BRAZIL: A PIONEER IN BIOFUELS

Angelo Bressan
Director of Agrienergy Department

Elisio Contini
Head of Strategic Management Office
Ministry of Agriculture, Livestock and Food Supply

BRAZIL: A PIONEER IN BIOFUELS

Angelo Bressan
Director of Agrienergy Department

Elisio Contini
Head of Strategic Management Office

Washington, DC, March 2, 2007
SUMMARY

1. BIOFUELS IN BRAZIL’S ENERGY MATRIX

2. BRAZIL’S ETHANOL: PRODUCTION, POLICIES AND PROSPECTS

3. BIODIESEL: THE NEW CHALLENGE

4. FINAL REMARKS
BRAZILIAN ENERGY MIX

- Oil and oil products: 39%
- Biomass: 29%
- Hydraulic and electricity: 15%
- Natural gas: 8%
- Coal: 7%
- Uranium: 2%

World: biomass 11%; hydraulic and electricity 2%

Source: MME/BEN (2005)
Why BIOFUELS?

- Environmental gains
 - carbon sequestration
 - lower emission levels in consumption

- Renewability
 - short production cycle
 - man-controlled process

- Economic aspects
 - new demand component
 - impacts on trade balance

- Social aspects
 - jobs creation
 - income deconcentration

* Norman Borlaug
BRAZILIAN ETHANOL: PRODUCTION, POLICIES AND PROSPECTS
THE BRAZILIAN SUGAR CANE AND ETHANOL EXPERIENCES

1532: Martim Afonso de Sousa introduces sugar cane in Brazil

1925: First ethanol powered vehicle tested in Brazil

1979: First commercial ethanol moved vehicle in Brazil

2003: Flex fuel motors are launched
SUGAR CANE IN BRAZIL

NORTH/NORTHEAST REGION
15% of national sugar cane production

CENTER-SOUTH REGION
85% of national sugar cane production
PRODUCTION DATA FROM THE BRAZILIAN SUGAR CANE SECTOR

Sugar Cane Destination by Product

<table>
<thead>
<tr>
<th>Year</th>
<th>Sugar</th>
<th>Ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>96/97</td>
<td>35.8%</td>
<td>64.2%</td>
</tr>
<tr>
<td>97/98</td>
<td>35.8%</td>
<td>64.2%</td>
</tr>
<tr>
<td>98/99</td>
<td>35.8%</td>
<td>64.2%</td>
</tr>
<tr>
<td>99/00</td>
<td>35.8%</td>
<td>64.2%</td>
</tr>
<tr>
<td>00/01</td>
<td>35.8%</td>
<td>64.2%</td>
</tr>
<tr>
<td>01/02</td>
<td>35.8%</td>
<td>64.2%</td>
</tr>
<tr>
<td>02/03</td>
<td>35.8%</td>
<td>64.2%</td>
</tr>
<tr>
<td>03/04</td>
<td>35.8%</td>
<td>64.2%</td>
</tr>
<tr>
<td>04/05</td>
<td>35.8%</td>
<td>64.2%</td>
</tr>
<tr>
<td>05/06</td>
<td>35.8%</td>
<td>64.2%</td>
</tr>
<tr>
<td>06/07</td>
<td>50.1%</td>
<td>49.9%</td>
</tr>
<tr>
<td>YEAR</td>
<td>PROGRAMS</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>- HYDROUS ETHANOL -</td>
<td></td>
</tr>
</tbody>
</table>
| 1985 | - ANHYDROUS ETHANOL -
 | FIXES THE MIX LEVEL AT A MANDATORY 22% |
| 2003 | FLEX FUEL VEHICLES |
ENERGY EFFICIENCY OF ETHANOL IN BRAZIL

<table>
<thead>
<tr>
<th>Raw material</th>
<th>Energy output / Energy input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat(^1)</td>
<td>1.2</td>
</tr>
<tr>
<td>Corn(^1)</td>
<td>1.3 – 1.8</td>
</tr>
<tr>
<td>Sugar Beet(^1)</td>
<td>1.9</td>
</tr>
<tr>
<td>Sugar Cane(^2)</td>
<td>8.3</td>
</tr>
</tbody>
</table>

\(^1\) F.O. Licht, 2004.
\(^2\) Macedo, I et al., 2004 – Under Brazilian production conditions.

- High photosynthesis efficiency (C4 crop).
- Possibility for using the sugar cane by-products in the production process, avoiding external energy sources.
CO-GENERATION WITH SUGAR CANE BAGASSE IN BRAZIL

CURRENT POWER: ~ 2200 MW
(700 MW are exported to the grid and 1500 MW are consumed in the own mills)

ACTUAL MEASURED POTENTIAL:
3.000 MW – 14.000 MW (extra)
Depending of the technology applied in the generation process.

- Possibility to obtain carbon credits from CDM Projects (Kyoto Protocol)
- Complementary to the hydraulic generation in the Center-South Region
THE USES OF VINASSES IN BRAZIL

Good fertilizer: high amount of potassium (K₂O)
Vinasses can be applied on the soil by irrigation
A new technology is being developed in Brazil: to dehydrate and transform vinasses into a new commercial product
THE FLEX FUEL CAR –
A NEW DOMESTIC ETHANOL DEMAND

• Flex-Fuel Engine: allows the use of ethanol or gasoline in any concentration of these fuels

• Current Manufactures: VW, GM, Ford, Fiat, Renault, Peugeot, Citroen and Honda

• Sales of Flex-Fuel Vehicles in Brazil:
 - 2003: 48,000 units
 - 2004: 330,000 units
 - 2005: 865,000 units
 - 2006: 1,447,000 units

15.5 million gasohol cars (20% anhydrous ethanol blend)
2.6 million flex fuel cars
3.6 million motorbites (20% anhydrous)
- Total production: 18 billion liters
- Production per ton of sugar cane: 82 L/t
- Production per hectare: 7000 L/ha
- Production ratio: 160 thousand ha to produce 1 billion liters ethanol

EXPORTS: ETHANOL AND GASOLINE PRICE RELATIONSHIP

<table>
<thead>
<tr>
<th>YEARS</th>
<th>ETHANOL</th>
<th>GASOLINE</th>
<th>PRICE RELATIONSHIP Ethanol x Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Million US$ F.O.B.</td>
<td>Liters (Billion)</td>
<td>Average US$/m³</td>
</tr>
<tr>
<td>2003</td>
<td>158,0</td>
<td>0,757</td>
<td>208,56</td>
</tr>
<tr>
<td>2004</td>
<td>498,0</td>
<td>2,408</td>
<td>206,68</td>
</tr>
<tr>
<td>2005</td>
<td>766,0</td>
<td>2,592</td>
<td>295,31</td>
</tr>
</tbody>
</table>

Source: MDIC (Alice System)
THE FUTURE OF ETHANOL

The Brazilian aim is to transform ethanol in a great commodity, together with other countries
HOW TO EXPAND SUGAR CANE WITH SUSTAINABILITY?

AREAS FOR EXPANSION

AMAZON REGION

PANTANAL (SWAMPLAND)

ATLANTIC FOREST

SLOPE < 12%

SLOPE > 12%
Production, Export and Consumption of Sugar and Ethanol

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th></th>
<th>2015</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Production</td>
<td>Export</td>
<td>Consumption</td>
<td>Production</td>
</tr>
</tbody>
</table>
BIODIESEL: THE NEW CHALLENGE
1970: first experiences (obstacle: vegetable oil prices)

1980: first biodiesel patent in the world (Federal University of Ceará)

2002: Government Agenda (Working Group)

Dec/2003: Inter-ministerial Executive Committee and a management group, responsible for a program implementation

Dec/2004: Program launching, with 14 Ministries and various Research Centers

2005: States structure research nets
Basic Objectives of the Biodiesel Program:

- Reduce oil dependency
- Produce environmental gains
- Introduce family agriculture into the raw material production process
- Allowed mixture: up to 800 million liters/year
- 2008: Mixture of 2% made compulsory
- 2013: Mixture increases to 5%
FINAL REMARKS
BIG CHALLENGES

FREE INTERNATIONAL MARKET FOR AGROENERGY

FUTURE PRICE OF PETROLEUM

BIODIESEL EFFICIENCY; AGRICULTURAL AND INDUSTRIAL GOVERNMENT POLICIES

TECHNOLOGY DEVELOPMENT FOR BIODIESEL
GOVERNMENT POLICIES

1. GOVERNMENT SUPPORT AT THE BEGINNING: PROALCOOL (1980s) AND BIODIESEL (NOW!).
2. REGULATION AND SUPERVISION OF THE MARKET
3. FINANCING SUGAR AND ALCOHOL MILLS
4. SOME TECHNOLOGY SUPPORT
5. DRIVE FORCE: MARKET
BRAZIL HAS A GREAT POTENTIAL FOR BIOFUELS PRODUCTION...