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A Multivariate Evaluation of Ex-ante Risks Associated with Fed Cattle Production

Eric J. Belasco, Barry K. Goodwin, Sujit K. Ghosh

Abstract

The purpose of this study is to evaluate the risks faced by fed cattle producers. With the
development of livestock insurance programs as part of the Agricultural Risk Protection Act
of 2000, a thorough investigation into the probabilistic measures of individual risk factors is
needed. This research jointly models cattle production yield risk factors, using a multivariate
dynamic regression model. A multivariate framework is necessary to characterize yield risk
in terms of four yield factors (dry matter feed conversion, average daily gain, mortality, and
veterinary costs), which are highly correlated. Additionally, a conditional Tobit model is
used to handle censored yield variables (e.g., mortality). The proposed econometric model
estimates parameters that influence the mean and variance of each production yield factor,
as well as the covariance between variables. Following the model fitting using a maximum
likelihood approach, simulation methods allow for profits, revenue, and gross margins to be
evaluated given different assumptions concerning volatility among other shocks. The profit
function is composed of random draws, based on conditioning variables, as well as parameter
estimates. Shocks to variability, yield factors, or prices allow for a visual representation of
the vulnerability of cattle feeder profits to these shocks.

1 Introduction

Cattle feeding can be a risky venture. From the time of cattle placement to finishing, which

usually lasts 3-5 months, the value and profitability of cattle can change immensely. Most of

this risk comes in the form of fed and feeder cattle price risk, but can also come from large

swings in feed prices. Both of these factors, which pose more than half of the variability in

cattle feeder profits, are out of the cattle owners’ control. In addition, the overall productivity

of the pen can present risks that are akin to yield risks with crops.

Research from the crop insurance literature has indicated that agricultural yields can be

modeled in a number of different ways. These differ in the restrictions that are imposed on the

data. For example, parametric methods assume a particular distributional assumption which

is efficient when the form is correct, but biased when the assumption is incorrect. Different

distributions have been argued to be the most accurate characterization of crop yields, which
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include the normal, log-normal, beta, gamma, and weibull distributions to name a few.

In modeling the ex-ante risks, variables known at the time of placement that may affect the

expected mean or variance must be taken into account. Past cattle feeder research has shown

that cattle feed conversion, average daily gains, mortality rates, and health are significantly

affected by variables such as gender, location of the feedlot, average weight of the pen, and time

of year the pen is placed. By conditioning on these variables, each pen of cattle can be modeled

as a function using a multivariate regression model.

Cattle yields present some additional complexities when compared to crop yields. The

first difference is that production risk can be represented by four separate measures. These

four yield components are highly correlated and have a dynamic relationship. A recent study

by Belasco et al. (2006) modeled all four yield measures separately then in a second step con-

structed the covariance matrix. Significant efficiency can potentially be gained in a multivariate

framework, with the additional information that can be learned on the dynamic nature of the

yields relationship.

The second complexity associated with cattle production yields is the introduction of a

censored variable into the set of yield factors. More specifically, mortality rates can be modeled

as a latent variable where the variable is observable for positive values and unobservable for small

positive values of the distributional realizations. To account for this relationship, a dynamic

multivariate Tobit model will serve to model the latent mortality variable.

Once the dynamic multivariate relationship is characterized with the previously men-

tioned, yield variables can be randomly drawn to simulate profits. The profit function will

consist of the 6 previously mentioned random variables. In order to model profits, the ran-

dom variables will need to be jointly modeled by allowing for covariance between the variables,

particularly concerning the yield components. Once the profit model is identified and char-

acterized, profit simulations will provide insights into the effects from shocks on profits and

revenue.

2



Much of the past research in the area of cattle feeding risk has focused its attention

to price risk management. Given that the majority of profit risk stems from price risk, this

is not completely off the mark. However, we also find that production risk factors can play

an important role in understanding overall profit risk. Studies investigating the risk factors

associated with cattle feeding have keyed on the fact that risk comes from many different

sources. To add to the complex nature of this risk, the variability can change as many key

variables change.

One of the earlier studies focusing on cattle feeding profitability came from Swanson and

West (1963). This study found that variation to returns are partially explained by price margin

variation (38%) and feeding margin gain (44%), while 18% of the variation was unexplained.

Schroeder et al. (1993) evaluated over 6,000 pens of steers from two major Kansas feedlots and

concluded that 70 to 80 percent of the variation in cattle feeder profits came from variation in

fed and feeder cattle prices, while the price of corn explained 6 to 16 percent of the variation,

and cattle performance (which included average daily gain and feed efficiency) accounted for less

than 10 percent. Including both steer and heifer pens in their sample, Langemeier, Schroeder

and Mintert (1992) found that fed and feeder prices accounted for 50 and 25 percent of variability

in cattle feeding profits, respectively. Meanwhile, corn price variability explained up to 22

percent of variability and animal performance explained less than 1 to 3.5 percent variability.

This research also identified variables that affect the expected value and variability of profits.

For example, 22 percent of the difference in steer and heifer profits are directly attributed to

differences in feed conversion. It is important to point out that not only does profit variability

come from a few different sources, but these impacts change with different pen characteristics.

With the two previously mentioned studies of cattle feeder variability using data from

large Kansas feedlots, a study by Lawrence, Wang and Loy (1999) utilized data from smaller

Midwest feedlots that span 5 states. With their data set consisting of 223 different feedlots and

over 1,600 pens, fed and feeder cattle prices together still explained around 70 percent of profit

variability. As expected, animal performance (average daily gain) played a larger role in profit
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risk in explaining between 6 to 15 percent of the overall profit variation. The effects from corn

variation fell below that of animal performance.

Mark, Schroeder and Jones (2000), analyzed over 14,000 pens from two major Kansas

feedlots. This research indicates that variability can change for different values of placement

weight, season, and gender. Additionally, Mark and Schroeder (2002) explicitly show that the

season of placement has significant effects on profitability and animal performance.

With the previously mentioned studies in mind, we can point to a few facts that run

throughout the literature. First, most cattle feeder profit risk stems from swings in fed and

feeder cattle prices. With this being said, any risk management strategy must begin with man-

aging the possibility of cattle prices dramatically dropping during the feeding period. Second,

animal performance factors significantly contribute to risk and are the only identified sources

of risk that the feeder can affect through operational and placement decisions. Third, vari-

ables such as gender, placement weight, and time of placement can have significant effects on

expected profits and variability.

Therefore in order to fully understand profit risk, a clear understanding of production

risk is needed. This research intends to model production risk to gain insights into the multi-

dimensional relationships between cattle production yield factors. The next section develops a

dynamic, multivariate Tobit model to explore the relationships that conditioning variables have

on the mean, variance, and covariance of the yield factors. The following two sections focus on

the data used for estimation as well as the estimation results. Using this information, the final

section jointly models price and yield risk factors to create an overall profit risk model for fed

cattle production.

2 Yield Modeling Framework

The variables that introduce production yield risk into the cattle feeders’ profit function, are

dry matter feed conversion (DMFC), average daily gain (ADG), the mortality rate (MORT),
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and veterinary cost per head (VCPH). As seen in past studies, these variables are influenced

by pen characteristics such as gender, location, average in-weight, and season of placement.

These factors affect both the expected value and variance for each yield measure. Additionally,

there are significant correlations between each yield measure and the conditioning variables.

The modeling strategy to follow will account for each of these complexities and characterize the

probabilistic models of the cattle yield factors involved with fed cattle production. Additionally,

this model is extended to account for correlation between yields as a multivariate normal is used,

rather than the uncorrelated univariate normals that was originally proposed by Belasco et al.

(2006).

The model is specified as follows:

Yi = XiB + εi (1)

E[εi|Xi] = 0 (2)

V ar[εi|Xi] = Σi = Σ(Xi) (3)

where Yi = [DMFCi, ADGi,MORTi, V CPHi] and B is a px4 matrix containing the marginal

effects of each conditioning variable on all four yield factors. Xi is a 1xp matrix containing the

following conditioning variable values for each observation that include a constant term, the log

of average in weight, and binary variables indicating gender, location, and season of placement.

X ′
i =




1

Steers

Mixed

KS

Log(Inwt)

Winter

Fall

Spring




(4)
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Σi contains the variance and covariance elements and is a 4x4 positive definite (p.d) matrix.

Notice that the covariance matrix is allowed to vary by observation. We propose to model

Σi = Σ(Xi) using the following unique decomposition of a p.d. matrix (Lau, 1978):

Σi = T ′iDiTi (5)

where Ti is upper triangular with ones along the main diagonal and Di is diagonal matrix with

positive diagonal entries. More specifically,

Ti =




1 t12i t13i t14i

0 1 t23i t24i

0 0 1 t34i

0 0 0 1




(6)

and

Di =




d1i 0 0 0

0 d2i 0 0

0 0 d3i 0

0 0 0 d4i




(7)

Upper off-diagonal elements of Ti are unrestricted while the diagonal elements of Di are

restricted to non-negative values. We use a linear regression to model Ti and Di as follows:

log




d1i

d2i

d3i

d4i




= GX ′
i (8)

where the 4xp matrix, G, is used to calculate the variance for each observations, conditional on

the unique characteristics of each pen. The covariance terms are also a linear function of the
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conditioning variables and have the following relationship




t12i

t13i

t14i

t23i

t24i

t34i




= AX ′
i (9)

where A is a 6xp matrix of regression coefficients. Based on equations (8) and (9), the covariance

terms are first fully flexible within the regression framework. This model is an improvement

from the two-step method used in Belasco et al. (2006) as it reduces to the earlier model when

the elements of A = 0.

The implied maximum likelihood method to obtain parameter estimates uses the following

likelihood function.

L(B, A, G|Y,X) =
n∏

i=1

|Σi|−
n
2 exp

(
−1

2

n∑

i=1

(Yi −XiB)Σ−1
i (Yi −XiB)′

)
(10)

Given n observations, this leads to the following negative log likelihood function (up to an

additive constant) that is minimized with respect to elements within B, G, and A.

LL =
n

2
ln |Σi|+ 1

2

n∑

i=1

(Yi −XiB)′Σ−1
i (Yi −XiB) (11)

By modeling yields in the preceding manner, the model is flexible enough to allow for

expected values, variances, and covariances between the yields to vary with the conditioning

variables. These are key components to modeling the nature of risk in fed cattle production

where the expected distributional properties can change, given the characteristics of the pen.

Thus far, the model assumes that all variables are completely observable across observa-
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tions and free from any censoring or truncation bias. However, in the case of mortality rates,

these values are censored at zero. This problem may cause us to underestimate mortality rates

due to biased parameter estimates caused by the censoring mechanism (Greene, 2003). The

most widely accepted solution to regressing censored dependant variables in the univariate case

was first proposed by Tobin (1958) and is known as the Tobit Model. This method essentially

assumes there is a latent variable, y∗i , which linearly depends on the associated independent

variables, Xi, where we only observe

yi =





0 if y∗i ≤ ci

y∗i if y∗i > ci

(12)

where ci is the unknown censored value. Notice that when yi is censored at zero, the only

information we have is that yi > 0. So the likelihood function becomes

L(β, σ2|xi) =
∏

i:yi>0

φ

(
yi − xiβ

σ

)
1
σ

∏

i:yi=0

Φ
(
−xiβ

σ

)
(13)

where Φ is the CDF of a standard normal. The use of maximum likelihood estimation has been

shown to result in estimators that are consistent and asymptotically normal (Amemiya, 1973),

provided the assumed parametric model is correct. This method has been useful in applications

spanning consumption, production, and income.

Censored multivariate regressions have been extended and shown to posses the same

attractive asymptotic properties as in the univariate case (Amemiya, 1974; Lee, 1993). The

multivariate Tobit model has been considered in a number of recent studies. Cornick, Cox and

Gould (1994) formulate a multivariate Tobit model in order to analyze fluid milk consumption

expenditures and account for the correlations across milk types. Eiswerth and Shonkwiler (2006)

investigate the success of plant seeding that follows wildfire on arid rangeland, where all types

of grass do not typically grow together simultaneously due to geographical differences. Also,

Chavas and Kim (2004) use a dynamic multivariate Tobit model to evaluate price dynamics

when price floors exist in a given market. The dynamic component plays an important role in
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this analysis as the data is evaluated over time, where the correlations between prices adjust

over different time periods. While the covariance matrix changes over time, it is held constant

for differing values of the other conditioning variables. Here, we expand on these studies by

allowing for the interdependence between the dependent variables to be a function of the data.

The idea is to model the latent variables through the use of a multivariate Tobit model, using a

dynamic multivariate sampling distribution under conditional heteroskedasticity while allowing

for interdependence between the residuals.

In the univariate case, each observation can fall into one of two possible regimes where the

dependant variable is either censored or not. However, within the framework of a generalized

multivariate Tobit model, the possible censoring regimes increase to 2m where m is the number

of censored dependent variables. For our purposes, four dependent variables lead to 16 possible

regimes. Due to the fact that only one variable is censored, only two regimes are possible. For

observations with multiple censored dependent variables, integration becomes more complex by

adding a dimension for each censored variable. As long as this dimension is not greater than

three, standard maximum likelihood methods can be used (Chavas and Kim, 2004).

To obtain the likelihood function, each observation must be ordered as censored or non-

censored variables for each regime. To this end, Yi will be partitioned into its censored variables,

y1
i , and uncensored variables, y2

i , under each regime:

Y ′
i =




y1
i

y2
i


 (14)

Further, the sample log-likelihood function corresponding to each individual, can be expressed

as follows:

LL =
∑

i:Mort>0

{ln [φ(Yi, µi, Σi)]}+
∑

i:Mort=0

{
ln

[
φ(y2

i , µ
2
i , Σ22i)

]
+ ln

[
Φ(µ1

i , Σ
1
i )

]}
(15)

where φi(·) refers to the multivariate normal probability density function over uncensored prices
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under the ith regimes, while Φi(·) is the multivariate cumulative distribution function over cen-

sored prices within the same regime. The censored variable is modeled based on a multivariate

normal density and is a function of the observable variables within the same observation. For

this reason, the conditional mean and variance for y1
i given y2

i are respectively:

µ1
i

(
y2

i

)
= E

(
y1

i

)
+ Σ12iΣ−1

22i

(
y2

i −E(y2
i )

)
(16)

Σ1
i = Σ11i − Σ12iΣ−1

22iΣ21i (17)

where Σ can be decomposed into the following components where Σ22 contains the elements

from variables with no censoring across observations, Σ12 relates the variables with and without

censoring, and Σ11 contains elements from censored observations

Σ =




Σ11 Σ12

Σ21 Σ22


 (18)

This illustrates the major difference between the univariate and multivariate Tobit mod-

els, in that the expected mean and variance are a function of the other observed dependent

variables. Following is the negative sample log likelihood function used for estimation.

LL =
∑

i:Morti>0

{
ln

(
|Σ−1

i |
)

+ (Yi −XiB)Σ−1
i (Yi −XiB)′

}
+

∑

i:Morti=0

ln
(
|Σ−1

22i|
)

+
(
y2

i −X2
i B2

)
Σ−1

22i

(
y2

i −X2
i B2

)′
+

2ln
(
Φ

[
−(Σ1

i )
− 1

2 µ1
i

])
(19)

where B can be broken into two components containing the parameter estimates for the censored

variable (e.g., MORT), B1, and the parameter estimates for the uncensored variables (e.g.,

DMFC, ADG, and VCPH), B2.
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3 Data Description

This empirical analysis is applied to a comprehensive set of data collected from five commercial

cattle feedlots located in Kansas and Nebraska. Proprietary production and cost data were

obtained for 11,397 pens of cattle from 1995 to 2004. Table 1 contains summary statistics from

the data sample.

Table 1: Variable Descriptions and Summary Statistics
Std Min Max

Variable Description Mean Dev Value Value
DMFC Dry matter feed conversion 6.19 0.72 4.00 24.00

(lbs feed / lbs gain)
ADG Average Daily Gain (lbs gain / day) 3.36 0.48 0.74 5.78
VCPH Veterinary cost per head ($) 11.83 6.25 0.00 60.00
MORT Percentage of pen that die 0.93 1.53 0.00 25.83
InWeight Average weight per head of 737.50 87.22 500.00 900.00

cattle upon entrance (lbs)
OutWeight Average weight per head of 1,177.91 88.10 910.00 1,472.00

cattle upon exit (lbs)
Winter Binary variable equal to 1 if 0.25

entry between Dec-Feb
Spring Binary variable equal to 1 if 0.23

entry between Mar-May
Summer Binary variable equal to 1 if 0.26

entry between Jun-Aug
Fall Binary variable equal to 1 if 0.25

entry between Sep-Nov
Steers Binary variable equal to 1 if 0.51

entire pen were Steers
Heifers Binary variable equal to 1 if 0.37

entire pen were Heifers
Steers Binary variable equal to 1 if 0.12

pen was mixed gender
KS Binary variable equal to 1 if 0.80

Kansas feedlot location
NE Binary variable equal to 1 if 0.20

Nebraska feedlot location
Total sample size n=11,397 pens of cattle

Dry Matter Feed Conversion (DMFC) measures the pounds of dry feed required per

pound of live weight gain. To compute the average DMFC for a given pen, total dry feed
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consumed is divided by the total weight gained during the feeding cycle. Average daily gain

(ADG) captures the average pounds the cattle gain throughout the feeding period. Veterinary

costs per head (VCPH) are calculated by dividing the total dollar amount spent on veterinary

services by the pen size upon entry. The mortality rate (MORT) is a percentage calculated as

the number of death losses during the feeding period divided by the number of head initially

placed on feed. According to Smith (1998), cattle mortalities in feedlot settings come mostly

from respiratory diseases and digestive disorders. Also a great majority of health problems

occur in the first 90 days cattle are on feed.

The size of a pen of cattle averaged 134 head with an average placement weight of 737.5

pounds and an average finished weight of 1,178 pounds. InWeight is measured as the average

weight per head in each pen upon placement on feed.1 The log of InWeight is used as a

conditioning variable. To capture seasonal effects, binary variables are constructed to denote

Winter, Spring, Summer, and Fall seasons. In this data, fall placements tend to be lighter than

any other season, while spring placements tend to bring heavier weights.

On average, pens spent 129 days on feed, meaning most pens are fed throughout more

than one season. For example, a pen placed in the pleasant fall months will likely be on feed

while temperatures drop towards colder winter averages. Binary variables are also used to

differentiate pens by gender (Steers, Heifers, and Mixed) where pens comprised of all steers

make up more than half of the data sample. Steers are more often used for feeding due to the

faster pace with which they put on weight, whereas heifers put on weight slower, max out at a

lower weight, and need to be used for reproduction.

Binary variables are also used to differentiate feedlot location by state, which include

Kansas and Nebraska. Feedlot locations could additionally be split by feedlot, however within

Nebraska and Kansas each feedlot does not appear to be significantly different. The two Kansas

feedlots are relatively larger than the Nebraska feedlots. Additionally, the Nebraska feedlots

keep their pens for more days on feed, resulting in lower DMFC and wider weight swings.
1Pens with average placement weights below 500 pounds and above 900 pounds were excluded from our

sample.
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Histograms of the dependent variables and entry weight are shown in Figure 2. Here the

positively skewed nature of DMFC, VCPH, and MORT and quite apparent. For this reason

the log of DMFC and VCPH is taken in order to symmetrize the variables. Unfortunately,

there is no mechanism to take the log of mortality rates since so many observations are zero.

Alternatively, ADG is already distributed similar to a normal distribution centered at 3.4.

These histograms also illustrate the importance in recognizing the yield factors are not fixed

and should be thought of as components of risk in order to more accurately describe fed cattle

production. Additionally, Figure 3 illustrates the need to model the production yield factors in

a way that accurately captures the covariance structure.

4 Estimation Results

This particular system of equations must be estimated by taking into account the finding that

each conditioning variable has an effect on the four cattle production yield measures and the

dependent variables are also highly correlated. Due to this, it is necessary to discuss the results

from each conditioning variable in the context of all yield measures. These results are displayed

in Table 2. This section begins with an interpretation of the parameter estimates on both

the mean and variance components of the system. The next section deals primarily with the

covariance parameter estimates.

4.1 Performance Effects From Gender

Gender differences are known to play a large role in cattle feedlot performance. Steer cattle are

known to gain weight at a much faster rate than heifer cattle and are commonly marketed at

a higher weight. Additionally, some heifers need to be used to stock new generations of cattle.

For these reasons, steer cattle are more prevalent in feedlots than their heifer counterparts.

This is also true within the given data set where steer pens compose 51% of the pens placed on

feed.
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Table 2: Maximum likelihood parameter estimates
Dry Matter Average Daily

Feed Conversion Gain Mortality Vet Costs
Variables coeff. se. coeff. se coeff. se coeff. se
Intercept: 0.675∗ 0.046 -3.445∗ 0.213 24.049∗ 1.225 10.708∗ 0.224
Steers: -0.069∗ 0.002 0.300∗ 0.008 0.191∗ 0.045 0.065∗ 0.009
Mixed: -0.027∗ 0.003 0.128∗ 0.013 0.597∗ 0.084 0.214∗ 0.015
Kansas: -0.123∗ 0.002 0.169∗ 0.010 -0.102 0.048 -0.221∗ 0.008
Log(inwt): 0.193∗ 0.007 1.002∗ 0.033 -3.610∗ 0.187 -1.241∗ 0.034
Winter: -0.003 0.002 -0.171∗ 0.010 -0.088 0.054 -0.081∗ 0.010
Fall: 0.050∗ 0.002 -0.221∗ 0.011 -0.032 0.060 0.003 0.010
Spring: -0.018∗ 0.002 -0.041∗ 0.010 -0.228∗ 0.055 -0.080∗ 0.011
Heteroskedasticity:
Intercept: -9.067∗ 0.739 -8.804∗ 0.723 12.716∗ 0.886 7.168∗ 0.788
Steers: -0.060 0.030 0.058 0.030 -0.042 0.038 -0.527∗ 0.031
Mixed: 0.481∗ 0.044 0.143∗ 0.044 0.583∗ 0.055 -0.265∗ 0.046
Kansas: -0.127∗ 0.034 -0.038 0.034 0.133∗ 0.044 0.413∗ 0.035
Log(inwt): 0.646∗ 0.113 0.890∗ 0.110 -1.760∗ 0.136 -1.438∗ 0.120
Winter: 0.013 0.037 0.085 0.037 -0.109 0.048 0.466∗ 0.038
Fall: 0.356∗ 0.037 0.186∗ 0.037 0.312∗ 0.047 0.340∗ 0.038
Spring: -0.351∗ 0.038 0.127∗ 0.038 -0.117 0.052 0.769∗ 0.041
∗Denotes the estimate is statistically significant at the 0.05 level
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To assist in capturing the effect that gender has on production, pens were identified as

entirely steer, entirely heifer, or some mixture of the two. For estimation purposes, binary

variables were developed for each type of pen. Results shown in Table 2 are relative to heifer

pens. Not surprisingly, both steer and mixed pens have lower feed conversion rates and higher

rates of average daily gain. More specifically, pounds of feed are converted into pounds of weight

gain more efficiently by 6.9% and 2.7% for steer and mixed pens, respectively. This superior

ability to convert feed into weight gain directly assists in the higher rates of ADG for steer and

mixed pens, relative to heifer pens. The data suggests that steer pens gain weight fast than

heifer pens by 0.30 pounds per day.2 Results from Mark, Schroeder and Jones (2000) indicate

that steer pens had similar performance advantages with a feed conversion that was 4% lower

than heifer pens, while gaining an average of 0.34 pounds more per day.

While ADG and DMFC results make steer pens more desirable than heifer pens, the

results from the regression equations for MORT and VCPH indicate that steer pens are inferior

to heifer pens in general health measures. The percentage of mortality losses while on feed are

higher for steer and mixed pens by 0.10 and 0.32, respectively.3 Given the higher mortality

rates for steer and mixed pens, it is not surprising that veterinary costs are higher for these

types of pens.4 Steer pens incur 6.5% higher veterinary costs than heifer pens, while mixed

pens are quite expensive with 21% higher veterinary costs.

The heteroskedasticity parameter estimates offer insight into the influence conditioning

variables have on the variance. A parameter estimate that is positive indicates an increasing ef-

fect on the variance. To evaluate the effect that a binary variable, say xk, has on the conditional
2While 0.30 pounds per day may appear to be a small gain, it amounts to 39 extra pounds over 130 days on

feed. This amounts to a 3% gain in out weight over the average heifer pen
3To interpret the marginal effects within the Tobit model, MLEs must be multiplied by the proportion of

non-censored observations in the sample (Greene, 2003, pg. 766), which is 53.404% within the data.
4Veterinary costs at cattle feedlots can be incurred due to precautionary checks, which are typically performed

at the beginning of the feeding cycle and consist of vaccinations and health checks, and visits due to deteriorating
health. While this data does not distinguish between the two, it is assumed that all feedlots incur similar expenses
for precautionary visits, so that any variation in veterinary costs can be linked to the health of the pen.
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variance for a given observation can be illustrated as follows:

σ2
i |xk=1 − σ2

i |xk=0 = exp(x1γ1 + ... + xk−1γk−1)× [exp(γk)− 1] (20)

It is evident from this equation that variance increases when γk > 0 and decreases when γk < 0.

While steer pens do not differ significantly with variance, mixed pens bring on higher variance

parameters for most variables, with the exception of veterinary costs.

4.2 Performance Effects From Location

As previously mentioned, the data contain results from five major cattle feedlots where two

reside in Kansas and three in Nebraska. Differences in location are identified with binary

variables indicating the state of residences. The main reason for this distinction is due to the

geographic closeness of the feedlots within the same state and the similar management practices

discussed earlier.5 The binary location variable is then intended to control for any differences

due to different weather systems as well as different management practices.6

One of the most distinguishing characteristics of the data is the higher entry weights and

lower days on feed associated with feedlots residing in Kansas. This may be due to the practice

of backgrounding on Kansas feedlots. According to Neville and McCormick (1981), calves that

are weaned at an early age and well-fed need less time at the feedlot. The other more obvious

reason is that cattle with higher placement weights need less time to reach the desire marketing

weight. This finding appears consistent within our data where the Kansas lots have their cattle

backgrounded to prepare them for the diet at feedlots. The data indicate that DMFC is 12%

lower and ADG is higher by 0.17 in Kansas feedlots. Cattle feeding in Kansas feedlots do not
5Initially binary variables were used to distinguish between each feedlot until it was found that significant

differences between the feedlots can be found by differentiating by state, since feedlots were typically not signif-
icantly different relative to feedlots within similar states.

6Management practices within this data do not represent state-wide practices. In 1996, there was an estimated
670 feedlots with a 1,000+ capacity within the state of Nebraska (NASS, 1997, pg. 109). While fewer feedlots
reside within Kansas, a higher proportion of the feedlots are operations with capacities over 32,000 head. (NASS,
n.d.).
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have a significantly different rate of mortality, however veterinary costs are lower due to the less

days on feed. Vet costs per head per day, which can be computed by dividing VCPH by days

on feed, are roughly similar for each state at $0.09. Kansas feedlots within this data sample

have mixed influences on variance for each dependent variable.

4.3 Performance Effects From Entry Weight

Entry weight is the only quantitative conditioning variable. This allows parameter estimates

to be interpreted as elasticities for logged dependent variable regressions. The coefficient from

the regression on DMFC implies that a 10% increase in entry weight corresponds to an increase

in feed conversion by 1.9%. Similar results have been concluded by past studies (Mark et al.,

2000; Schroeder et al., 1993). Increases in entry weight by 10% lead to an increase in ADG by

0.10. The increase in daily gain for heavier pens of cattle is partly due to the less time these

types of pens spend on the feedlot. Higher feed conversion and daily gains imply an increase in

intake for heavier placed cattle.7

Pens of cattle that are more mature in age and weight tend to have less health problems.

This is shown by the results contained within regression results for MORT and VCPH. Mortality

rates fall significantly for heavier weights as a one percentage point increase in placement weight

is associated with a decrease in the rate of mortality by 0.04 percentage points. Intake per head

per day increases steadily with entry weight from 18.03 pounds for the smallest weight class

(500 - 600 lbs) to 22.00 for the highest weight class (800 - 900 pounds). These results are shown

in Table 3. Additionally, feed conversion does not appear to increase linearly as it is maximized

for extremely low and high entry weight classes.

Different weight classes also appear to strongly effect other characteristics such as time

of placement and gender. Heavier placements appear to be dominated by steer pens, while the

lighter placements comprise mostly of heifer pens. More than 50% of the pen placements with

average weight below 700 pounds are heifers, while 74% of the heaviest placements (800-900
7Intake (lbs of feed / day) = DMFC (lbs feed / lbs gain) × ADG (lbs gain / day).
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Table 3: Comparison of Different Weight Classes
Variable 500-600 600-700 700-800 800-900
Observations 815 2,876 4,545 3,061
DMFC 6.22 6.13 6.19 6.25
ADG 2.93 3.19 3.40 3.56
Intake 18.03 19.30 20.81 22.00
VCPH 17.79 13.86 10.91 9.73
MORT 1.97 1.22 0.79 0.61
InWt 561.09 656.93 749.90 841.34
OutWt 1,091.14 1,124.00 1,181.86 1,245.66
Days on Feed 176.23 143.01 123.78 110.55
Proportion of sample:
Winter 0.26 0.28 0.26 0.22
Spring 0.10 0.17 0.25 0.29
Summer 0.25 0.25 0.27 0.28
Fall 0.39 0.31 0.22 0.21
Steers 0.28 0.35 0.50 0.74
Heifers 0.52 0.50 0.38 0.19
Mixed 0.21 0.15 0.12 0.07
KS 0.62 0.80 0.84 0.81

pounds) consists of steer pens. Also, lighter pens are introduced more typically in the fall

months and rarely in spring months. Pens on the heavier side (>700 pounds) are mostly placed

in spring or summer months.

From equation (8), an elasticity relating entry weight and conditional variance has the

following form:
∂σ2

ij

∂(log(weight))
1

σ2
ij

= γj (21)

This relationship allows for a direct interpretation of the parameter estimate for entry weight.

For example, a one percentage point increase in placement weight coincides with a 0.65%

increase in feed conversion variance and a 0.89% increase in daily gain variance. Conversely,

entry weight has a diminishing effect on the variability of mortality and veterinary costs. Many

of these results may be tied to the fact that cattle placed at heavier weights spend less time on

feed and have less time to deviate from expectations.
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4.4 Performance Effects From Placement Season

Changes in temperature can have dramatic changes in cattle feedlot performance. Mark and

Schroeder (2002) point out that optimal cattle performance typically occurs between 40 to 60

degrees. Deviations from this range, as well as variability in weather or precipitation, can lead

to lower performance. Higher temperatures often result in less weight gain due to lower rates

of consumption, while colder temperatures can lead to less efficient feeding as energy is used to

maintain body heat. Feeding usually lasts anywhere from 3 to 5 months, meaning most pens

will enter in one season and leave in another.

Parameter estimates for the DMFC regression infer that fall placements have the highest

feed conversion rate and are significantly different from summer. This is not surprising given the

fact that pens placed in the fall months are fed as the temperatures drop, so that the coldest

months are likely near the end of their feeding cycle. A binary variable indicating summer

placements is left out of the regression so that parameter estimates are relative to that season.

The feed conversion rate for spring placements are significantly lower than summer placements,

while winter placements are not significantly different. All seasons experienced significantly

lower gains on a daily basis, relative to summer.

Pens placed in the spring months appear to have the fewest health problems as indicated

by the significant negative parameter estimates in both mortality and vet cost regressions. Fall

placements are not statistically different from summer concerning the mortality rate, while

winter placements incur fewer veterinary costs.

4.5 Conditioning Variable Effects on Covariance Terms

One major benefit of the large set of data available for this research is the chance to allow

covariance terms to be a function of the data. In a recent study by Belasco et al. (2006)

covariance terms in this system of equations were assumed to be constant for all observations.

However, OLS regressions indicated that the cross product residuals were correlated with the
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conditioning variables.8 The individual-specific covariance matrix as defined in equation (5)

allows for the added flexibility in the off-diagonal elements in equation (6) to be a function of

the data.

Not all variables are expected to be highly correlated with one another, however one can

make a strong case for a few relationships to be strongly correlated. For example, feed conversion

rates and rates of average daily gain certainly complement one another, while veterinary costs

and mortality rates can both arise with unhealthy or sick pens. Each of these examples are

shown to have almost all conditioning variables significantly effecting the level of covariance as

seen in Table 4.

Recall, covariance elements are contained in the matrix identified in equation (6). The

relationship between the covariance estimate and the data is shown in equation (9). Based

on this model, covariance estimates are linearly determined by the conditioning variables and

parameter estimates from matrix A. For example, the covariance between DMFC and ADG for

any individual is estimated through the following equation:

t12i = α1X
′
i (22)

where α1 is the first row of A and is a 1×8 matrix containing the parameter estimates for the

covariance level, based on the full sample. This form allows the unique characteristics of each

pen to imply a different set of covariance parameters. The covariance terms account for effects

that concurrently effect the cattle production yields. The high frequency of significant variables

indicate the importance of including this flexibility.

To understand the correlation structure, a correlation matrix can be computed based on
8One way to test for heteroskedasticity is to regress the squared residual on the variables as defined by the

White test (Greene, 2003). If variables are found to significantly effect an error term that is assumed to be
independent, then heteroskedasticity must be controlled for. Alternatively, one may also take the cross product
of residuals from a system of equations to determine if the covariance terms are in fact independent. This was the
preliminary strategy which led to the finding that covariance terms were significantly effected by the conditioning
variables.
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Table 4: Maximum likelihood covariance parameter estimates
Average Daily

Gain Mortality Vet Costs
Variables coeff. se coeff. se coeff. se
Covariance with DMFC:
Intercept: 0.119 1.391 0.367 10.142 -0.123 2.466
Steers: -0.477∗ 0.058 -0.099 0.482 -0.287∗ 0.101
Mixed: 0.166∗ 0.076 0.170 0.768 0.117 0.144
Kansas: 0.166∗ 0.065 1.605∗ 0.521 0.159 0.093
Log(inwt): -0.603∗ 0.213 0.909 1.545 0.055 0.375
Winter: 0.490∗ 0.070 0.413 0.586 -0.102 0.111
Fall: 0.224∗ 0.067 -0.380 0.603 -0.010 0.104
Spring: 0.136 0.083 1.281 0.668 -0.352∗ 0.143
Covariance with ADG:
Intercept: 3.273 4.712 -0.930 0.907
Steers: -0.452∗ 0.174 0.013 0.037
Mixed: -0.509 0.320 -0.039 0.058
Kansas: -0.020 0.187 -0.132∗ 0.033
Log(inwt): -0.543 0.713 0.112 0.137
Winter: -0.088 0.215 0.404∗ 0.040
Fall: 0.213 0.236 0.094∗ 0.040
Spring: -0.156 0.216 0.184∗ 0.045
Covariance with MORT:
Intercept: 0.701∗ 0.103
Steers: -0.028∗ 0.005
Mixed: -0.010 0.006
Kansas: 0.023∗ 0.005
Inwtlog: -0.095∗ 0.016
Winter: -0.004 0.006
Fall: 0.005 0.005
Spring: 0.015∗ 0.007
∗Denotes the estimate is statistically significant at the 0.05 level
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the following relationship and evaluated at the means:

ρ(ei, ej) =
Cov(ei, ej)√

var(ei)var(ej)
(23)

where the covariance terms are the off diagonal hessian elements and the variance terms are

along the diagonal for the respective variables. The resulting correlation matrix is shown below

in Table 5 to illustrate this correlation structure.

Table 5: Correlation matrix relationship evaluated at the means
Variable DMFC ADG MORT VCPH
DMFC 1.000 -0.801 0.341 0.026
ADG 1.000 -0.319 -0.064
MORT 1.000 0.363
VCPH 1.000

It is no surprise to see high levels of correlation between vet costs / mortality rates and feed

conversion / average daily gain for the reasons stated earlier. There also exists a high degree of

positive correlation between feed conversion and mortality rates. This can be explained by the

higher feed conversion rates that come from unhealthy cattle, while the healthy cattle are more

efficient at gaining weight. Almost all correlation terms are above 20%, with the exception of

VCPH with DMFC and ADG.

Due to the heterogeneous nature of the data, a unique covariance matrix corresponds to

every unique set of variables, implying a unique correlation matrix. To illustrate this fact, two

hypothetical pens are chosen at approximately one standard deviation from the mean entry

weight. The results below in Table 6 demonstrate that these two observations have a distinct

correlation structure.

Pen A corresponds to a pen that is placed into a Kansas feedlot in the fall, comprised

fully of steers. Conversely, Pen B corresponds to a pen that is comprised of heifers and was

placed into a Kansas feedlot during the summer months. Three major differences between these

observations include the dramatic difference in weight, as well as different placement months
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Table 6: Comparison of correlation matrices for two separate pens
Pen Aa Pen Bb

Variable DMFC ADG MORT VCPH DMFC ADG MORT VCPH
DMFC 1.000 -0.834 0.283 0.020 1.000 -0.811 0.385 0.090
ADG 1.000 -0.263 -0.086 1.000 -0.342 -0.181
MORT 1.000 0.459 1.000 0.390
VCPH 1.000 1.000
aPen A represents a pen entering with a low average weight of 650 pounds
bPen B corresponds to a heavier pen with an average entry weight of 815 pounds

and gender.9 The result is two correlation matrices with very different off-diagonal elements.

The proportion of statistically significant covariance parameter estimates provide evi-

dence in favor of including these variables. A restricted case of this model is where covariance

parameters are constant across individuals. This restriction is typical in studies of this nature

due to the elimination of many parameter estimates (Belasco et al., 2006; Chavas and Kim,

2004). For our purposes, a restriction that assumes a constant covariance structure across ob-

servations increases degrees of freedom by 42, as the parameters estimates drops from 112 to

70. To test the effectiveness of this restriction on the given data set, a likelihood ratio test can

be applied.

Within the likelihood ratio test framework, the flexible model described above will be

the unrestricted case, while the restricted model will assume constant covariance terms. The

restricted model reduces equation (9) to include only the covariance terms, which now are not

a function of the data. Formally, the restriction can be stated as follows:

H0 : αj,k = 0 (24)

HA : αj,k 6= 0 (25)

for all j = {1, 2, ..., 6} and k = {2, 3, ..., 8}. αj,k elements are contained within the matrix A.

9Pen A contains an entry of 650 pounds, which is lower than 79% of the placement weights in the data sample.
Also, Pen B weighs in at 815 pounds, which is lower than 18% of the observations.

23



αj,k=1 is a 6 × 1 vector containing ones and is the only remaining portion of matrix A in the

restricted model. The results from the implied likelihood ratio test are shown in Table 7.

Table 7: Likelihood Ratio Test Results
Log Likelihood P Statistic Critical Value

Values (α = 0.05)
Unrestricted 26,551.203 112
Constant Covariance 26,306.716 70 488.974 55.76

These results strongly reject the notion of constant covariances within this data set.

However, this restriction may be helpful when evaluating more homogenous production. The

heterogeneity of cattle herds is an important aspect to this research and led to the usage of

variance and covariance measures that were not constant across observations.

5 Modeling Profits

With accurate distributional modeling of cattle production yield characteristics, coupled with

assumed distributional characteristics of price variation, and taking into account the joint corre-

lation between these variables, conditional ex-ante measures of profits can be computed. These

profits will be a function of the unique characteristics of each pen, so that each set of charac-

teristics lead to a unique profit distribution. This will be important in analyzing the extent

of risk involved in overall profits. Simulation methods are used to incorporate the estimated

distributional characteristics of yields, the assumed distributional characteristics of prices, and

the marginal and joint effects from the conditioning variables. Here different shocks can occur

that may affect the expected profits, variability, and covariance. An example of such a shock

would be to the variability of fed cattle prices or corn prices. It is also worth mentioning that

shocks to fed cattle and corn prices will be independent of yield shocks.10 Based on daily cash
10This is mostly a simplifying assumption and may need further analysis. An argument has been formulated

by Anderson and Trapp (2000) that changes in the price of corn can cause feedlots to substitute away from corn
and towards other grains, like wheat. While this substitution will help the feedlots to keep their costs down, it
may have an effect on feed conversion. Additionally, changes in corn prices may also effect the characteristics of
cattle placed on feed. For example, placement weight may increase as a way to minimize days on feed.
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prices from 1980 - 2005, a correlation of -0.16408 was used to characterize the relationship

between fed cattle and corn prices.

5.1 The Profit Function

In order to model profitability risk, the following ex-ante profit function takes into account both

the revenue and costs specific to cattle feeding. Following is the set of equations that explain

the fed cattle production profit function. Per head cattle feeding profits are simply the net

difference between revenue and costs accrued during the cattle feeding period.

π = TR− FDRC − Y C − FC − IC − V C (26)

where π are per head profits, TR is the total revenue per head from cattle feeding, FDRC is

the per head cost of purchasing feeder cattle, YC is the per head fixed cost (yardage cost) of

feeding cattle, FC is the per head feed cost, IC is an interest cost, and VC are the per head

costs associated with veterinary care. TR is defined as

TR = FP × (0.96)× CSW × (1−MORT ) (27)

where FP is the price per hundred weight ($/cwt) of fed cattle and CSW is the average sell

weight of the finished cattle, which is estimated based on the following equation

CSW = CPW + ADG×DOF. (28)

CPW is the average weight of the feeder cattle at placement and DOF is the number of days

the pen of cattle is in the feedlot.

TR is adjusted for death loss using the MORT variable and a standard 4% live-weight

shrinkage factor is applied to reflect the expected loss in weight during transport from the

feedlot to the packing plant. Sell weight is a function of a random performance variable (ADG)
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and therefore is not fixed. This profit function allows days on feed to be specified, while allowing

sell weight to be determined by the average weight upon entry, ADG, and the length of time

on feed. Cattle are assumed to be marketed on a cash basis as opposed to a price based on

dressed weight or grid pricing.11 To capture the expected FP at the time of placement, the

futures price from the CME can be used to proxy the price for the expected end date. FDRC

is defined as

FDRC = FRP × CPW (29)

where FRP is the price per hundred weight of feeder cattle. This cost is a large portion of total

costs and reflects the value of the cattle upon entering the feedlot. On a per pound basis, FRP

is greater than FP. YC is defined as

Y C = (0.40)×DOF (30)

which assumes that $0.40 is a typical per head day cost for feedlots in Kansas and Nebraska.

FC is defined as

FC = CP ×
{

DMFC

0.88

[
CSW × (1−MORT )− CPW

]}
(31)

where FC is the price per bushel of corn and is divided by 56 to convert this price into a

per pound measure. The expected price of corn is based on the futures price for corn from

the CBOT halfway through the feeding period. The reason for this timing is the capture an

average price of corn over the entire feeding period. Further, dry matter is multiplied by the

corn-based feed ration, which is assumed to 12% moisture. DMFC is adjusted to reflect the

“as fed” feed conversion. IC is defined as

IC =

{
1
2

[
Y C + FC + V C

]
+ FRC

}
×IntRate× DOF

365
(32)

11For cattle sold on a grid, quality risk must enter the profit function. For the purposes of this research, quality
risk is not taken into account. Cash prices are based on the average weight of the pen, without regard for the
quality of the carcass. Evaluating quality risk remains an area of future research.

26



where IR is the interest rate. This expression assumes that an interest charge is applied to

the full amount of the feeder cattle cost, FRC, and half the total cost of yardage, feed, and

veterinary fees. This assumption is based on the need to purchase feed throughout the feeding

period, while the feeder cattle must be entirely purchased at the beginning of the feeding period.

5.2 Simulation of Profits

Random draws from a multivariate normal distribution simulate a collection of predictions for

each of the yield factors. Given this information, the profit model described in equations (26)-

(32) can be simulated with entry pen characteristics. In practice, this profit function can serve

as a means for cattle owners or those in the cattle industry to understand expected profits that

are a function of the unique characteristics of a pen of cattle placed on feed. To illustrate, a

sample pen consists of its own unique characteristics, such as location, gender, entry weight,

and placement season. This information influences the inferences made on production yield

factors that define the multivariate normal distribution that describes production risk. The

multivariate normal is four dimensional, where the mean values are a function of the mean

parameter estimates and the variance is a function of both variance and covariance parameter

estimates.

In addition to production risk, the model must also account for price risk. The expected

prices and variance for fed cattle and corn can be obtained by using futures and options measures

from the CME and CBOT. This is all the information necessary to characterize the profit

function for simulation. Repeated random draws are taken in order to illustrate profits as a

distribution.12 To further illustrate, the characteristics denoted in Table(8) are used to emulate

a pen of cattle entering a Kansas feedlot on 2/14/2007.

Futures prices are used to approximate the price expectations for corn and fed cattle. For

corn, a 3-month futures price is used to approximate the average cost of corn over the entire
12For purposes of this study, 100,000 random draws were found to be enough to obtain a suitable profit

distribution.
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Table 8: Characteristics of Simulated Pen of Cattle
Placement Characteristics Price Characteristicsa

Date 2/14/2007 Corn Futures Price 4.25
Weight(lbs) 750 Fed Cattle Futures Prices 93.60
Gender Steer Feeder Cattle Cash Price (DC) 97.98
Location Kansas Corn Volatility .30
Season Winter Fed Cattle Volatility .20
aExpected prices based on 3 and 4 month futures price for corn and fed cattle, respectively.

feeding period. Fed cattle price expectations are estimated using a 4-month futures price, to

denote the expected value of a fed steer when it is ready to be marketed. The Fed cattle

volatility measure was assumed to be 20%, while the rise in corn volatility over the past year

has led to the higher rate of 30%.13

While this simulation has aspects unique to the current production situation, inputs can

be changed for other purposes. Figure 1 shows the expected distribution of profits, given the

previously mentioned inputs. It is not surprising that profits are near zero, with wide tails.

Expected profits are centered at $17.14 per head, with a standard deviation of $251.71.

13The rise in corn price and volatility over the last year is largely the result of a strong summer drought in the
midwest during 2006, coupled with the increased demand for ethanol production.
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Figure 1: Distribution of ex-ante conditional profits
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Figure 2: Histograms of quantitative variables
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Figure 3: Scatter plots of dependent variables

5 6 7 8 9

2

3

4

5

AFC vs. ADG

5 6 7 8 9
0

2

4

6

8
AFC vs. MORT

5 6 7 8 9
0

10

20

30

40
AFC vs. VCPH

2 3 4 5
0

2

4

6

8
ADG vs. MORT

2 3 4 5
0

10

20

30

40
ADG vs. VCPH

0 2 4 6 8
0

10

20

30

40
MORT vs. VCPH

33


