AJAE Appendix for “Pricing-to-Market: Price Discrimination or Product Differentiation?”

Nathalie Lavoie and Qihong Liu

October 20, 2006

Note: The material contained herein is supplementary to the article named in the title and published in the American Journal of Agricultural Economics (AJAE).

Nathalie Lavoie is assistant professor, Department of Resource Economics, University of Massachusetts, Amherst. Qihong Liu is assistant professor, Department of Economics, University of Oklahoma. No senior authorship is assigned.
Derivations of Equilibrium Prices and Quantities

Scenario 1

In country 1, the consumer indifferent between buying the low-quality product or buying nothing is defined by the value of θ solving $y + \theta q_l - p_l = y$, i.e., $\theta_u = \frac{p_l}{q_l}$. Similarly, the consumer indifferent between the low- and high-quality products is defined by the value of θ solving equation $y + \theta q_h - p_h = y + \theta q_l - p_l$, i.e. $\theta_{1h} = \frac{q_h - p_h}{q_h - q_l}$.

Thus the low-quality product is purchased by consumers with $\theta \in [\theta_u, \theta_{1h}]$ and the demand for the low-quality product is

$$d_u = \frac{\theta_{1h} - \theta_u}{\theta_1} = \frac{q_l p_h - p_l q_h}{(q_h - q_l) q_l \theta_1}.$$

The high-quality product is purchased by consumers with $\theta \in (\theta_{1h}, \theta_1]$ and the demand for the high-quality product is

$$d_{1h} = \frac{\theta_1 - \theta_{1h}}{\theta_1} = \frac{1 - \frac{p_h - p_l}{(q_h - q_l) \theta_1}}.$$

The demands for the low- and high-quality products in country 2 can be obtained in a similar manner. Note however that the demands of consumers in country 2 depend on the price of the product expressed in local currency, i.e., $p_l \cdot e$ and $p_h \cdot e$, where e is the exchange rate expressed in units of country 2’s currency per unit of country 1’s currency.

The demands in country 2 can be represented as

$$d_{2l} = \frac{\theta_{2h} - \theta_{2l}}{\theta_2} = \frac{e q_l p_h - p_l q_h}{(q_h - q_l) q_l \theta_2}, \text{ and}$$

$$d_{2h} = \frac{\theta_2 - \theta_{2h}}{\theta_2} = \frac{1 - \frac{p_h - p_l}{(q_h - q_l) \theta_2}}.$$

The firm’s profit is

$$\pi = (p_l - \frac{1}{2} q_l^2) \frac{q_l p_h - p_l q_h}{(q_h - q_l) q_l} \left(\frac{1}{\theta_1} + \frac{e}{\theta_2} \right) + (p_h - \frac{1}{2} q_h^2) \left[2 - \frac{p_h - p_l}{(q_h - q_l)} \left(\frac{1}{\theta_1} + \frac{e}{\theta_2} \right) \right].$$
with first-order conditions:

\[
\frac{\partial \pi}{\partial p_l} = \frac{1}{2} \left(\theta_2 + e \theta_1 \right) \frac{4(p_l q_l - p_h q_h) + q_h q_h (q_l - q_h)}{(q_h - q_l)q_l \theta_1 \theta_2} = 0, \quad \text{and}
\]

\[
\frac{\partial \pi}{\partial p_h} = \frac{1}{2} \left(\theta_2 + e \theta_1 \right) \frac{(4p_h - 4p_l - q_l^2 - q_h^2) - 4\theta_1 \theta_2 (q_h - q_l)}{(-q_h + q_l)q_l \theta_1 \theta_2} = 0.
\]

Solving these two equations simultaneously for \(p_l, p_h\), we obtain the equilibrium prices

\[
p_h^* = \frac{1}{4} \frac{4\theta_1 \theta_2 + q_h (\theta_2 + e \theta_1)}{\theta_2 + e \theta_1}, \quad \text{and}
\]

\[
p_l^* = \frac{1}{4} \frac{q_l [4\theta_1 \theta_2 + q_l (\theta_2 + e \theta_1)]]}{\theta_2 + e \theta_1}.
\]

The equilibrium quantities are

\[
d_{1h}^* = \frac{q_h}{\theta_2 + e \theta_1}, \quad d_{2h}^* = \frac{q_l e}{4\theta_2}, \quad \text{and}
\]

\[
d_{1h}^* = \frac{4e \theta_1^2 - (q_l + q_h)(\theta_2 + e \theta_1)}{4\theta_1 (\theta_2 + e \theta_1)}, \quad \text{and}
\]

\[
d_{2h}^* = \frac{4\theta_2^2 - e(q_l + q_h)(\theta_2 + e \theta_1)}{4\theta_2 (\theta_2 + e \theta_1)}.
\]

For \(d_{1h}^* > 0\) and \(d_{2h}^* > 0\), \(q_h + q_l < \min \left[\frac{4e \theta_1^2}{\theta_2 + e \theta_1}, \frac{4\theta_2^2}{\theta_2 + e \theta_1} \right] \) must hold. We assume that this is the case throughout the article.

Scenario 2

The monopolist treats each market independently due to market segmentation and constant marginal cost. The firm’s problem in country 1 is

\[
\max_{p_{1l}, p_{1h}} (p_{1l} - \frac{1}{2}q_{l}^2) d_{1l} + (p_{1h} - \frac{1}{2}q_{h}^2) d_{1h}.
\]

Similarly, the firm’s problem in country 2 is

\[
\max_{p_{2l}, p_{2h}} (p_{2l} - \frac{1}{2}q_{l}^2) d_{2l} + (p_{2h} - \frac{1}{2}q_{h}^2) d_{2h}.
\]
We solve the firm’s problem in the market 1 first. The marginal consumers are,
\(\theta_{1l} = \frac{p_{1l}}{q_l} \), \(\theta_{1h} = \frac{p_{1h} - p_{1l}}{q_h - q_l} \). Thus the demands can be represented by

\[
d_{1l} = \frac{\theta_{1h} - \theta_{1l}}{\theta_1} = \frac{q_h p_{1h} - p_{1l} q_h}{(q_h - q_l) q_h \theta_1}, \quad \text{and}
\]

\[
d_{1h} = \frac{\theta_1 - \theta_{1h}}{\theta_1} = 1 - \frac{p_{1h} - p_{1l}}{(q_h - q_l) \theta_1}.
\]

Firm’s profit is,

\[
\pi_1 = (p_u - \frac{1}{2} q_h^2) \frac{q_h p_{1h} - p_{1l} q_h}{(q_h - q_l) q_l \theta_1} + (p_{1h} - \frac{1}{2} q_h^2) (1 - \frac{p_{1h} - p_{1l}}{(q_h - q_l) \theta_1}).
\]

The first order conditions are

\[
\frac{\partial \pi_1}{\partial p_u} = 4 \frac{(p_{1h} q_h - p_{1l} q_h) + q_h q_h (q_l - q_h)}{2 (q_h - q_l) q_h \theta_1}, \quad \text{and}
\]

\[
\frac{\partial \pi_1}{\partial p_{1h}} = 4 \frac{(p_{1h} - p_{1l}) - (q_h - q_l) (q_h + q_h + 2 \theta_1)}{2 (-q_h + q_l) \theta_1}.
\]

Solving these two equations simultaneously for \(p_u \) and \(p_{1h} \), we have, \(p_{1h}^* = \frac{1}{4} q_h (2 \theta_1 + q_h) \) and \(p_u^* = \frac{1}{4} q_l (2 \theta_1 + q_l) \). Thus the equilibrium quantities are \(d_{1l}^* = \frac{q_h}{4 \theta_1} \) and \(d_{1h}^* = \frac{2 q_h - q_h - q_l}{4 \theta_1} \).

Similarly, by solving the maximization problem of the monopolist in country 2, we can obtain the following equilibrium prices and quantities,

\[
p_{2l}^* = \frac{1}{4} q_l (2 \theta_2 + \epsilon q_l) / e,
\]

\[
p_{2h}^* = \frac{1}{4} q_h (2 \theta_2 + \epsilon q_h) / e,
\]

\[
d_{2l}^* = \frac{\epsilon q_h}{4 \theta_2}, \quad \text{and}
\]
(22) \[d_{2h}^{*} = \frac{2\theta_2 - e(q_l + q_h)}{4\theta_2}. \]

For \(d_{1h}^{*} > 0 \) and \(d_{2h}^{*} > 0 \), \(q_h + q_l < \min [2\theta_1, 2\theta_2/e] \) must hold. Note that this condition is less restrictive than \(q_h + q_l < \min \left[\frac{4e\theta_1}{\theta_2 + e\theta_1}, \frac{4e\theta_2}{\theta_2 + e\theta_1} \right] \) established in scenario 1 for the quantities in market 2 to be positive. Thus, \(d_{1h}^{*} > 0 \) and \(d_{2h}^{*} > 0 \) in scenario 2 holds.

Derivations of Equations Associated with Corollary 3 and 4

Corollary 3

First, we determine the sign of \(X - 1 \). Using the equation for the domestic-export price ratio with unit values, i.e., \(X = \frac{q^*_l + q^*_h(1-\sigma_1)}{\sigma_2 q^*_l + q^*_h(1-\sigma_2)} \), the sign of \(X - 1 \) corresponds to the sign of \((p^*_l - p^*_h)(\sigma_1 - \sigma_2) \). It can be easily shown that \((p^*_l - p^*_h) < 0 \) because \(q_l < q_h \). Moreover,

\[
\sigma_1 - \sigma_2 = \frac{4q_h(\theta_2 + e\theta_1)^2(\theta_2 - e\theta_1)}{[4e\theta_1^2 - q_l(\theta_2 + e\theta_1)][4\theta_2^2 - eq_l(\theta_2 + e\theta_1)]}
\]

and the two elements of the denominator are positive given the assumption we made for all quantities to be positive in equilibrium (see scenario 1 above). Thus, the sign of \(\sigma_1 - \sigma_2 \) depends on the sign of \(\theta_2 - e\theta_1 \). When \(\theta_2 < e\theta_1 \), \(\sigma_1 - \sigma_2 < 0 \), and \(X - 1 > 0 \). When \(\theta_2 > e\theta_1 \), \(\sigma_1 - \sigma_2 > 0 \), and \(X - 1 < 0 \).

Second, we determine the sign of \(\frac{\partial X}{\partial q_h} \). Because \(X = \frac{P_1}{P_2}, \frac{\partial X}{\partial q_h} = \frac{\partial P_1}{\partial q_h} P_2 - P_1 \frac{\partial P_2}{\partial q_h} \). Note that \(P_1 = \sigma_1(p^*_l - p^*_h) + p^*_h \), \(P_2 = \sigma_2(p^*_l - p^*_h) + p^*_h \), and \(q_h \) does not enter \(p^*_l \). Thus,

\[
\frac{\partial X}{\partial q_h} = \left[\frac{\sigma_1}{\partial q_h} (p^*_l - p^*_h) + \frac{\partial p^*_h}{\partial q_h} (1-\sigma_1) \right] P_2 - P_1 \left[\frac{\sigma_2}{\partial q_h} (p^*_l - p^*_h) + \frac{\partial p^*_h}{\partial q_h} (1-\sigma_2) \right].
\]

Rearranging we obtain:

\[
\frac{\partial X}{\partial q_h} = \frac{(p^*_l - p^*_h) \left(\frac{\partial p^*_l}{\partial q_h} P_2 - \frac{\partial p^*_h}{\partial q_h} P_1 \right) - \frac{\partial p^*_h}{\partial q_h} (P_2\sigma_1 - P_1\sigma_2 - P_2 + P_1)}{P_2^2}.
\]
where $\sigma_1 = \frac{\theta_1 + \theta_2 + \theta_3}{\theta_1 - \theta_2 + \theta_3}$, and $\sigma_2 = \frac{\theta_1 e(\theta_2 + \theta_3)}{-\theta_1 + \theta_2 + \theta_3}$.

Given the expressions for σ_1 and σ_2, \(\frac{\partial \sigma_1}{\partial q_h} = \frac{\sigma_1}{q_h}, \frac{\partial \sigma_2}{\partial q_h} = \frac{\sigma_2}{q_h}.\) Substituting for $\frac{\partial \sigma_1}{\partial q_h}, \frac{\partial \sigma_2}{\partial q_h}, P_1,$ and P_2, equation (25) can be re-written as

\[
(26) \quad \frac{\partial X}{\partial q_h} = \frac{(\sigma_1 - \sigma_2) \left[(p^*_h - p^*_h) \frac{p^*_h}{q_h} - \frac{\partial p^*_h}{\partial q_h} p^*_h \right]}{P_2^2}
\]

where $(p^*_h - p^*_h) \frac{p^*_h}{q_h} - \frac{\partial p^*_h}{\partial q_h} p^*_h < 0$ because $(p^*_h - p^*_h) < 0$ and $\frac{\partial p^*_h}{\partial q_h} = \frac{\theta_1 \theta_2 + 2 \theta_3 (\theta_2 + \theta_3)}{4(\theta_2 + \theta_3)} > 0$.

The above shows that the sign of $\frac{\partial X}{\partial q_h}$ also depends on the sign of $\sigma_1 - \sigma_2$, which we have already determined depends on the sign of $\theta_2 - \theta_1$.

Thus, when $\theta_2 < \theta_1, \sigma_1 - \sigma_2 < 0, X - 1 > 0$, and $\frac{\partial X}{\partial q_h} > 0$. When $\theta_2 > \theta_1, \sigma_1 - \sigma_2 > 0, X - 1 < 0$, and $\frac{\partial X}{\partial q_h} < 0$.

Corollary 4

Because

\[
X = \frac{p^*_t}{p^*_2} = \frac{(2\theta_1 + q_0)e}{2\theta_2 + e q_0},
\]

\[
(27) \quad X_t = \frac{p^*_t}{p^*_2} = \frac{(2\theta_1 + q_0)e}{2\theta_2 + e q_0},
\]

\[
(28) \quad X_h = \frac{p^*_h}{p^*_2} = \frac{(2\theta_1 + q_0)e}{2\theta_2 + e q_0}, \quad \text{and}
\]

\[
(29) \quad X = \frac{p^*_t \sigma_1 + p^*_h (1 - \sigma_1)}{p^*_2 \sigma_2 + p^*_2 (1 - \sigma_2)} = \frac{e (q_0^2 + 4\theta_1^2 - q_0 q_2 - q_2^2) (2\theta_2 - q_0)}{(e^2 q_0^2 + 4\theta_2^2 - e^2 q_0 q_2 - e^2 q_2^2)(2\theta_1 - q_0)},
\]

then, when $q_t = q_h = q, X_t = X_h = X = \frac{(2\theta_1 + q_0)e}{2\theta_2 + e q_0}$.

In what follows, the equations allowing us to sign $\frac{\partial X}{\partial q_h}$ are derived. Rewrite X as

\[
X = \frac{p^*_t \sigma_1}{p^*_2 \sigma_2} A \quad \text{where} \quad A = 1 + \frac{p^*_t}{p^*_t} \frac{1 - \sigma_1}{\sigma_1} \quad \text{and} \quad B = 1 + \frac{p^*_h}{p^*_2} \frac{1 - \sigma_2}{\sigma_2}. \quad \text{Therefore},
\]

\[
(30) \quad \frac{\partial X}{\partial q_h} = \frac{p^*_t \sigma_1}{p^*_2 \sigma_2} \frac{1}{B^2} \left[B \left(\frac{\partial (p^*_h / p^*_2)}{\partial q_h} \frac{(1 - \sigma_1)}{\sigma_1} + p^*_t \frac{\partial (1 - \sigma_1)}{\partial q_h} \right) - A \left(\frac{\partial (p^*_h / p^*_2)}{\partial q_h} \frac{(1 - \sigma_2)}{\sigma_2} + p^*_t \frac{\partial (1 - \sigma_2)}{\partial q_h} \right) \right]
\]

6
where \(\frac{p_{1h}}{p_{1l}} = \frac{q_{h}(2q_{l} + q_{h})}{q_{l}(2q_{h} + q_{l})} \), \(\frac{1-\sigma_{1}}{\sigma_{1}} = \frac{2q_{l}-q_{h}}{q_{h}} \), \(p_{2h}^{*} = \frac{q_{h}(2q_{l} + q_{h})}{q_{l}(2q_{h} + q_{l})} \), and \(\frac{1-\sigma_{2}}{\sigma_{2}} = \frac{2q_{h}-q_{l}}{q_{l}} \). The derivative of these expressions with respect to \(q_{h} \) can be written as: \(\frac{\partial (\frac{p_{1h}}{p_{1l}})}{\partial q_{h}} = \frac{p_{1h}}{p_{1l}q_{h}} + \frac{q_{h}}{4p_{1l}} \), and \(\frac{\partial (\frac{1-\sigma_{1}}{\sigma_{1}})}{\partial q_{h}} = \frac{1}{\sigma_{1}q_{h}} \).

Substituting these last four expressions into (30), we obtain

\[
(31) \quad \frac{\partial X}{\partial q_{h}} = \frac{p_{1l}}{p_{2l}} \frac{\sigma_{1}}{\sigma_{2}} \frac{1}{B^{2}} \left\{ B \left[-\frac{p_{1h}}{p_{1l}q_{h}} + \frac{q_{h}}{4p_{1l}} \left(\frac{1-\sigma_{1}}{\sigma_{1}} \right) \right] - A \left[-\frac{p_{2h}}{p_{2l}q_{h}} + \frac{q_{h}}{4p_{2l}} \left(\frac{1-\sigma_{2}}{\sigma_{2}} \right) \right] \right\}
\]

which can be rewritten as

\[
(32) \quad \frac{\partial X}{\partial q_{h}} = \frac{p_{1l}}{p_{2l}} \frac{\sigma_{1}}{\sigma_{2}} \frac{1}{B^{2}} \left\{ \frac{1}{q_{h}} \left(\frac{p_{2h}}{p_{2l}} A - \frac{p_{1h}}{p_{1l}} B \right) + \frac{q_{h}}{4p_{1l}} \left[\frac{B}{p_{1l}} \left(\frac{1-\sigma_{1}}{\sigma_{1}} \right) - A \left(\frac{1-\sigma_{2}}{\sigma_{2}} \right) \right] \right\}.
\]

After substituting for \(A \) and \(B \) within the curly brackets and rearranging we obtain:

\[
(33) \quad \frac{\partial X}{\partial q_{h}} = \frac{p_{1l}}{p_{2l}} \frac{\sigma_{1}}{\sigma_{2}} \frac{1}{B^{2}} \left(\frac{C}{q_{h}} + \frac{q_{h}}{4} D \right), \quad \text{where}
\]

\[
(34) \quad C = \left(\frac{p_{2h}}{p_{2l}} - \frac{p_{1h}}{p_{1l}} \right) + \frac{p_{1h}p_{2h}}{p_{1l}p_{2l}} \left(\frac{1-\sigma_{1}}{\sigma_{1}} - \frac{1-\sigma_{2}}{\sigma_{2}} \right) \quad \text{and}
\]

\[
(35) \quad D = \left(\frac{1-\sigma_{1}}{\sigma_{1}p_{1l}^{2}} - \frac{1-\sigma_{2}}{\sigma_{2}p_{2l}^{2}} \right) + \frac{p_{2h}^{*} - p_{1h}^{*}}{p_{1l}^{*}p_{2l}^{*}} \left(\frac{1-\sigma_{1}}{\sigma_{1}} \right) \left(\frac{1-\sigma_{2}}{\sigma_{2}} \right).
\]

Then, we substitute for the equilibrium prices and market shares and simplify to obtain:

\[
(36) \quad \frac{\partial X}{\partial q_{h}} = \frac{1}{p_{2l}^{*} \sigma_{2}} \frac{1}{B^{2}} \frac{1}{\sigma_{2}} \left(\frac{e\theta_{1} - \theta_{2}}{e\theta_{1} + \theta_{2}} \right) \left(\frac{2q_{h} + q_{l}}{eq_{l}(2\theta_{2} + e\theta_{l})} \right).
\]

The sign of \(\frac{\partial X}{\partial q_{h}} \) is the sign of \(e\theta_{1} - \theta_{2} \).