Feng, Kling, and Gassman (in this issue) argue that significant co-benefits can be realized when agricultural management strategies are utilized to offset or reduce greenhouse gas (GHG) emissions. Such benefits arise in the form of cleaner water, increased recreational land, and improved farm income, among other categories. However, their attention to such effects is limited to those arising in the agricultural sector; we wish to broaden the issue to consider effects arising outside of agriculture.

About 84% of US GHG emissions arise from the petroleum-related energy and electrical power sectors. Under most of the proposed approaches for implementing GHG emission reductions, permits to emit would be allocated to emitting and carbon sequestering parties. In turn, a market structure would be established that allowed trading of permits. Many agriculturalists feel that such trading will involve sales by agriculture and that the case for such sales is bolstered by accompanying co-benefits (identified by many advocates as a win-win situation). This suggests that agricultural permit sales will allow increases in emissions by those in the energy sectors. The question, then, is what happens in terms of co-effects.

Let us consider the commonly discussed case where a coal-fired electrical power plant, which is allocated fewer emission permits than it needs under its current practices to meet its anticipated business activities, finds it less expensive to purchase sequestration-based agricultural permits than to reduce its own emissions. In turn, the sequestration activity would stimulate agricultural co-benefits. However, purchasing sequestration permits allows both power generation and coal burning by-products, including commonly discussed air pollutants like NOX, SOX, and mercury, to increase. Because these emissions are often associated with health and other environmental costs, there could be attendant increases in damages relative to a no-trading case.

A full accounting of co-benefits, therefore, would suggest balancing the agricultural benefits and the nonagricultural costs. Specifically, policy makers interested in considering co-benefits should consider the relative magnitude of the countervailing coeffects. (Elbakidze & McCarl, 2004, provide a more detailed discussion.)

Estimates have been constructed for the co-effects of reduced GHG emissions by power plants by Burtraw and colleagues at Resources for the Future (Burtraw et al., 1999, 2003). Their results indicate that increased power plant activity would generate additional environmental costs amounting to about 50% of the value of emission permits purchased. These costs arise from the consequences of worsened health and needed increased investments in air pollution abatement. In addition, increased power plant activity increases ozone damages, which negatively affects water quantity and quality, nutrient cycling, recreational opportunities, and terrestrial carbon uptake. Felzer et al. (2003) estimate that the co-costs of this are an additional 5–20%. Collectively, then, the co-costs are in the neighborhood of 60% of the value of a permit. This compares with agricultural co-benefits currently estimated to be in the neighborhood of 60–70%. Agricultural co-benefits therefore may be

©1999–2004 CHOICES. All rights reserved. Articles may be reproduced or electronically distributed as long as attribution to Choices and the American Agricultural Economics Association is maintained. Choices subscriptions are free and can be obtained through http://www.choicesmagazine.org.
almost entirely offset by the nonagricultural co-
costs.

What, then, do we do about co-benefits and co-
costs in formulating GHG policy? The implicit
argument in the consideration of agricultural co-
benefits is that there be a government role in
increasing the use of sequestration-based credits
through some form of subsidy that lowers the costs.
The use of subsidies is justified, because agricul-
tural co-benefits are not reflected in the price of
traded permits. However, the countervailing co-
benefits suggest that any incorporation of co-bene-
fits into agricultural policy be carefully approached
with simultaneous consideration of the implica-
tions of increased nonagricultural emissions.

There is also an inherent difficulty in both esti-
mating the magnitude of co-effects and then com-
paring them on an equal footing (i.e., comparing
the incidence of cleaner water with increased
ozone-induced health problems). Co-benefits and
costs are likely highly dependent on the specific sit-
uation posed by the purchasing emitter and the
entity creating the sequestration depending on
proximity to population centers, regional water
quality, and so on. Such difficulties coupled with
the approximate offsetting nature of the co-effects
suggest that policy and trading be based on direct
costs for now without consideration of the co-bene-
fits.

References
Burtraw, D., Krupnick, A., Palmer, K., Paul, A.,
Toman, M., & Bloyd, C. (1999). Ancillary ben-
efits of reduced air pollution in the U.S. from
moderate greenhouse gas mitigation policies in the
electricity sector (discussion paper no. 99-51).
Burtraw, D., Krupnick, A., Palmer, K., Paul, A.,
benefits of reduced air pollution in the U.S.
from moderate greenhouse gas mitigation poli-
cies in the electricity sector. Journal of Environ-
mental Economics and Management, 45(3), 650-
673.
Felzer, B., Reilly, J., Melillo, J., Kicklighter, D.,
Wang, C., Prinn, R., Sarofim, M., & Zhuang,
primary production and carbon sequestration
using a global biogeochemical model (report no.
90). Cambridge, MA: Massachusetts Institute
of Technology Joint Program on Science and
Policy of Global Change.

Levan Elbakidze is a research assistant in the
Department of Agricultural Economics at Texas
A&M University. Bruce McCarl is Regents Profes-
sor of Agricultural Economics at Texas A&M Uni-
versity and a Choices co-editor.