are
identical, there are only five types of coalition structures: κ1 = {|1|, |1|, |1|, |1|},
κ2 = {|1|, |1|, |2|}, κ3 = {|2|, |2|}, κ4 = {|1|, |3|}, and κ5 = {|4|}, where |i| denotes
the number of countries. The game (N,π) ∈ FGPFFN is given by

π(|1|, |1|, |1|, |1|) = (100.40, 100.40, 100.40, 100.40);
π(|1|, |1|, |2|) = (162.56, 162.56, 162.56);
π(|2|, |2|) = π(|1|, |3|) = (289, 289); π(|4|) = 650.25.

The coalition structures κ3 is feasible since π(|2|, κ3) = 289 > 2 · π(|1|, κ1) =
200.80, under the equal sharing rule. However, a coalition with 2 players for a
coalition structure consisting of 3 coalitions is not feasible since π(|2|, κ2) = 162.56 <
2 · π(|1|, κ1) = 200.80.
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4 Distribution of payoffs
This section considers the distribution of payoffs of partial cooperation that coun-
tries can agree upon. To simplify the analyses, suppose the production function
takes the quadratic form f(e) = (b − e)e. The parameter b can be considered a
critical (maximum) effort level where production cannot recover the total cost, i.e.
f(eN ) ≤ c · eN if eN ≥ b, and c ∈ [mini∈N ci,maxi∈N ci].
Recall that c1 ≤ c2 ≤ ... ≤ cn. To ensure that all countries have the possibility

to catch, i.e. ej ≥ 0 for all j ∈ N, we assume that
b+
Pn

j=1 cj
n+1 > cn.

13 The net benefit
function of coalition Si under coalition structure κ is:

πSi(eSi , e−Si) = (b− eN )eSi − cSi · eSi . (11)

Denote the share of efforts of coalition S in the competitive equilibrium e∗ un-
der structure κ as sh(S) = e∗S

e(k,κ) , where e(k, κ) =
P

S∈κ e
∗
S and e∗S =

P
l∈S e

∗
l .

Moreover, let π(e(k, κ)) =
P

S∈κ πS(e
∗) be the total net benefit.

Proposition 4.1 For every coalition structure κ, the following results hold for
every competitive equilibrium

(i) for any i < j, cSj − cSi = e∗Si − e∗Sj ≥ 0

(ii)
∂e∗

Si

∂cSj
=

½
− k

k+1 < 0 if i = j
1

k+1 > 0 if i 6= j

(iii)
∂πSj (.)

∂cSi
=

(
− 2k

k+1e
∗
Sj

< 0 if i = j
2

k+1e
∗
Sj

> 0 if i 6= j

(iv) ∂π(e(k,κ))
∂cSj

> 0⇐⇒ sh(Sj) < 1/(k + 1)

Proof. (i) From (7) and f(e) = (b− e)e which implies (i).
(ii) Since e∗N = (kb−

Pk
i=1 cSi)/(k+ 1) and e∗Si = (b− e∗N )− cSj it follows that

e∗Si =
b− kcSi +

P
j 6=i pSj

k + 1

leading to (ii).
(iii) As πSj (e

∗) = (b− e∗N − c
Sj
)e∗Sj = (e

∗
Sj
)2, it follows that

∂πSj (e
∗)

∂cSi
= 2e∗Sj

∂e∗
Sj

∂cSi
=

(
− 2k

k+1e
∗
Sj

< 0 if i = j
2

k+1e
∗
Sj

> 0 if i 6= j
.

leading to (iii).
(iv) Since π(e(k, κ)) =

Pk
j=1 πSj (e

∗) and (iii), it follows that

∂π(e(k, κ))

∂cSi
=

kX
j=1

∂πSj (e
∗)

∂cSi
=

∂πSi(e
∗)

∂cSi
+
X
j 6=i

∂πSj (e
∗)

∂cSi

= 2[
−k
k + 1

e∗Si +
1

k + 1

X
j 6=i

e∗Sj ] =
2

k + 1
{−ke∗Si + [

kX
m=1

e∗Sm − e∗Si ]}

=
2
Pk

m=1 e
∗
Sm

k + 1
[1−

(k + 1)e∗SiPk
m=1 e

∗
Sm

] > 0⇔ 1−
(k + 1)e∗SiPk

m=1 e
∗
Sm

> 0

⇔ sh(Sj) < 1/(k + 1),

13This assumption is equivalent to the requirement of positive shares at the equilibrium for all
players (for details, see Zhao, 2001).
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which implies (iv).

Proposition 4.1 shows the relationship between marginal costs, fishing efforts and
net benefits for coalitions in the competitive equilibrium14. To illuminate Proposi-
tion 4.1 consider a coalition structure κ consisting of k coalitions (I(κ) = k) and the
case where one member i leaves its coalition Sκ(i) (∈ κ) and joins another coalition,
say Sκ(j) ∈ κ. If the marginal cost ci of this member is larger than the marginal
cost cSκ(i) of its former coalition Sκ(i) but smaller than the cost cSκ(j) of its new
coalition Sκ(j), then the joining of this member will lead to a cost reduction of coali-
tion Sκ(j). Moreover, the marginal cost of the coalition to which i used to belong
does not change. Therefore, although the number of a new coalition structure κ0

does not change, i.e. I(κ0) = k (since only i changes coalitions), the cost structure
does change. In similar vein, (ii) and (iii) describe the impacts on coalition efforts
and coalition net benefits. If own marginal costs of a coalition increase, own ef-
forts and net benefits decrease, whereas if the marginal costs of another coalition
increase own efforts and net benefits increase. According to (iv), the forming of a
new coalition structure may cause a reduction of total net benefit if at least one of
the effort shares is larger than 1

k+1 .

The above Propositions 3.1, 3.2 and 4.1 imply that although an outcome depends
on both the marginal cost cSj and cardinality of κ, countries with high costs have
an incentive to cooperate since they will take advantage by reducing costs when
joining a coalition with lower costs. The following example illuminates this.

Example 4.1 Consider Example 3.1. The benefits of free-riding are presented
in Table 4.1. The number of coalitions is presented in the first column and the
benefit of each free-rider follows in the next columns.
In Table 4.1 the second row represents noncooperative net benefits. The third

and fourth rows represent free riding benefits for countries i, j, i 6= j when countries
k and l form a coalition {kl}, k, l ∈ N\{i, j}. For example, for k = 3, 272.25 and
248.06 are the payoffs of country 1 in the coalition structures κ = {1, 4, 23} with
aggregate marginal cost 14 and κ = {1, 3, 24} with aggregate marginal cost 11,
respectively (see Table 3.1). The last row represents free riding benefits for country
i when N\{i} forms a coalition.

|I(κ)| π({1}, κ) π({2}, κ) π({3}, κ) π({4}, κ)
k = 4 196 169 100 49

k = 3 (free-riders with high costs ) 272.25 240.25 175.56 105.06
k = 3 (free-riders with low costs) 248.06 217.56 138.06 90.25

k = 2 386.91 348.20 277.56 214.92

Table 4.1 The benefits of free-riding.

If only two countries form a coalition (i.e. k = 3) then, relative to the noncooper-
ative situation a free-rider country, for example, country 4, gains 90.25−49 = 41.25
(84%) in the low cost cases, i.e. coalition structures {13, 2, 4} or {1, 23, 4}, and
105.06− 49 = 56.06 (114%) in the high cost case, i.e. coalition structure {12, 3, 4}.
In a similar vein, country 1 gains 248.06− 196 = 52.06 (27%) in coalition structure
{1, 24, 3} and 272.25− 196 = 76.25 (39%) in coalition structure {1, 23, 4}.

In Example 4.1, although country 4 with the highest marginal cost has the
smallest net benefit in the noncooperative situation (Corollary 3.1), it will gain
14Coalitions mean both individuals and groups of individuals in a given coalition structure.
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relatively more from free-riding than the other countries. For example, consider
the case of only one free-rider, i.e. k = 2. In this situation, if countries 1,2 and
3 form a coalition {123}, then in the coalition structure {123, 4} country 4 gains
214.92−49 = 165.92 (337%). The gains are 177.56 (177%) in {124, 3} for country 3,
179.20 (106%) in {134, 2} for country 2 and 190.91 (97%) for country 1 in {234, 1}.
Moreover, in coalition structure {123, 4} country 4 gains more than in coalitions with
two free-riders (c.f. {1, 4, 23} or {13, 2, 4} with gains 56.06 (114%) and {12, 3, 4}
with gains 41.25 (84%) for country 4).

Observe that although all coalition structures with two coalitions in Example
4.1 are feasible under the equal sharing rule (see section 3), the total benefits of
coalition structures with two coalitions will increase if country 4 forms a coalition
such that the lowest cost coalition materializes (because it reduces the total cost
of the coalition structure). For example, consider κ1 = {12, 34}, κ2 = {14, 23},
κ3 = {13, 24}, κ4 = {123, 4}, κ5 = {124, 3}, κ6 = {134, 2} and κ7 = {234, 1}. From
the last column in Table 3.1, it follows that15:
π(e∗(2, κ2)) = 735.71 > 704.81 = π(e∗(2, κ1)), and
π(e∗(2, κ7)) = 735.71 > 704.81 = π(e∗(2, κ5)) > 648.51 = π(e∗(2, κ4)).
In coalition structures κ4, κ5, κ6 and κ7 there is free-riding by countries 4, 3, 2

and 1, respectively16. The total effort and total net benefit are affected by the
marginal cost of the free-rider. For example, Table 3.1 shows that if country 1 or 2
free-rides, then total effort is 38.33 and the total net benefit is 735.71. If country 3
free-rides, then the total effort is 37.33 and the total net benefit is 704.81, whereas
the total effort reduces to 36.33 and total net benefit is 684.51 if country 4 free-rides.
The smallest effort (29) and highest net benefit (841) materialize for the grand

coalition only. Therefore, although there exist some feasible partial coalition struc-
tures, the grand coalition is optimal.
The question arises what sharing rule of the net benefits should be adopted to

stimulate the fishing nations to join the grand coalition. If a coalition structure
is feasible, the equal sharing rule can be applied for each coalition. However, the
equal sharing rule does not take into account the contributions of each player to the
grand coalition.
The Shapley value (1953) is defined and considered an appropriate device of

distributing the gains of cooperation among the players in cooperative games with
transferable utility (characteristic function forms or TU games)17 . Therefore, it can
not applied for partition function form games. In the remainder of this section we
use the modified Shapley value for partition function form games, introduced by
Pham Do and Norde (2002). Particulary, we will show that a country with higher
costs has higher gains from the cooperation under this modified Shapley value.
Pham Do and Norde (2002) show that the modified Shapley value (see Appendix)

is a unique and efficient solution for a PFFGN . Moreover, they point out that for
a class of oligopoly games in partition function form such as a FGPFF (N,π),
where π is derived by competitive equilibrium of coalition structures from (11),
the modified Shapley value keeps the same ordering for every player in the Nash
situation. Applying this result to a fishery game in partition function form, the
following proposition is obtained.

Proposition 4.2 Let ψ be the modified Shapley value for a FGPFF (N,π), where
π is derived in (11) from competitive equilibrium of coalition structures. It follows

15Note that π(e∗(2, κ2)) = π(e∗(2, κ3)) and π(e∗(2, κ7)) = π(e∗(2, κ6)) since the total cost of
κ2 and κ3 as well as κ7 and κ6 are equal.
16 It is a reason why the full cooperation may not stable if a distribution of benefits can not be

accepted by several countries.
17The reader is referred to the chapters 53-58 by Aumann and Hart (2002) for the introduction

to the Shapley value, its extensions and applications.
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that if c1 ≤ c2 ≤ ... ≤ cn then

(i) π(1, [N ]) ≥ π(2, [N ]) ≥ ... ≥ π(n, [N ]),

(ii) ψ1(π) ≥ ψ2(π) ≥ ... ≥ ψn(π), and

(iii) π(N, {N}) =
Pn

i=1 ψi(π).

Proof. See section 6 in Phamdo and Norde (2002).

The following example will illuminate the modified Shapley value as a division
rule and show that a country with higher costs has higher gains from the cooperation
under this rule.

Example 4.2 Consider the fishery game in partition function form (N,π) in
Example 3.1, where w is defined as (G3.1). In this game, we have

π(1, [N ]) = 196 > π(2, [N ]) = 169 > π(3, [N ]) = 100 > π(4, [N ]) = 49.

Using the Appendix the modified Shapley value is obtained as

ψ(π) = (271.18, 238.86, 184.94, 146.02).

This value allocates the payoffs according to the different contributions of each
player in the grand coalition in the following order:

ψ1(π) > ψ2(π) > ψ3(π) > ψ4(π), and
π(4, {4}) =

P4
i=1 ψi(π) = 841.

The different payoffs due to the different costs of the players, and the surplus
gained from the full cooperation is (75.18, 69.86, 84.94, 97.02). Thus, each country
has a different gain in the grand cooperation due to its distribution of marginal cost.
Moreover, this distribution differs from the values that are obtained by applying
other division rules such as the equal sharing rule. For example, the transition from
the noncooperative to cooperative situation yields the surplus 327 (= 841 − 514)
and the equal sharing rule gives the outcomes (277.75, 250.75, 181.75, 130.75), where
each player gains equally 81.75.
This example indicates that although the equal sharing rule can be applied for

any feasible coalition structure, the modified Shapley value has more potential in
avoiding free-riding behaviour. To make it clearly, consider again Table 4.1 for a
situation where countries 1, 2, 3 are CSs and country 4 is a DWFN. Moreover,
regarding to the nember problem of a RFMO, we assume CSs are members of a
RFMO who may or may not accept a new entrant (i.e DWFN) to join its organiza-
tion. According to Article 8 of the 1995 UN Fish Stock Agreement, only member of
a RFMO and the countries that apply the fishing restrictions adopted by it, shall
have access to the regulated fishery resource. Therefore, it is argued that a free
rider behaviour of the DWFN, undermining the efforts of CSs, is not feasible under
the legal framework (Pintassilgo, 2002). This situation implies that there are pos-
sibility of free rider behaviour by CSs18, and a DWFN is not allowed to free rider
(although a DWFN gains more benefit in such situation). The net benefits of free

18Kaitala and Munro (1995) argue that there exists a situation where some members of a RFMO
leaving its RFMO and cooperating with a DWFN (i.e. a new coalition). Thus, the possibility of
free rider of CSs seems to persist under the legal framework setting by the UN Conservation on
the Law of the Sea.
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riders in these situations are presented in row 4 of Table 4.1. It is showed that the
benefits of free rider 248.06, 217.56, 138.06 and 90.25 (for countries 1, 2, 3, and 4,
respectively) are smaller than the Shapley value 271.18, 238.86, 184.94, and 146.02.

Remark Table 3.1 shows that if country 4 free rides (excluding the noncooper-
ative situation [N ]) then the total cost will increase more than the other free-riders
and as a consequence, the total net benefit will reduce. For example, the coali-
tion structure {123, 4} has the total cost 11 and the total benefit 684.51 which is
largest and smallest for any other coalition structures consist of only a free rider.
Furthermore, there are two situations where the total effort are smaller than others
which is either the grand coalition {N} or the coalition structure {123, 4} as the
result of the negative relationship between the total cost and total effort as well
as the total coalitions (Corollaries 3.1, 3.2). The natural question arises whether
one may expect reasonable compromise alternatives: no cooperation with less net
benefit or partial cooperation? One may choose either to reduce efforts and less
its net benefit by partial cooperations (i.e feasible coalitions) or to accept the new
member as expanding to the grand cooperation.
In Example 4.1 the modified Shapley value is applied as a solution avoiding the

free-ridding. For instance, consider the coalition structure κ6 = {134, 2} in which
the total cost is 5 and total effort is 36.33. Using the modified Shapley value as
the division rule for a feasible coalition {1, 2, 4}, then countries 1, 3, and 4 receive
the net benefits are 210.17, 107.17 and 69.57 (sharing the total net benefit 386.91),
respectively. The gains are 14.17 for country 1, 7.17 for country 3 and 20.57 for
country 4.

Finally, we observe that although each country is better off in the grand coalition
than in the competitive outcome, individual countries can do even better by free-
riding under certain circumstances, as illustrated in the last row of Table 4.1. This
implies that application of the modified Shapley value is not sufficient to discourage
free riding. Therefore, additional measures are needed to deter free riding; e.g.
linking a fishery problem to another problem in which the countries are involved
(see Folmer et al., 1993 and Kroeze-Gil, 2003 and the references therein).

5 Concluding remarks
The objective of regional fishery agreements is to develop rules for joint decision
making to use common fishery resources efficiently, particularly to avoid inefficient
outcomes and the collapse of fish stocks resulting from noncooperative behaviour.
Furthermore, a better balance must be reached between fishing effort and the quan-
tities of fish that can be removed from the sea without endangering the future of
the fish stocks or ecosystems.
This paper has addressed the formation of coalitions smaller than the grand

coalition to intensify an achieved efficient cooperation. Particularly, attention has
been paid to the feasibility of coalition structures and their impacts on reducing
harvest levels. We have shown that for every coalition structure in a competitive
equilibrium a coalition with lower marginal cost has a higher effort level, and total
fishing effort is an increasing function of the number of coalitions. Moreover, the
lower the marginal costs, the higher the net benefits in the coalition structures.
In order to induce countries to cooperate the modified Shapley value adopted to

games in partition function form has been considered. This is a unique and efficient
division rule of gains from cooperation that preserves the ordering of players in
the Nash outcome. This device can be applied to develop profit allocation schemes
such as a reasonable compromise alternative for both the potential entrants and
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the charter members in the terms of no cooperation with less net benefits. The
main conclusion of this paper is that the analysis of partial cooperations is as an
alternative set in motion a process leading more cooperation and ultimately full
cooperation.
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Appendix
In order to introduce the modified Shapley value for games in partition function

form, we need some additional notations. Let Π(N) be the set of all bijections
σ : {1, 2, ..., n} → N of N . For a given σ ∈ Π(N) and i ∈ I([N ]) we define
Sσi = {σ(1), σ(2), ..., σ(i)}, and Sσ0 = ∅. For a given σ ∈ Π(N) and i ∈ I([N ]), we
define the partition κσi associated with σ and i, by κσi = {Sσi } ∪ [N\Sσi ]. So, in κσi
the coalition Sσi has already formed, whereas all other players still form singleton
coalitions. Furthermore, we define κσ0 = [N ].
Let (N,w) be a partition function form game, and σ ∈ Π(N). We define the

marginal contribution of the ith player σ(i) to coalition Sσi such as

mσ
σ(i)(w) := w(Sσi , κ

σ
i )− w(Sσi−1, κ

σ
i−1).

Based on these marginal vectors {mσ(w)}σ∈π(N ), we define the modified Shapley
value Φ of the partition function form game (N ,w) as the average of the n! marginal
vectors19,

Φ(w) =
1

n!

X
σ∈Π(N)

mσ(w).20

19Details can be found in Phamdo and Norde (2002).
20Observe the similarity to TU-games (c.f. Shapley, 1953).
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Example Consider the partition function form game (N,w) defined by
w(1, 2, 3) = (0, 0, 0), w(12, 3) = (2, 0), w(23, 1) = (3, 2), w(13, 2) = (2, 1),

w(123) = 10.
The marginal vectors associated21 with σ are:

if σ1 = (1, 2, 3) then mσ1(w) = (0, 2, 8)

if σ2 = (2, 1, 3) then mσ2(w) = (2, 0, 8)

if σ3 = (1, 3, 2) then mσ3(w) = (0, 8, 2)

if σ4 = (2, 3, 1) then mσ4(w) = (7, 0, 3)

if σ5 = (3, 1, 2) then mσ5(w) = (2, 8, 0)

if σ6 = (3, 2, 1) then mσ6(w) = (7, 3, 0).

So, the modified Shapley value Φ(w) = (3, 3.5, 3.5).

21For example, the marginal vector of σ2 is computed as follows. As σ2 = (2, 1, 3) then
mσ2
σ2 (1)

(w) = w(21, {21, 3}) − w(2, [N ]) = 2, mσ2
σ2 (2)

(w) = w(2, [N ]) = 0, mσ2
σ2 (3)

(w) =

w(213, {N})−w(21, {21, 3}) = 10− 2 = 8. Hence, mσ2(w) = (2, 0, 8).
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