RURAL DEVELOPMENT DRIVERS AND PUBLIC POLICY FORMULATION: THE USE OF PROSPECTIVE STRUCTURAL ANALYSIS

Delgado-Serrano, María del Mar 1†
Amador-Hidalgo, Francisco 2
Ambrosio-Albalá, Mateo 3

1 Department of Agricultural Economics. Faculty of Agriculture Engineering. University of Córdoba. Campus de Rabanales. Edif. C5, planta 3º. E-14071 Córdoba (Spain).
2 ETEA. Faculty of Economics and Business Administration. Escritor Castilla Aguayo, 4 – 14004 Córdoba (Spain).
3 Development Finance Unit, Multilateral Department. Spanish Agency for International Cooperation and Development (AECID). Reyes Católicos, 4 – 28040 Madrid (Spain)

† Corresponding author: mmdelgado@uco.es

Paper prepared for presentation at the 118th seminar of the EAAE (European Association of Agricultural Economists), ‘Rural development: governance, policy design and delivery’ Ljubljana, Slovenia, August 25-27, 2010

Copyright 2010 by Delgado-Serrano, Amador-Hidalgo, Ambrosio-Albalá. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
ABSTRACT

Traditional economic development theories have struggled to identify, in a comprehensive manner, the drivers and constraints that explain singular development paths and lead to spatial inequalities.

Assuming that development patterns are territory-specific, the research hypothesis is that public policies should have a better understanding of territorial dynamics in order to propose strategies efficient to trigger changes.

This paper applies the use of Prospective Structural Analysis (PSA), a foresight analysis technique, to explore the territorial dynamics.

The results show that, within a territory, the variables play different roles, and suggest that rural policies might have focused on factors that have few influence in fostering changes rather than on those with leverage effects.

KEYWORDS: Rural development policies, territorial rural development, prospective structural analysis

JEL: O18
1. Introduction

Regardless the important changes and implications that the current global financial crisis is raising, economic growth has been a common feature in the last decades’ global scenario. National and international economic policies have been successful in fostering it. However, this general picture hides important territorial unbalances: equity and fair growth distribution is still a pending issue and development remains elusive in many areas, mainly in rural ones. Quite often, these areas get away from development patterns and tend to concentrate underdevelopment problems and inequalities (IFAD, 2001; Commins, 2004).

Spatial inequalities and different economic development paths have long been a matter of interest for the economic science. From early development economists such as Rostow, Lewis, Todaro, Myrdal, to more recent ones like North, Ostrom or even Krugman, different theories and approaches for development have been proposed and big progress in understanding these processes have happened.

However, their application by governments and decision-makers has not led to the reduction of development gaps. A clear comprehension on the phenomena implicated in development processes and on the drivers and barriers affecting them is still missing. Different questions remained unanswered such us: Why some territories are successful in their development dynamics while other keep anchored in underdevelopment processes? Which are the critical factors to change underdevelopment rural dynamics? Why sectoral policies can have so diverse effects in different rural territories? Why development triggers don’t have the same effects in similar areas?

Our hypothesis is that rural development is a non-linear and highly contextual process; so traditional and horizontal approaches fail to give answer to territory-specific questions. New tools are necessary to explore the territorial dynamics and to understand how development processes happen in them. The objective of this paper is to present how foresight methods have been adapted to analyse the functioning of territorial rural systems and to check the effects of traditional and more recent development drivers to the territorial dynamics. Lessons of interest in the design of national and sectoral public policies can be extracted from the identification of the factors shaping the development path of rural territories.

The paper has been structured as follows. Firstly, the theoretical framework analyses the evolution of rural development thinking; the need to use different approaches and tools to deal with complex systems and describes the proposed method: the Prospective Structural Analysis. Secondly, the results of applying this technique to the development pattern of a rural area in the South of Spain are shown. Finally, a discussion of results and some conclusions are highlighted.

2. Theoretical Framework

As mentioned, the theoretical framework will be organized in two sessions: the shift in the theoretical approach to rural development and the description of the technique used in this research.

2.1 Changes in rural development thinking

The development of rural areas continues to be an international priority. The urgent need to fight poverty (mainly concentrated in these areas) in developing countries, and the demand for increasing economic and social cohesion in developed countries, explain this priority on the political agendas of multilateral bodies, the EU and most other countries. The role played by rural areas in securing territorial cohesion and the relevance of the assets they hold (European Commission, 1999) explain the interest and the need to integrate them in the general development dynamics.
Major switches in rural development thinking have occurred over the past half-century (Ellis and Biggs, 2001). The mentioned importance of the topic has led to an expansion of specific approaches and to the adaptation of relevant contributions from other disciplines as a way to understand development’ trigger and blocking factors. Past rural development programs were characterized by the implementation of non-coordinated, sectoral, horizontal and top-down policies and strategies. The lack of effectiveness and the failures prompted by these policies propelled the development of new approaches that propose coordinated, integrated, context-specific and bottom-up strategies (OECD, 1990; World Bank, 1998). Also, a shift from poverty alleviation to a focus on the analysis of spatial differences and opportunities, like the proposed by the new economic geography (Krugman, 1998; World Bank, 2008) can be appreciated.

The new approaches are known as territorially based rural development or just rural territorial development (RTD). EC LEADER Initiative established the bases for this way of working in rural areas. According to the LEADER European Observatory (1999) the seven principles defining RTD are: i) the area-based approach; ii) the bottom-up approach; iii) the creation of public-private partnerships articulated in Local Action Groups; iv) the innovative character of actions; v) the linkages and multi-sectoral character of the actions; vi) the networking and transnational cooperation and vii) the methods of management and financing. Two more principles could be added: the result-oriented actions and the need to coordinate local strategies and national policies.

The application of these principles have driven the emergence of a territorial focus on rural policies. This territorial approach aims at fostering a larger engagement of the rural actors in the decision-making processes; supporting broad territorial assessment and planning exercises to identify the range of potential sources for wealth creation in the territory; providing financial and technical support to undertake those territorial plans; and improving the coordination among those sector public bodies with an impact on the rural territories, to have more coherent and effective public actions in rural areas.

However, while the former approaches to rural development were based on the proposals of well-known economic theories (neo-classical, neoliberal, institutional economics, human development economics...), this latter territorial approach has been developed from the practice fostered by specific policies (such as those prompted by the European Union) and still lacks a solid and contrasted theoretical framework and a set of application tools.

Most of the theory around RTD comes from the analysis of rural changes, using territorial case studies as the unit of analysis. Schetjman and Berdegué (2004), Sepúlveda et al. (2003) and Bebbington et al. (2008) have developed the approach, based on the analyses of Latin American rural territories. The need to have a more comprehensive understanding of territorial dynamics is in the origin of an ongoing research analysis based on the study of 25 territories in 10 Latin American countries, conducted by RIMISP-Latin American Centre for Rural Development and sponsored by Canada’s International Development Research Centre.

However, this kind of research is long lasting, expensive and need to be very well-defined and executed, in order to drive significant conclusions. Different tools to deal with the complexity of factors interacting in rural areas should be explored to have a better understanding of rural dynamics and to boost the evidence-based policymaking for these areas.

2.2 The prospective structural analysis (PSA)

The PSA technique is commonly used in the futures or scenarios building, a subset of the study field of strategic foresight. Within this field, the Regional Foresight subfield and the relevant idea of a “socially-organized learning process” (Gertler and Wolfe, 2004) offer promising prospects for the rural areas.
In Europe, there are several experiences using this approach at the regional level (Cariola and Rolfo, 2004; Kelly, 2004; Grossmann, 2006). The European Foresight Monitoring Network during the EU 6th Framework Programme (FP) and the European Foresight Platform in the ongoing EU FP 7 have developed an online comprehensive database with foresight applications across the EU. Among the regional foresight experiences, some experiences account for the design of socio-economic development strategies in England (Reutter, 2006; Mahroum, 2007a), Spain (Casas and Talavera, 2008) or the East German regions (Braun, 2005). Other studies develop sector applications, like the boost to overall innovation strategies in Silesia, Poland (Buczek and Hafner-Zimmermann, 2007) and Greece (Amanatidou, 2007) or more competitiveness-focused like the case of Madrid region (Fontela and Sáinz de la Fuente, 2005).

Applied to rural areas, especially relevant are the analysis on the social geographical perspectives for the English countryside (Mahroum, 2007b) and the assessment of the policy goals achievement for the Irish rural areas in 2025 (Kinsella et al., 2005). A first attempt to apply this PSA technique particularly for the strategic planning in the rural areas has been carried out in Andalusia (Spain). Following the 4th EU Programme of Rural Development Aid 2007-13, the Andalusian regional government assigned an university expert group to provide methodological guidance to the local action groups (LAGs) so that they could design their development strategies (Ambrosio-Albalá et al., 2009).

Prospective analysis techniques assume that the future is different from the past and is not imposed, but can be built. These techniques can describe present situations but also allow drawing scenarios through stimulating and structuring collective reflection processes to construct the vision of rural territories’ future and to highlight the necessary actions to reach it.

The aim of the PSA (Godet, 1990; 1994; 2001) is to single out the driving and dependent variables within a system. It helps to identify the variables that impel the change and those that are modified due to the influences received from other variables. Hence, PSA helps to structure a discussion destined to build a common understanding about the system and the influence relations among its elements.

The technique relies upon a process of deliberations, carried out through workshops. The discussions primarily aim to fill up a cross-impact matrix, representing the structure of influence (instead of cause-effect) relations among the system variables. The key type of influence is the motricity (capacity of a variable to have an effect on other variable). As a result, it comes out the dependency type of influence, which reflects the impacts received by every variable.

Following the Markov chain properties, the successive elevation of the matrix to 2, 3, 4 ... n potencies leads to classify the different matrix elements according to the total number of influences exerted or received. From a given potency the results become stable and show a set of hierarchies, according to the motricity and dependency properties of the elements (Godet, 2001).

To sort out the variables, the MICMAC software is used. This software applies the properties of Boolean matrixes to rank the variables according to the number and intensity of the exerted and received influences and to the loops effects. MICMAC not only consider the direct but also the indirect effects. The importance of a variable does not only stem from its direct relations with other variables, but also from the millions of indirect relations (Godet, 1994). Countless indirect influences on an element show the invisible structure of relations among the system elements and give an image closer to real one, at least regarding the elements shaping its evolution. The matrix of direct influences show the short term relationships among variables, but the matrix of indirect influences show the medium-long term ones.

Unlike the above mentioned references, this paper does not make use of the usual foresight tool sets to carry out broad-based strategic planning. Yet it uses one of these techniques, the PSA, and
attempts to make a case on its suitability to validate the assumptions behind the territorial rural polices. Out of the literature review, no studies of this kind have been found.

3. Methodology

The PSA technique has been applied to a rural territory, Valle de Los Pedroches in Cordoba (Southern Spain). The technique is developed in three stages: definition of the elements of the system, rating of the interrelations between variables and identification of the key elements. For the purpose of this paper, some minor changes have been made.

3.1 Phase 1: List of constructs

The first step has been to elaborate a list of internal and external variables that frame the system. The list should not contain more than 70-80 variables and every variable must be clearly defined and characterised, stating past and foreseeable future evolution tendencies. Ideally, this list should be agreed with the participants in the workshops.

In this research, the system variables are constructs. A construct is a “concept that researchers can define in conceptual terms, but can not be directly measured (…) or measured without mistakes” (Hair et al., 1998). The used list of constructs is grounded in a literature review of the RTD policy underpinnings. Table 1 shows this list.

Table 1. List of constructs

<table>
<thead>
<tr>
<th>Territorial Rural Development Basic Principles</th>
<th>Constructs</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Area-based approach</td>
<td>Natural Resources</td>
<td>RecNatur</td>
</tr>
<tr>
<td></td>
<td>Local identity</td>
<td>Ident</td>
</tr>
<tr>
<td></td>
<td>Settlement patterns</td>
<td>Asenta</td>
</tr>
<tr>
<td></td>
<td>Land tenure patterns</td>
<td>Tierra</td>
</tr>
<tr>
<td>2. Bottom-up approach</td>
<td>Sociability</td>
<td>Sociab</td>
</tr>
<tr>
<td></td>
<td>Political representativeness</td>
<td>Repres</td>
</tr>
<tr>
<td>3. Public-private partnerships and Local Action Groups</td>
<td>Professional network and associations</td>
<td>OrgProfes</td>
</tr>
<tr>
<td></td>
<td>Local leaderships</td>
<td>Lider</td>
</tr>
<tr>
<td></td>
<td>Public – private joint action</td>
<td>AC_GobPriv</td>
</tr>
<tr>
<td></td>
<td>Public – civil society joint action</td>
<td>AC_GobSoc</td>
</tr>
<tr>
<td></td>
<td>Private – civil society joint action</td>
<td>AC_PrivSoc</td>
</tr>
<tr>
<td></td>
<td>Joint action among local governments</td>
<td>AC_Gob</td>
</tr>
<tr>
<td>4. Innovation</td>
<td>Modernization of agriculture production systems</td>
<td>Modern</td>
</tr>
<tr>
<td></td>
<td>Access to information and mass media</td>
<td>Media</td>
</tr>
<tr>
<td></td>
<td>External agent influence</td>
<td>Extern</td>
</tr>
<tr>
<td>5. Integrated approach</td>
<td>Households’ income and activity diversification</td>
<td>Media</td>
</tr>
<tr>
<td></td>
<td>Access to basic public services</td>
<td>Servic</td>
</tr>
<tr>
<td></td>
<td>Infrastructures</td>
<td>Infraest</td>
</tr>
<tr>
<td>6. Networking and transnational cooperation</td>
<td>Professional network and associations</td>
<td>OrgProfes</td>
</tr>
<tr>
<td></td>
<td>Joint action among business organizations & professionals</td>
<td>AC_Priv</td>
</tr>
<tr>
<td>7. Methods of management and financing</td>
<td>Local government</td>
<td>GobLoc</td>
</tr>
<tr>
<td></td>
<td>Joint-action among local governments</td>
<td>AC_GobLoc</td>
</tr>
<tr>
<td></td>
<td>Capital flows</td>
<td>Capit</td>
</tr>
<tr>
<td>8. Result-oriented actions</td>
<td>Rural poverty</td>
<td>Pobrez</td>
</tr>
<tr>
<td></td>
<td>Migration strategies</td>
<td>Emigr</td>
</tr>
<tr>
<td>9. Coordination of local strategies and national policies</td>
<td>Territorial administrative organization</td>
<td>Adminis</td>
</tr>
</tbody>
</table>

3.2 Phase 2: Description of relations among variables

In this phase a cross-impact analysis is carried out with the help of a double entrance matrix, or direct-influence matrix (DIM). Every matrix element \(a_{ij} \) represents the influences of row \(i \) variables on column \(j \) variables.
This step needs to comprehensively inquire into the multiple relations between variables. A deep reflection on the nature of the influences is key to clearly establish if the influence exerted by \(i \) over \(j \) is either direct (Figure 1, a) or due to a third variable, \(k \) influencing both of them (Figure 1, b) or \(m \) mediating the influence (Figure 1, c).

![Figure 1. Range of basic influences between variables](image)

The intensity of the influence is assessed from 0 to 3 (0 meaning no direct influence, 1 a weak influence, 2 a medium and 3 a strong one). Also a \(P \) value (potential) can be assigned to those direct influences that can be relevant in the future under certain circumstances. This tool does not take into account the influences sign. The distinction between positive and negative influences relies on a deeper understanding of the system under study.

3.3 Phase 3: Identification of key variables using MICMAC tool.

In this phase, the MICMAC software is applied. This programme ranks the variables according to the influence paths number and intensity.

A direct influence between variables \(i \) and \(j \) is labelled as 1\(^{st} \) order, since no element mediates such a relation (\(i \rightarrow j \)). The DIM gathers all these 1\(^{st} \) order influences of the system. Each variable is given a pair of values (proportions), which depicts the sum of the total value of the exerted and received influences.

Yet the significance of a variable for the system does not only depend on its direct influences but on the sheer amount of indirect relations. In order to take into consideration influences of higher order (i.e., \(i \rightarrow k \rightarrow j \), 2\(^{nd} \) order influence between \(i \) and \(j \) and so on), MICMAC calculates successive DIM rising to second, third, fourth … \(n \) powers. Each matrix returns a new pair of proportions for every variable. From a given power ahead, the set of pairs of values remains constant. That ‘stable’ final matrix is labelled as the Indirect Influences Matrix (IMM).

Besides the matrixes, MICMAC can represent the variables of the system in the motricity-dependency map (MDM), using the pair of proportions attached to each variable. This plane and the relevant proportions for each variable allows to sort out the variables in a set of clusters, each of them meaning a different function in the system (Figure 2). These clusters respond to two logics: an input-output logic (determinants, environment, target, outcomes) and a strategic logic (stakes, regulators, secondary and autonomous).
Figure 2. Typology of variables in the motricity-dependency map (MDM)

Following the input-output logic, four clusters appear:

- The inputs variables can be determinant or environment. The former are variables that have had or are having an strong impact on the system dynamics and receive very little impact from other elements of the system. The environment variables show a mid-level influence on the system evolution and likewise are hardly affected by the effects of other variables.
- The output variables can be target and outcomes. The target variables behave as the goals of the system, since it is possible to influence them (high dependency) but exert a medium influence over others elements. The outcomes are considered as indicators of the evolution of the system, are highly reactive to the influences from others elements but hardly exert any influence.

The strategic logic relates to the position of the variables along the strategic diagonal. According to its position, the variable will have a different leverage effect. The largest the distance of the variable to the origin, the higher the multiplier effect and the most strategic the element is for the system. From a strategic logic, another four clusters can be distinguished:

- Autonomous elements with a low potential to generate changes and also receiving few influences.
- Transmission (or ‘squad’) elements that can be subdivided in two types: regulators (medium capacity to foster changes and medium capacity to be influenced) and secondary, elements with a lower importance for the system functioning.
- Stake variables are critical to the system since their high motricity and dependency mean that any influence over/from them can highly disrupt normal system functioning.

This map is a by-product of the participants’ assessment on the influences among elements. It shows how the local people watch their territory and what they consider to be restrictions, opportunities and potentialities for change. Consequently, it draws a dynamic image of the perceptions by local actors.

4. Results

4.1 The rural territory of the Valle de los Pedroches

The application was carried out in the Valle de los Pedroches, a rural area in the Cordoba province (Southern Spain). Table 2 depicts a short summary of the defining features of this territory.
4.2 The direct-influence matrix and transformations

The filling in of the cross-impact matrix has been done by local actors through prospective workshops. The resulting matrix DIM for this case is included in Table 3.

Table 3. Direct-influence matrix of the Valle de los Pedroches.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>P</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

NOTE: 0 – no direct influence; 1 – weak direct influence; 2 – medium direct influence; 3 – strong direct influence; P – potential direct influence.

The matrix was formed by 24 rows and 24 columns according to the number of constructs. Since the constructs can only influence themselves through an indirect influence, the diagonal values are zero. The filling rate of the matrix helps make a first assessment of the exercise. It is calculated as the percentage of the amount of non-zero values over the total cells of the matrix. The rate for the DIM is 86.11% (see Table 4).

Filling rates over 50% means that participants have taken indirect influences for direct influences. A transformation is required under the assumption that the direct influences are only those rated as strong and medium and that influences initially rated in the DIM as 0, 1 and P are indirect. Thus a new matrix is built by assigning a zero-value to the original 0, 1 and P influences and replacing
the original “2” with “1” and the original “3” with “2”. The new resulting matrix (“modified DIM”) shows an acceptable filling rate of 43% and is the basis for the following calculations.

Table 4. Characteristics of the DIM and modified DIM

<table>
<thead>
<tr>
<th></th>
<th>DIM</th>
<th>Modified DIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix-size (total cells)</td>
<td>576</td>
<td>576</td>
</tr>
<tr>
<td>0-value cells</td>
<td>80</td>
<td>325</td>
</tr>
<tr>
<td>1-value cells</td>
<td>211</td>
<td>197</td>
</tr>
<tr>
<td>2-value cells</td>
<td>197</td>
<td>54</td>
</tr>
<tr>
<td>3-value cells</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>P-value cells</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>Non-zero cells</td>
<td>496</td>
<td>251</td>
</tr>
<tr>
<td>Filling-rate</td>
<td>86,11%</td>
<td>43,58%</td>
</tr>
</tbody>
</table>

4.3 The key variables of the territorial system

MICMAC delivers some outputs based on this modified DIM. For the purpose of the paper, the motricity-dependency maps (MDM) stands out. This map charts the elements of the system in a Cartesian plane using their proportion values (dependency in X-axis, motricity in Y-axis). Figure 3 shows the maps coming out of both the direct influences (a) and the indirect influences (b).

Yet this chart is hardly useful for interpretation purposes. The depicted elements have to be clustered according to their motricity and dependency proportions, also a MICMAC output. The same procedure applies separately for direct and indirect influences. The steps are as follows:

1. Calculate the strategic value of each element, as the sum of the motricity and dependency proportions.
2. Single out the transmission variables. Once calculated the strategic values average, the transmission variables are those whose strategic value is within a ±15% of the strategic values average. The 15% rate is an heuristic.
3. Discriminate regulatory and secondary variables. Within the transmission subset, regulatory variables show a higher motricity that the secondary ones. The benchmark relies on the motricity proportions (MP), being the regulatory variables those with an MP over the overall average and
the secondary the ones with MP below this average. For the sake of simplicity, this last step is omitted in this paper.

The interpretation of each MDM will be according to the two logics previously explained: the input-output logic and the strategic logic, both for the direct and indirect influences.

Figure 4 portrays an adaptation of the MDM for the direct influences, meaning the role played by the constructs in the short term.

![Figure 4. Motricity-dependency plane for direct influences in Valle de los Pedroches.](image)

According to the input-output logic, there appear to be three factors that condition any territorial process (determinant, environment): the infrastructures settings, the land tenure patterns and the settlement patterns across the territory. At the opposite side, as forces orienting the change in the system (target, outcomes) result: the need for upgrading the agriculture production systems, the diversification of the incomes and economic activity sources for the households, the fight against rural poverty and the joint-action among the local governments.

Following the strategic logic, there are quite a number of constructs with both a low or scarce influence on the territorial dynamics (autonomous). Most of them relate to institutional constructs. Four constructs are considered to have a mid-level leverage effect on the territory and be regulating the changes (regulators): the local governments, the natural resources, the delivery of basic public services and the influence exerted by external actors. Finally, three constructs are critical for the territorial dynamics (stake): the migration strategies, the flows of financial capital and the local identity.

The consideration of the indirect influences bring about a suggestive shifting in the MDM (see Figure 5). The analysis of deeper-level and hidden influences offer a new perspective on the territorial dynamics. An overall review of the MDM reveals less constructs within the input-output logic. More constructs are consequently set along the strategic line. Furthermore, there are new constructs in the more strategic clusters (regulators, stake). Hence, this MDM offers new insights on the most effective variables to explain the changes in the territory.
Regarding the input-output logic, the local leaderships and the territorial administrative organization lose dependency and now stand as inputs constructs, together with the infrastructure. As outputs only remain two of the former: the diversification of the households’ livelihoods and the rural poverty.

Following the strategic logic, in the lower strategic level, most of the institutional constructs continue as autonomous. The strategic value of the natural resources diminishes with time and it appears in this cluster. Some indicative changes also occur in the regulators cluster. The local governments remain as leverages. Among the new additions, there are constructs that become more reactive (the land tenure patterns, the settlement patterns), while in others the strategic value either increases (sociability, information and mass media) or decreases (the capital flows). Finally, in the stake cluster, the migration and the local identity constructs remain. The changes refer to factors that either gain more strategic value for the system (the delivery of public basic services, the influence from external actors) or increase their motricity (the modernization of the agriculture productive systems, the joint-action among local governments).

5. Discussion of Results

The application of PSA technique permits to classify the different elements, identifying the ones that produce territorial changes, those with no influence capacity (just receive influences), the elements on what actions can be applied (since they have capacity to produce changes), the variables that are the outcomes of the system and finally the ones that are part of the territorial environment, and as such few or none influences can be exerted on them (even if to a certain extent they can condition the change dynamics).

The MDM of direct influences shows the influences among variables in the short term. On the other hand, the MDM of indirect relations classifies variables according to the role they can play in the long term (10-15 years).

In the MDM for direct influences, the drivers of development in traditional approaches to economic and rural development, such as investments in infrastructures, diversification of activities, local government strengthening, land access policies, access to credit and transfer of funding or access to basic services, play an important role. However, modernization of agriculture and diversification of activities are outcomes of the system, so they are the result of the changes prompted by other variables. Consequently, the investment in these factors, without investing in others like the transmission or stake variables (access to credit and transfer of funding, local government
strengthening, access to basic services or opening to external influences) can prevent the pretended results.

In the long-term MDM for indirect influences the variables that more closely represent the basic principles of RTD (local identity, sociability, strong local governments, agriculture modernization, access to services, access to information, cooperation mechanisms among local governments, joint actions and diversification of activities) are key variables. They act as stake or as transmission elements. As a direct lesson, it can be stated that the actions proposed by RTD as development drivers for rural territories are medium-long term actions. They are part of a process and can’t be actions executed in a given moment.

The comparison of both maps for this case study evidence important changes. Elements as external influences and access to services shift from transmission to stakes in the long term, so the actions exerted on them can foster changes. On the other hand the access to capital moves from stake to transmission, so actions on it have less capacity of influence in the long term. Natural resources also losses influence capacity.

The diversification of activities and incomes and the fight against poverty appear as outcomes in both maps. It also is worth to mention the low potential to foster or receive changes of the elements related to the creation of partnerships between different agents, always classified as autonomous.

Other interesting results are the following. The infrastructure settings of a territory is a very important factor (determinant), both in the short and the long term, and appear to be decisive for the poverty alleviation or the diversification of activities and incomes’ processes, as outcomes of the system. Yet, the infrastructure is not effective on its own and its effect on these two outcomes is mediated by other variables. For this reason, direct government policies to foster them will probably not seize all their potential if other factors are not taken into consideration. Additionally, public administrations play an important role as environment element in the long term, so they are necessary (mid-level influence) and not much dependent from other elements.

Finally, the number of variables classified as stakes and determinants is the highest in both maps and even higher in the long-term map. That clearly shows the complexity and the big number of factors interacting in the development of rural territories.

6. Concluding Remarks

The undertaken analysis has illustrated the role played by different development drivers in a rural territory. Factors that traditionally have attracted the attention of rural public policies, like investment in income and activities diversification or fight against poverty, seem to lack the capacity to drive on their own the expected changes in rural areas. They are necessary, but they have few influence capacity, since they are rather the results of the actions taken on other variables of the system. By contrast, other traditional factors of development policies like access to land and to capital are key variables in the processes. So, they should be paid more attention.

Other interesting remarks are related with the different role played by the elements in the short and in the long term. The shift in the role of the variables with time proves the dynamic nature of the interrelations and of changes. To cope with these reality flexible and adaptable policies are needed and also continuous monitoring and evaluation processes providing feed-back and leading to decision-making.

The development drivers proposed by RTD approach appear as long-term important factors (tend to act as stake or transmission variables), showing the importance of defining long-term actions and policies and the need to understand rural development as a process and not as an act. Furthermore, the continuity and enhancement of these policies can be very important for rural areas.
It is also worth to highlight the high number of variables interacting in the development processes with an important role. That is a clear statement of the complexity of these processes and of the relevance to use integrated approaches that don’t contemplate rural world through simplistic and monodimensional analysis.

Regarding the interest in the use of PSA technique, this tool can be interesting in the analysis of rural development territories, since it highlights the area main features and interprets them through a collective reflection process with local actors. Influence matrix and feed-back effects on every variable allow establishing hierarchies among the variables. The subsequent classification lets understand the role played by the different constructs according to participant perceptions.

The technique has some interesting features as: it is not expensive, neither too time-costly; it doesn’t need quantitative data, facilitating the analysis of territories where statistics are missing; its base on qualitative considerations about the nature of interrelations avoids the loss of important information on such interrelations when quantification is not possible; it integrates mutual non-linear interrelations among the territorial elements; instead of a logic of causation, the logic of motricity and dependence influences appears to be closer to the nature of real interrelations among agents and resources within a territorial system and facilitates not only a systemic approach for the object of study, but also identify the functionality of the elements to drive changes within the system.

On the other hand, it can be mentioned that the results are based in the actors’ perceptions. So, subjectivity has a fundamental role on the technique. Far from being considered a limitation, it offers an stimulating potential in order to validate the rural singularities. In addition, the effectiveness of the technique is grounded on the basis of the implication and commitment made by local actors. This can have an additional positive effect, since the achievement of any desired change in rural areas will be based not only on the local knowledge and experience but specially, on the commitment of actors in the changing process and in their capacity to lead it. The exhaustive deliberation and results discussion can be very illustrative and useful exercises, not only as a prior step before undertaking strategic planning, but also to understand the nature of the changes and to identify the potential triggers.

As lessons for the policymaking process can be highlighted that these kind of techniques can be used in every single territory to identify the elements with higher capacity to foster changes in the system. Thus, they provide valuable information to policymakers and local stakeholders about how to prioritize investments and how to trigger changes. Also they are tools that help to build territories following the principles of current rural development policies.

As a final remark, the authors would like to notice that the method has to be tested in other rural territories with different features in order to prove the consistency of the results.

7. References

