How coupled are decoupled farm payments? A review of coupling mechanisms and the evidence

Arathi Bhaskar, John C. Beghin

August 2007

Working Paper # 07021

Department of Economics
Working Papers Series

Ames, Iowa 50011
Abstract
This survey paper explores the literature on decoupling of farm programs that has emerged in the last 10 years. The paper identifies and assesses the various channels of potential coupling of decoupled farm payments and provides taxonomy of coupling mechanisms found in theoretical and empirical papers. Coupling of decoupled payments is pervasive but effects when measurable are small, with the exception of the impact on land values. The paper points to unresolved issues on potential coupling mechanisms for further research.

Keywords: Decoupling, decoupled payments, farm policy, agricultural trade policy, coupling, direct payments, CCP, PFC, SFP.

JEL Code: Q17, Q18

Contact author: John Beghin. beghin@iastate.edu. Economics Discipline. H04 – Merewether. The University of Sydney. NSW 2006 Australia. Phone: 61 439 333 921. Fax: 61 2 9351 4341.
Introduction

Domestic subsidies to agriculture were brought under the discipline of global trade rules for the first time in the Uruguay Round Agreement on Agriculture (URAA) of the World Trade Organization (WTO) in 1994. Member countries of the WTO decided to reduce the distortions that were caused by current levels of domestic farm subsidies. Under the URAA, domestic support is classified into three categories or “boxes” according to their impact on international trade. The amber-box contains the most distorting subsidies, which are therefore required to be limited in use. The blue-box payments also cause some distortion but are required to be production limiting. The green-box contains subsidies that cause no or minimal distortion. The subsidies in the blue- and green-boxes are excluded from all WTO disciplines. To reduce trade distortions caused by these farm subsidies, members were required to shift towards decoupled income support while reducing coupled support. Decoupled support policies are categorized as green-box payments. They are defined as payments that are financed by taxpayers and are not related to current production, factor use, or prices, and for which eligibility criteria are defined by a fixed, historical base period. Since they are exempt from WTO disciplines, decoupled payments have become an important part of income support that is provided to agriculture, especially in industrialized countries.

Developing countries and natural exporters of agricultural goods have “resisted” the established leadership of the EU and United States in WTO negotiations. New coalitions such as the Cairns group and the various Gs groups are questioning farm subsidies in many industrialized countries. All subsidies will eventually be scrutinized. Beyond amber- and blue-box payments, green-box payments have appeared on the radar screen of negotiations although no limits have been set on the table. The 2003 Common Agricultural Policy (CAP) reforms with its new decoupled Single Farm Payment (SFP) and the United States attempts to boost green-box payments to offset expected reductions in amber- and blue-box support are
Green-box payments are likely to be central to the round following the Doha round. This evolution of the WTO agricultural negotiations is happening in the context of recent WTO rulings against Canadian dairy, EU sugar and U.S. cotton policies, all three shown to be distorting and inconsistent with WTO obligations. The U.S. cotton dispute also put the U.S. direct payments inclusion in the green-box into question although the latter were not initially a focus of the dispute. Many countries with large farm programs are pushing their own interest groups to consider less coupled policies or decoupled policies fitting under generously-defined blue- and green-boxes under a new WTO agreement at the conclusion of the Doha round. The policy debate has led to various claims and conjectures to explain the link between decoupled payments and production decisions and market outcomes (Aksoy and Beghin (2004)). The economics profession has recently addressed and delineated many of these potential links, both with analytical conceptualizations and empirical investigations. This large body of work accumulated in the last ten years motivates taking stock and evaluating what has been settled and what is left to elucidate.

This survey paper distills the recent literature on decoupling of farm programs in the last 10 years. It first describes the ambiguity surrounding “decoupling” and then assesses the various channels of potential coupling of decoupled farm payments and provides taxonomy of coupling mechanisms found in theoretical and empirical papers. The majority of the papers reviewed find that decoupled payments affect the decision making process of farmers, though most effects are small in magnitude. The paper identifies unresolved issues on “coupling mechanisms” for further research. The following programs have been considered in this paper: the production flexibility contract (PFC) payments from the 1996 Federal Agriculture Improvement and Reform (FAIR) Act which have been continued as direct payments in the 2002 Farm Security and Rural Investment (FSRI) Act and the counter-cyclical payments
(CCP) in the United States, and the CAP area payments in the EU. The paper is organized as follows. Section 2 provides two important definitions of decoupled payments and identifies the coupling mechanisms of decoupled payments. Sections 3, 4, 5, 6, 7 and 8 review the recent literature, classifying papers by the specific mechanism. Section 9 concludes.

2. Definition of Decoupled Payments and Coupling Mechanisms

Two prominent definitions of “decoupled” payments are based on the URAA (as defined in Annex 2.6) and the Organization for Economic Cooperation and Development (OECD). The URAA defines decoupling in terms of policy design as taxpayer financed payments satisfying the following criteria: (i) Eligibility for such payments shall be determined by clearly defined criteria such as income, status as a producer or landowner, factor use or production level in a defined and fixed base period. (ii) The amount of such payments in any given year shall not be related to, or based on, the type or volume of production (including livestock units) undertaken by the producer in any year after the base period. (iii) The amount of such payments in any given year shall not be related to, or based on, the prices, domestic or international, applying to any production undertaken in any year after the base period. (iv) The amount of such payments in any given year shall not be related to, or based on, the factors of production employed in any year after the base period. (v) No production shall be required in order to receive such payments.

The OECD defines decoupling in terms of policy effects (Cahill (1997)). A policy is fully decoupled if “it does not influence production decisions of farmers receiving payments.” Beyond unchanged market equilibrium, market adjustment to any exogenous shocks should not be affected either. Both the shape and the position of supply and demand curves remain unchanged. A less restrictive concept, effectively fully decoupled, means that equilibrium levels of production and trade are unchanged but that the shape of the demand
and supply curves can change.

While some payments may narrowly satisfy the URAA definition, they potentially have some allocative (“coupling”) effects, which arise with uncertainty, imperfect credit, land and labor markets and farmer expectations about future payments. In the presence of uncertainty, decoupled payments reduce risk aversion and the degree of risk. If credit markets are imperfect, decoupled payments have the potential to increase the liquidity of credit-constrained farmers. The payments also increase land values and rents, which also improves the credit worthiness of credit-constrained farmers and provides incentives to retain land in agriculture. Decoupled payments affect labor markets by influencing the on- and off-farm labor supply decisions. Decoupled payments affect farmer expectations by linking current decisions to future payments. Next, we review each coupling mechanism. Tables 1-6 summarize the mechanisms, the evidence of their magnitude when available, and associated authors.

3. Coupling through Risk

If farmers’ preferences display decreasing absolute risk aversion (DARA), increases in wealth imply a reduction in the coefficient of absolute risk aversion (wealth effect). Decoupled payments also reduce the degree of risk faced by farmers by reducing income variability (insurance effect) (Hennessy, 1998). Hennessy models a risk-averse farmer, maximizing expected utility from profit. The farmer earns stochastic profit from the market, which is augmented by a decoupled payment. The farmer’s objective function is given by:

\[
\max_{\alpha} \int_a^b U(\hat{\pi}(\alpha, \varphi, \varepsilon))dJ(\varepsilon),
\]

where \(\alpha\) is the farmer’s choice variable, \(\hat{\pi}(\alpha, \varepsilon)\) is the sum of stochastic market returns, \(\hat{\pi}(\alpha, \varepsilon)\) and decoupled support payment, \(DP(\varphi, \varepsilon)\). Under the conditions that (i) farmer’s
preferences display DARA, (ii) the risk faced by the farmer reduces his optimal level of the choice variable \(\hat{\pi}(\alpha, \varepsilon) > 0 \), (iii) support augmented income increases with risk \((\hat{\pi}_s(\alpha, \varphi, \varepsilon) > 0) \) and, (iv) the decoupled payment reduces the risk faced by the farmer \((DP_{pe}(\varphi, \varepsilon) \leq 0) \), the optimal choice of the farmer increases with the magnitude of support. The author also shows that under constant absolute risk aversion (CARA) and conditions (ii), (iii) and, (iv), the optimal choice of the farmer increases with the magnitude of support. In this case, wealth effects are absent; the optimal choice is only influenced by insurance effects due to the reduced income variability induced by the increase in support. Hennessy conducts numerical analysis for a continuous corn producer in the Midwest to obtain some measure of the magnitudes of the wealth and insurance effects of a target price program based on fixed yield. Monte Carlo simulations indicate that an increase in the magnitude of support could increase nitrogen use by a maximum of 15%, while the increase in output is small (a maximum of 2.75%). Insurance effects are much larger than wealth effects. To ensure that decoupled payments do not have any insurance effects, Hennessy suggests that these payments should not vary with the source of uncertainty.

Sckokai and Moro (2006) have findings similar to Hennessy’s. They use data from the Italian Farm Accounting Data Network to empirically evaluate the risk effects of the recent CAP reforms in the EU. It is assumed that risk arises due to uncertain prices and that farmers display constant relative risk aversion (CRRA) preferences. The estimated model is then used to simulate the effects of recent CAP reforms (reduced intervention prices compensated by an increase in cereal area payments and eventually SFP). Supplies of all arable crops are positively influenced by own area payments. The elasticity of crop acreage with respect to area payments is positive for all arable crops. The introduction of the non-stochastic SFP reduces income variability and offsets the impact of the increased price variability. Risk
effects are decomposed into insurance and wealth effects. Additionally the policy change has price and payment effects which offset each other; while the wealth effects are positive but small, insurance effects are more important in determining the direction of the output effect of the policy change.

Burfisher, Robinson, and Thierfelder (2000) study the linkage between decoupled payments and production in the United States, Canada, and Mexico under uncertainty. They apply a three country computable general equilibrium model (CGE) in which the effect of the decoupled payment on production is captured through a change in the risk premium. Using 1997 data, they look at PFC in the United States, National Income Stabilization Accounts (NISA) in Canada (an effectively coupled payment) and Procampo in Mexico and analyze risk in returns for corn, wheat, feed grains and oilseeds. The authors abstract from risk management such as hedging or off-farm employment. Farmers in the United States and Canada are assumed to tolerate loss twice as often as farmers in Mexico do. The study examines the effect of a 50% increase in decoupled payments on risk premia. Risk premia decrease, though the effects on output via the decreased risk premia are small. U.S. output of oilseeds rises by 1.1% and output of wheat rises by 0.5%. Mexican output of wheat and feed grains increase by 0.7%, while the output of oilseeds fall by 0.3%, reflecting the shift in resources into more risky crops.

Young and Westcott (2000) examine U.S. PFC payments, crop and revenue insurance, marketing loans and disaster assistance payments and their effect on production. Assuming wealth elasticities of acreage between 0.087 and 0.270 (from Chavas and Holt, 1990), the authors calculate the production impact of PFC payments on program crops (corn, barley, oats, sorghum, rice, wheat and upland cotton). PFC payments increased aggregate acreage by 0.18 to 0.57 million acres annually, translating into a maximum increase in acreage of 2% over the period 1996-2002. A shift of acreage towards riskier crops and
regions also occurred.

Anton and Le Mouel (2004) employ a mean-variance approach to compute the magnitude of the risk effects of CCP. They model a risk-averse farmer producing a single output facing stochastic prices. Her income, M, is given by the sum of stochastic profits, CCP and off-farm income. The farmer maximizes the certainty equivalent income, with respect to output, y. The first order condition yields the price risk premium:

$$E\left[\max(LR, \tilde{p}) \right] \left[1 - \frac{\delta V(M)}{\delta y} \right] = C',$$

(2)

where LR is the commodity loan rate, \(\tilde{p} \) is the stochastic output price, E(M) is expected income, V(M) is the variance of income, \(R_r \) is the coefficient of relative risk aversion and \(C' \) is marginal cost. The second term in brackets captures the price risk premium. The incentive price is defined as the expected price given the truncation of the price distribution at the loan rate less the price risk premium. A policy that decreases the price risk premium increases the incentive price and has a positive effect on production. Computing the price risk premium under normally distributed prices, the authors evaluate the risk related incentives for major commodities expressed as a percentage of the market price of the commodity. The assumed value of \(R_r \) matters but effects are overall small. The CCP program created risk-related effects in the magnitude of 0.9% for sorghum, 1.5% for corn and 1.9% for wheat.

Serra et al. (2005a) analyze the impact of decoupled payments on production decisions taken at both the intensive and extensive levels in the presence of price uncertainty. The model assumes that farmers have two sources of income: market revenue from sales of a single output and decoupled payments (DP). The farmer maximizes expected utility from wealth. The analysis is based on the assumption of DARA. The authors derive expressions
for the elasticity of output with respect to DP and the elasticity of output with respect to (stochastic) price. Both the elasticities are found to be analytically positive, indicating that increases in both DP and price increase output. While DP increases output only by reducing risk, a higher price increases output by increasing marginal income and by reducing risk. The authors specify a single aggregate output produced using two variable inputs, chemical inputs and fertilizers, and use farm-level data for the years 1998-2001 from Kansas, and national-level aggregate data. Results indicate that the DP elasticity is near zero and smaller than the price elasticity, with the former equal to 0.006. Further, a reduction in price support, compensated exactly by an increase in decoupled payments, leads to a small reduction in output. Finally, the elimination of PFC payments would cause 6% of the farmers to exit.

In a related paper, Serra et al. (2006) analyze the impact that decoupled payments have on production by explicitly considering the effect that inputs have on output variability when farmers face both output and price risk. For the single output, single input model, an increase in DP increases (decreases) the demand for the input if the farmer’s preferences display DARA (Increasing absolute risk aversion) and the input is risk increasing. This happens because the impact of DP on input use is determined by an interaction between the wealth effect (caused by the change in the coefficient of risk aversion brought about by a change in wealth) and the effect of the input on output variability. If the input is risk decreasing, the effect of DP on input use is indeterminate. The effect of an increase in price on input demand is also indeterminate. Using a model with three inputs (pesticides, fertilizers, and seeds and fuel oil) and the data of Serra et al. (2005), the authors find that all inputs are risk increasing and that farmers in the sample exhibit DARA preferences. DP elasticities for the three inputs are positive, but statistically insignificant. Price elasticities for the inputs are positive, though only the elasticities for pesticide and fertilizer are statistically significant. A reduction in price support which is compensated by a decoupled payment may
lead to a decrease in output mean and variance by reducing the use of risk-increasing inputs.

Makki, Johnson and Somwaru (2005) analyze the effects of CCP on farm-level income variability, crop choice and acreage allocation decisions by simulating an expected utility maximization model for a risk-averse representative Minnesota farmer facing price and output uncertainty. The farmer is assumed to buy revenue or yield insurance. The authors compare the certainty equivalent of the terminal period wealth under different assumptions about programs, acreage allocations and market conditions. The simulation exercise is conducted for the years 2002-04. Results indicate that CCP increase farm welfare considerably, especially in low price years. Farmers may increase acreage of crops with higher CCP rates, especially if base updating is allowed, as it was under the 2002 FSRI Act.

Goodwin and Mishra (2006) econometrically evaluate the effect of PFC and market loss assistance (MLA) payments on farm level decisions using farm-level data from USDA’s Agricultural Resource Management Survey (ARMS) for the period 1998-2001. They investigate the impact of PFC and MLA payments on acreage decisions of farmers, the allocation of land across different uses, and the purchase of new land in the Corn Belt. The empirical model is based on expected utility maximization of wealth, (initial wealth plus market returns, government payments and non-farm activities). The following reduced form acreage response equation is estimated:

\[A_t = f(A_{t-1}, \tilde{p}_t, w_t, DP_t, \widetilde{CP}_t, W_{t-1}) \]

(3)

where \(A_t \) is current acreage, \(A_{t-1} \) is lagged acreage, \(\tilde{p}_t \) is stochastic output price for the commodity, \(w_t \) is input price, and \(W_{t-1} \) is wealth. \(\widetilde{CP}_t \) represent government payments which are conditioned on market conditions (LDP and MLA payments). \(DP_t \) are fixed payments received by the producer. The estimation equations include not only PFC and MLA payments but also the indirect effects that PFC payments can have on farmers’ decisions via the
farmers’ risk aversion and existence of credit constraints. A farmer’s level of risk-aversion is represented by the proportion of his insurance bill as compared to his total expenditure. The PFC-insurance interaction term captures the effect that PFC payments can have on risk-aversion. Credit constraints are represented by the debt-to-asset ratio of the farm. The PFC-(debt-to-asset ratio) interaction term captures the effect that PFC payments might have on the farm’s financial leverage. The empirical model also includes the farm’s wealth, calculated as total assets less total debts, and PFC payments. The authors estimate acreage equations for corn, soybeans and wheat. They find that the direct effects of PFC payments on acreage decisions are positive and significant, except in the wheat acreage decision, though the magnitude of the impact is small. The existence of credit constraints does not influence acreage decisions. The coefficient of the PFC-insurance term in all three acreage equations is negative though insignificant. Wealth effects are also insignificant. Thus the exact mechanism by which PFC payments affect acreage is not identified. The overall effect of a dollar increase in PFC payments is to increase corn, soybeans and wheat acreage by 0.92, 0.61 and 0.36 acres respectively corresponding to acreage elasticities of 0.0317 for corn, 0.0204 for soybeans and 0.0428 for wheat. MLA effects on corn acreage are found to be stronger as compared to the effect of PFC payments, though the effect on soybeans and wheat are not significant. PFC payments lead to less land idling, but no significant impact on land transactions. Table 1 summarizes this section.

4. Coupling via Credit Constraints

Decoupled payments can influence the investment decision of farmers by adding to their wealth, which might enable farmers to save more and therefore increase their investment. For capital-constrained farmers, decoupled payments improve their credit worthiness and make
credit more accessible. Roe, Somwaru, and Diao (2003) examine the economy-wide effect of decoupled payments on consumption and savings pattern. First, the paper examines the link between PFC payments and land values using data from statistical reporting districts in Minnesota from 1994 to 2000. Results indicate a positive correlation between government payments and land values; between 1994 and 2000 a 10% change in government payments led to a 3.24% change in land values. The appreciation in land values can affect investment by increasing the access to credit as land is used as collateral. Next, the authors examine the effects of PFC payments on investment under perfect and segmented capital markets using an inter-temporal three sector general equilibrium (GE) model. PFC payments are incorporated in the model as a lump-sum transfer from urban households to the rural households who undertake agricultural production. The model is calibrated to 1997 United States data. PFC payments are assumed to be $6.11 billion in 1997 and are paid in every period in perpetuity. The steady state solutions of the model with and without (defined as the benchmark) the PFC payments are compared. With perfectly integrated capital markets, the sole effect of PFC payments is on land values, which exceeds the benchmark by 9% in the short run and by about 8% in the long run. With imperfect capital markets the rental rate of capital in agriculture declines by 0.1% in the first 10 years as compared to the benchmark. The effect on rental rate of capital outside agriculture is negligible. The price of land and hence the value of land rises. Higher labor hours are employed in agriculture over the benchmark. Aggregate agricultural production increases by a maximum of 0.18% over the benchmark, a very small effect. All these effects occur in the short run. In the long run, the differences in the rental rates of capital in agriculture and outside agriculture are arbitraged away and there is convergence to the benchmark. Thus, PFC payments do not have any effects in the long run. Table 2 recapitulates this section’s information.
5. Coupling through Labor Allocation

Decoupled payments, by affecting the wealth of farmers, also affect their labor-leisure choice which can have production effects. Most U.S. operators and their family members contribute at least two thirds of the labor used by farms, and at least one family member works off-farm (Ahearn, El-Osta and Dewbre, 2006). Decoupled payments can have a significant effect on farmers’ on-farm and off-farm labor supply decisions. The latter authors investigate the effect of government payments on the off-farm labor participation decision of farm operator households using ARMS data for the years 1996 and 1999 and a bivariate probit approach. They find that PFC, LDP, and MLA payments, individually and in aggregate, reduce the farmer’s likelihood to work off the farm. The estimation results for the spouse are inconclusive.

In an investigation also based on recent ARMS data, Dewbre and Mishra (2002) estimate the effect that PFC, MLA, and LDP and disaster assistance payments have on the leisure time and on-farm hours of operators and spouses. The impact of the PFC payments on on-farm labor hours is negative and statistically insignificant. PFC payments have a positive and significant impact on leisure hours though the effect is very small in magnitude. The authors conclude that PFC payments are decoupled. The authors also focus on transfer efficiency losses arising from reallocation of farm resources caused by the government payments and leakages of benefits to non-farming landowners. Transfer efficiency is measured as the impact of the payments on the total income of households. PFC has the lowest transfer efficiency (0.29) for households with some off-farm income amongst the payments considered and also the highest transfer efficiency (0.55) for households with no off-farm income.

El-Osta, Mishra and Ahearn (2004) estimate the effect of PFC, LDP, and disaster assistance payments on on- and off-farm labor and total labor supply models using 2001
ARMS data. They find that combined payments have a positive effect on on-farm and total labor hours supplied and a negative effect on off-farm labor supply. Operators increased their on-farm labor hours while cutting down on both off-farm labor as well as leisure time. When each government payment is considered individually, PFC payments have a positive significant impact on on-farm labor hours and a negative significant impact on off-farm labor hours. No significant effect is found on total labor supply. Table 3 sums up the points made by these papers.

6. Coupling via Land Markets

Decoupled payments are passed on to landowners via higher land rents and land values. This can lead to land remaining in agriculture and also as mentioned earlier can make credit more accessible to farmers. Roe, Somwaru and Diao (2003) indicated that PFC payments lead to an increase in land values, even in the long run. One of the earliest articles to raise this issue was Schertz and Johnston (1998). The authors conduct a study in four major agricultural regions: the Great Plains, the Corn Belt, the South and California. The study is based on the responses of farm managers or operators to the 1996 FAIR Act. Based on their discussions with the farm managers the authors conclude that owing to their non-stochastic nature, PFC payments inflate land prices and land rents. PFC payments increase land values as they are attached to the land. In the case of cash leases much of the payments pass on to the landowner via increased rents. In the case of crop share leases, payments create incentives for the landowner to adjust the lease to take advantage of the PFC payments (for example in some cases landowners shifted to cash leases).

Gohin, Guyomard, and le Mouel (2000) analyze the impact of direct payments on land and production. They evaluate them in terms of their eligibility to qualify as green-box payments. They use a static partial equilibrium model with two perfectly competitive
agricultural sectors, each producing a single output, with a constant returns to scale production technology. Production in the two sectors depends on the use of three inputs: an aggregate variable input, a specific primary factor, and a fixed allocable factor such as land, which is used in both sectors and is in fixed supply. The domestic support instruments considered include output subsidies, variable input subsidies, and DP based on the specific factor, and on land. Optimal output supply and derived input demands are determined by a two-stage profit maximization process. Land prices are determined endogenously by the market clearing condition for land. Land prices are computed under two alternative assumptions: land homogeneity and heterogeneity. Comparative-static analysis indicates that the land use and output supply in each sector depend on both sectors’ DP and output subsidy. The effect of the DP depends on the use of other support measures and the production technology. Two countries with different production technologies or different factor movements across sectors will have different impacts from using the same direct support instrument.

Barnard et al. (2001) analyze the effects of commodity program payments on cropland values using 2000 county-level farmland value data from ARMS. They estimate hedonic land price equations with all government payments (which include PFC, LDP, MLA and disaster assistance payments) grouped together as a single variable. Results indicate that the commodity program payments have a significant effect on cropland values. The highest proportional effect was in the Heartland region where farm commodity programs accounted for 24% of the market value of farmland. Farm commodity programs also had a similar effect in the Prairie Gateway region (23% of the market value of farmland) and in the Northern Great Plains region (22% of the market value of farmland). Even though all payments have been grouped together, the authors mention that PFC payments are expected to have a larger impact on land values as compared to the coupled LDP and disaster assistance payments.
This is because the coupled payments can increase production and therefore increase the demand for other non-land inputs. Thus, benefits from the coupled payments maybe transferred to other inputs and not all benefits are capitalized into higher land values. PFC payments are paid on land, and being lump-sum in nature, they are not expected to influence production. Hence, all benefits from the PFC payments are expected to be capitalized into higher land values. This is in contrast to the results in Goodwin, Mishra and Ortalo-Magne (2003a) and (2003b), where LDP and disaster assistance payments have a larger impact on land values as compared to the PFC payments.

Dewbre, Anton and Thompson (2001) employ the policy evaluation matrix (PEM) model to study the effects that direct payments (based on land use) have on trade and their efficiency in providing income support. Since they are based on land use, these DP are considered as area payments and are further classified into two types: one requiring production for eligibility and the other that land be kept in arable use. The authors also compare the area payments with market price support, input subsidies and output payments. The paper focuses on the impacts of the support measures through their incidence on relative prices. The impact of area payments on production, trade and farm income arise because of their impact on land prices. The results from model simulation indicate that the area payments have the smallest effect on trade as compared to the other three forms of support. Within the area payments, the one requiring no active production has a smaller effect on trade than the one which requires mandatory production. Market price supports have a smaller impact on trade as compared to the input subsidies. In fact, input subsidies prove to be the most inefficient form of support in terms of providing income support while area payments prove to be the most efficient.

indicate that government payments had a significant impact on land rents. For 1997, rents increased between $0.33 and $1.55 for each government payment dollar (in 1997 the major component of government payments were payments made under the PFC program). For 1992, the effect on land rents is smaller reflecting the temporary nature of government payments in that year.

Goodwin, Mishra and Ortalo-Magne (2003a) and (2003b) use farm level data from ARMS to estimate the determinants of farm land values. While the first study (2003a) uses data for the years 1998-2001, the second study (2003b) uses data for the years 1998-2000. The current value of a farmland is affected by the sum of the expected future cash flows discounted according to the risk of these cash flows. Cash flows from the same source have the same discount factor. The authors consider three sources of future cash flows: market returns, government payments (PFC, LDP and disaster assistance payments) and the nonagricultural returns to land. Each government program has been considered separately in the analysis as programs differ according to support provided. The uncertainty associated with each program also differs. They find that PFC payments have a positive and significant effect on farmland values, with a dollar increase in PFC payments leading to an increase in per-acre land values of $4.94 in the first study and of $4.06 in the second study.

Frandsen, Gersfelt and Jensen (2003) employ a computable general equilibrium (CGE) model to analyze the production and trade impacts of decoupling income support in the EU. The model accounts for the support measures in the CAP and the Agenda 2000 reforms. The model baseline is constructed for the period 1997-2013 and captures the structure of the domestic support in the EU. The baseline is compared with three scenarios. Of interest to us is the scenario where all domestic support is converted into a single region specific decoupled payment to land. Under this scenario, there is a substantial increase of 75.1% in land prices for the EU15 as a whole. All individual EU countries also display
increases in land prices. Other results are a decrease in the production of wheat, other grains, oilseeds and bovine animals by 6.9%, 5.6%, 8.9% and 11% respectively. Most affected are plant based fibers, such as cotton whose production decreases by 63%. These decreases are reflective of the high level of domestic support enjoyed by these commodities under Agenda 2000.

Gohin (2006) analyzes the impact of the 2003 CAP Mid Term Review (MTR) under two different assumptions about the modeling of Agenda 2000 direct payments; the first is based on the standard approach employed in other studies that have examined the effect of CAP MTR reforms, under which there is full capitalization of the arable crop direct payments by 2008 and beef premia are not limited by any maximum limit. Under the second assumption, there is a 50% capitalization of the arable crop direct payments by 2008 and beef premia are paid on a limited number of animals. Under both assumptions, direct payments are based on land use and therefore increase land rents (by 164% under the first assumption and 38.5% under the second). A static, single-country, multi-sector GE model of the EU15 economy with perfect competition in all markets and constant returns to scale technology is employed. The author focuses on the soft wheat sector for the analysis. The model is calibrated to 1995 data from Eurostat. Policy variables were calibrated using FEOGA/WTO notifications. The CAP MTR scenario entails that Agenda 2000 arable crop direct payments are reduced by 90%, the slaughter premium on adult animals is reduced by 80% and the suckler cow premium and the special beef premium are reduced by 50% and 90% respectively. It is also assumed that the SFP has no market effects. The simulation results indicate that under both assumptions, land rents decrease by at least 80%. There are also negative impacts on arable crop and beef production. The results with the first assumption are similar to the other studies: soft wheat and beef production decrease by 1.6% and 3.6% respectively. The results with the second assumption are in the same direction but the
magnitude of the impact differs with a decrease of 7.3% in soft wheat production and a 1.2% decrease in beef production. The varying results suggest that the impacts of the CAP MTR are sensitive to the modeling of the Agenda 2000 direct payments. Another conclusion that can be drawn from the results of the alternative modeling of the Agenda 2000 arable crop direct payments is that the payments seem to have a moderate degree of coupling. Table 4 recaps these papers on coupling through land markets.

7. Coupling from Farmer Expectations on Future Policy Changes

Lagerkvist and Olson (2002) analyze anticipatory adjustments made by farmers to the 1996 FAIR Act using a sample of Minnesota farmers. Both the timing and the size of the support are considered to be stochastic. The farmer has well defined probability distribution functions for the timing and the size of the reform. The farmer maximizes net receipts subject to a binding dividend constraint derived from the budget constraint of the farm business. Assuming that the farmer continuously updates his information, the authors convert the dynamic stochastic problem into two deterministic control problems for the pre-reform and post-reform periods. The solution indicates that the pre-reform debt-to-asset ratio differs from the post-reform ratio. The former includes an additional term which captures the anticipatory optimal debt adjustment to a future reform of farm policy. The adjustment comprises of the expectation effect (relating to the uncertainty in the size of the reform) and the timing effect (relating to the uncertainty in the timing of the reform). The authors estimate the pre-reform and post-reform debt-to-asset ratio for an anticipated reduction in support using data from the Southwestern Minnesota Farm Business Management Association records for 1989-1998 using the generalized methods of moments estimator. The empirical results indicate the presence of anticipatory adjustments in the debt-to-asset ratio due to the expected change in the post-reform support.
In a related investigation, Lagerkvist (2005) applies the framework in Lagerkvist and Olson (2002) to analyze the impacts of the CAP MTR reform of the area payments on the incentives for farmland investment among Swedish farmers. The paper provides an explanation for the fluctuations in farmland investment based on agricultural policy uncertainty. The required rate of return (ROR) for farmland investment is used to capture farmland investment incentives. The short-term ROR includes the impact of incentive adjustment to a future reform in the area payments. Numerical analysis based on survey data from a sample of Swedish farmers indicates that the pre-reform ROR under timing uncertainty is less than the ROR with complete certainty. Further, the pre-reform ROR under both timing and post-reform area payment uncertainty is less than the ROR under only timing uncertainty under a nonpositive correlation between the timing of the reform and the post-reform payment.

Sumner (2003) analyzes the impact of an expected base update on the supply response of program crops by constructing the degree of linkage between future payments that might involve base updating and current production and evaluating how this is affected by a current update. The degree of linkage depends among other factors on the probability that the program remains operative in the future, the probability that an update occurs and how the new base affects future payments relative to the current program. The degree of linkage is sensitive to the probabilities and discount factor used. A high degree of linkage implies that payments such as the direct payments or CCP which are affected by base updating in the future have a strong link to current production.

McIntosh, Shogren and Dohlman (2006) use experimental economics to study the effects of CCP and base acre updating on supply response under price and policy uncertainty. Each participant is endowed with “tokens,” representing base acres to be invested in either a “Blue” option (representing a program crop) or a “Red” option (representing a non-program
crop or a crop that has not been planted earlier) or a combination of the two. These allocation decisions are made under three situations: (i) participants face only price uncertainty (baseline case), (ii) they face price uncertainty and receive CCP (CCP case), and (iii) they face price and policy uncertainty and also receive CCP (policy risk case). The results indicate that CCP increased the investment in the program crop (Blue option). There was a 5.43% shift in base acres towards the program crop with the CCP case as compared to the baseline. Under the policy risk case there was a shift of 7.92% in base acres towards the program crop. These results provide evidence that both the CCP and the possibility of future base updating do create some incentives for farmers to plant more of the program crops than that indicated by market returns.

Coble, Miller and Hudson (2007) use survey data from Iowa and Mississippi to analyze what expectations farmers have from future farm bills including expectations regarding future base update. In the survey, they ask questions regarding the probability of base and program yield update for DP and CCP, whether payment rates will change or remain the same and if farmers made any adjustments in acreage or input use to affect future program payments. On average, the surveyed farmers believed that there was a 40% chance that base or yield updates would be allowed, though only 17% of those surveyed said that they would make adjustments in acreage planted or input use. The authors also use a censored probit model with the dependent variable as the willingness to accept (WTA) a one time payment in-lieu of an opportunity to update base. The WTA captures the value that farmers place on the opportunity to update base. They find that greater expectation of an update and a higher percent of farm income increases the WTA. The mean WTA across the two states was $48.16 per acre.

Bhaskar and Beghin (2007) analyze the impact of farmer expectations about the possibility to update base acreage on a farmer’s acreage decision under price, yield and
policy uncertainty using a stochastic dynamic programming approach. They consider a risk-neutral farmer producing corn, earning income from the sale of his crop and government payments. There is policy uncertainty about the possibility of a base update in the 2007 Farm Bill. The farmer’s subjective probability about the expected base update is discretized into five values, between 0 and 1 in increments of 0.25. The farmer maximizes the present value of profits by choosing acreage during 2002-06 taking into account the possibility of a base update. The choice variable, the acreage planted in 2002-06, is discretized into eight values each. Price and yield are the state variables which are discretized into eight states each. There are two possible income streams in 2007-2011; one when base acreage is allowed to be updated and the other when no update is allowed. The farmer weighs the two possible future income streams with its prior subjective probability of update. In this way, the latter affects the acreage decision in the 2002-06 period. The results are presented in terms of the average of the optimal planted acreage, over 2002-06. The authors find that optimal acreage in 2002-06 is weakly-increasing in the subjective probability of base update. They also find that the maximum percent increase in acreage is 6% whereas the change averaged over all price states and subjective probabilities is approximately 3%. In sum, the effects through expectations appear tangible although small. Table 5 presents the summary for these papers on expectations.

8. Other Coupling Linkages and Allocative Effects

A few papers do not fit in the conceptual underpinnings of the previous taxonomy. Adams et al. (2001) estimate the effect of PFC and MLA payments on the total area planted in eleven states for wheat, corn, sorghum, barley, oats, cotton, rice and soybeans, using annual state level data for the years 1997-2001. The authors test two hypotheses; firstly whether PFC and MLA payments affect the total area planted and secondly whether PFC and MLA payments
have the same effect as market returns and marketing loans on the total area planted. The empirical results indicate that PFC and MLA payments do have some effect on the area planted. Empirical results for testing the second hypothesis do not provide clear indication whether PFC and MLA payments have different effects on area planted than market returns and marketing loans. The authors conclude that results in this paper provide only weak evidence that PFC and MLA payments have some effect on the total area planted. The results in the study are based on the assumptions that the elasticities are the same across states and on naive expectations on part of the farmers’ in the computation of expected market returns and expected MLA payments. A similar analysis is conducted by Beckman and Wailes (2005) who analyze the impact of direct payments and CCP in the 2002 FSRI Act on acreage supply response for rice. They find that DP are decoupled while a $1 increase in CCP per-year increases rice area harvested by 956.29 thousand acres for the six major U.S. rice producing states.

Guyomard, Le Mouel, and Gohin (2004) compare the effectiveness of four support mechanisms (an output subsidy, a land subsidy, and decoupled payments with, DPm, and without mandatory production, DP) on achieving four policy objectives: providing income support, increasing the number of farmers, reducing the negative externalities from non-land input usage and keeping trade effects at a minimum. A support mechanism is considered to be more efficient than the other support mechanisms, if for the same budgetary costs, it has a higher impact on the four policy objectives mentioned above. The analytical model is based on three equilibrium equations representing equilibrium in the output and land markets and an entry-exit condition. DP does not appear in any of the three equations. It only achieves the policy objective of providing income support. DPm on the other hand has a positive effect on the number of farmers, though its effect on output price and land price is ambiguous. The authors find that none of the four policy instruments dominate in terms of efficiency in all the
four policy goals. DP is most efficient when it comes to supporting farmers’ income with the least distortion of trade. Land subsidies are the most efficient in reducing the negative externalities from non-land input use while decoupled payments with mandatory production are the most efficient in maintaining or increasing the number of farmers.

Chau and de Gorter (2005) examine the effects of decoupled payments on exit decisions of farmers. It is their contention that decoupled payments subsidize production and at times cross-subsidize exports. In the model set up by the authors, producers receive both coupled and decoupled support. The coupled payment is modeled as an ad-valorem subsidy, which is incorporated in the price they receive for exports. The decoupled payment is a lump-sum payment DP. The producers incur fixed costs which are firm specific and variable costs. The model results indicate that DP allows producers to cover fixed costs, thereby allowing those with higher fixed costs to remain in production, who would have exited otherwise. Thus DP do not affect an individual producer’s output, rather it affects aggregate output and exports by influencing the exit decision of producers. The model is calibrated to 1998 U.S. wheat production to compare the effects of PFC payments and the coupled LDP payments. Fixed costs are assumed to be normally distributed. In the long run when it is possible to exit, the removal of PFC payments causes 3% of the producers to exit, leading to a reduction in output and exports.

Serra et al. (2005b) examine the effect that decoupling of support has on the environment by analyzing the effect of post-MacSharry CAP reforms on the use of pest control inputs in the cereal, oilseed and protein crop (COP) sector. The model specifies damage abatement functions to capture the contribution of the pest control inputs in reducing crop damage. The authors derive expressions for the elasticity of the demand of pest control inputs with respect to price support measures and per hectare compensatory payments. They hypothesize and find that the input response to DP is less than their response to price, using a
sample of French farms from the Farm Accounting Data Network for the period 1994-1999. The model is then shocked with CAP reforms (decrease in cereal intervention prices, and increase in area payments). Area payments for oilseeds and protein crops are reduced. These policy changes result in a reduction in the use of crop protection inputs by a little more than 3%, and a shift away from oilseed/protein crops acreage towards cereal acreage. When area payments are combined into the SFP, the use of crop protection inputs is reduced by 11%. Cereal acreage falls while oilseeds and protein crops acreage remains almost constant. Table 6 summarizes these last papers.

9. Conclusion

There has been a move towards decoupled support away from coupled support consistent with the 1994 URAA, a positive development. However, as seen above, decoupled payments do influence farmers’ decisions. Our review identifies five major coupling channels of decoupled payments: (i) they affect the risk faced by farmers, either by reducing their level of risk aversion (wealth effects) or by reducing the risk they face (insurance effects), (ii) they ease credit constraints faced by farmers, (iii) they affect the labor allocation decisions of farm households, (iv) they alter land values, rents and land prices, and (v) they influence farmers decisions through expectations about future payments. Less often mentioned, decoupled payments can also influence the entry and exit decisions of farmers and have some effect on the environment by influencing input usage.

Although decoupled payments are not “decoupled” as they influence farmer decisions via the channels identified above, the magnitude of these impacts was found to be small in most cases. One exception is with respect to land markets. Since most decoupled payments (be it the PFC, direct payments or the CAP area payments) are land based and non-stochastic, they are capitalized into higher land values which increase land rents and prices. This feature
could lead to land remaining in agricultural use rather than being converted into alternate uses. Wealth effects though positive are small in magnitude and insurance effects are more important than wealth effects in determining the impact of decoupled payments. Decoupled payments also influence crop choice, since the payments vary by crops, and some crops are not eligible to receive payments.

An important and unresolved issue is to know the cumulative impact of these individually small effects coming from each coupling mechanism. Could it be that when combined together, risk aversion, wealth effects, credit constraints, expectations, and linkages through input markets have a substantial impact on production?

Decoupled payments have been a right step in reducing the distortions caused by domestic farm subsidies, but there is scope for further decoupling. This can be achieved by changing eligibility requirements in some cases (for example removing the restriction that fruits and vegetables are not eligible for payments in the case of direct payments in the United States), by requiring eligibility to be satisfied at the farm level (for example area payments in the CAP have base acreage restriction at the national or regional level, which still creates incentives at the farm level to increase acreage) and by ensuring that the eligibility to receive payments do not change after the inception of the decoupled payment program.

The implementation of decoupled programs also calls into question the current definition of the green-box payments in the WTO. There is a need for reevaluating the eligibility criteria of the green box payments. Right now eligibility criteria do not take into account the farmer’s response under uncertainty, or that the impact of similarly designed programs can differ across countries, and even across sectors within a country (Gohin, Guyomard and le Mouel (2000)). Also some eligibility criteria are ambiguous (for example it is not specified if eligibility criteria should be satisfied at the farm level, at the sub-sectoral
level or at the sectoral level). For payments to be truly decoupled, the WTO has to reevaluate green-box criteria and ensure that there is no room for ambiguities.
References

<table>
<thead>
<tr>
<th>Papers</th>
<th>Methodology</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hennessy (1998)</td>
<td>EU maximization under DARA Model calibrated to a single 400 acre continuous corn farm Output: Corn</td>
<td>0.012</td>
</tr>
<tr>
<td>(Price contingent payments on fixed yield)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burfisher et al. (2000)</td>
<td>CGE Model of the U.S. Mexico and Canada with risk premium Simulations used to measure the effect of a 50% (\uparrow) in payments over 1997 levels. Output: U.S. Wheat</td>
<td>0.010</td>
</tr>
<tr>
<td>((PFC) in U.S.) (Procampo in Mexico)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young and Westcott (2000)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>((PFC))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((CCP))</td>
<td>Corn (\uparrow) by 1.5% over 1996-2002</td>
<td>0.006</td>
</tr>
<tr>
<td>Serra et al. (2005a)</td>
<td>EU maximization under DARA Econometric estimation using Full Information ML(^e) and farm-level data Output(^f) Elimination of (DP) (\Rightarrow) 6% Farms Exit</td>
<td>0.006</td>
</tr>
<tr>
<td>((PFC))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serra et al. (2006)</td>
<td>EU maximization under DARA Econometric estimation using Non-linear 3 stage LS(^h); 3 stage Generalized LS and farm-level data Input:</td>
<td></td>
</tr>
<tr>
<td>((PFC))</td>
<td>Pesticides 3.46E-6</td>
<td>3.90E-6</td>
</tr>
<tr>
<td></td>
<td>Chemical Input and Fertilizer 0.0064</td>
<td>Other variable inputs (seed, fuel oil etc.) 5.79E-6</td>
</tr>
</tbody>
</table>

\(a \) The specific decoupled payment is mentioned below in brackets.
\(b \) Italicized elasticities reflect statistical insignificance.
\(c \) EU represents Expected Utility.
\(d \) Acreage is aggregate U.S. acreage of 7 crops receiving \(PFC \) payments; corn, grain sorghum, oats, barley, wheat, upland cotton and rice.
\(e \) The incentive price is defined as the truncated expected price (truncation of the price distribution at the loan rate) less the price risk premium. The \(CCP \) payments reduce the risk premium which increases the incentive price of commodities.
\(f \) Output is a quantity index that includes wheat, corn, grain sorghum and soybeans. This definition of output also applies to Serra et al. (2006).
\(g \) ML represents Maximum Likelihood.
\(h \) LS represents Least Squares.
<table>
<thead>
<tr>
<th>Papers</th>
<th>Methodology</th>
<th>Approach</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodwin and Mishra (2006) (PFC)</td>
<td>EU maximization</td>
<td>Econometric estimation using the two-step estimation procedure and farm-level data</td>
<td>Acreage: a Corn 0.0344, Soybeans 0.0246, Wheat 0.0333</td>
</tr>
<tr>
<td>Sckokai and Moro (2006) (Area Payment)</td>
<td>Dual EU model under CRRA</td>
<td>Econometric estimation using the two-step estimation procedure and farm-level data</td>
<td>Output: Corn 0.014, Durum Wheat 0.072, Other Cereals 0.087, Oilseeds 0.015, Acreage: Corn 0.014, Durum Wheat 0.0560, Other Cereals 0.088, Oilseeds 0.005</td>
</tr>
</tbody>
</table>

a The acreage elasticities here include the effect of the PFC payments on the level of risk aversion and on the financial leverage of the farm. In the paper the coefficients on the PFC-insurance and PFC-(debt to asset ratio) interaction terms are found to be statistically insignificant.

b Following Shonkwiler and Yen (1999).
<table>
<thead>
<tr>
<th>Papers</th>
<th>Methodology</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roe et al. (2003) (PFC)</td>
<td>Intertemporal three-sector CGE model</td>
<td>↑ in DP by $6.11 bn(^a) by $6.11 bn (\Rightarrow) Agricultural production in the U.S.↑ by a maximum of 0.18%</td>
</tr>
</tbody>
</table>
| Goodwin and Mishra (2006) (PFC) | EU maximization Econometric estimation using the two-step estimation procedure and farm-level data | ↑ Acreage: \(b\)
Corn 0.0344
Soybeans 0.0246
Wheat 0.0333 |

\(^a\)The paper assumes that $6.11bn is paid to farmers as PFC payments in 1997 and that these payments are made in each period of time from 1997 in perpetuity. These effects occur in the short run and are compared to the baseline model (without PFC payments).

\(^b\)See footnote \(a\) on page 31.
<table>
<thead>
<tr>
<th>Papers</th>
<th>Approach</th>
<th>Methodology</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahearn et al. (2006)</td>
<td>Labor-Leisure model</td>
<td>Econometric estimation using ML for off-farm labor participation model and farm household data</td>
<td>Probability of off-farm participation: Operator -0.016 Spouse -0.003</td>
</tr>
<tr>
<td>(PFC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dewbre and Mishra (2002)</td>
<td>Farm household resource allocation model</td>
<td>Econometric estimation using ordinary LS for leisure demand and on-farm labor supply models and farm household data</td>
<td>Leisure hours,Off(^a): Operator 0.0019 Spouse 0.0011 (b): Operator 0.0007 Spouse 0.0009 On-farm labor hours(^c): Operator -0.0013 Spouse -0.0109</td>
</tr>
<tr>
<td>(PFC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Osta et al. (2004)</td>
<td>Labor-Leisure model</td>
<td>Econometric estimation using weighted LS for on-farm and total labor supply models, weighted ML for off-farm labor supply model and farm households data</td>
<td>On-farm labor hours 0.0172 Total labor hours 0.0122 Off-farm labor hours -0.05(^d)</td>
</tr>
<tr>
<td>(PFC)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)The elasticity was calculated for farmers who had some off-farm work.
\(^b\)The elasticity was calculated for farmers who had no off-farm work.
\(^c\)The on-farm work hours model was estimated for farmers who had some off-farm work.
\(^d\)The elasticity has been taken from Abler and Blandford (2005).
<table>
<thead>
<tr>
<th>Papers</th>
<th>Methodology</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gohin et al. (2000) (Direct payments based on land)</td>
<td>Two sector partial equilibrium model</td>
<td>↑ DP ⇒ ↑ in Land allocation ⇒ ↑ in Output supply</td>
</tr>
<tr>
<td>Dewbre et al. (2001) (Area Payment(^a))</td>
<td>PEM Crop Model(^b)</td>
<td>Policy simulation experiments based on 1998 data</td>
</tr>
<tr>
<td>Goodwin et al. (2003a) (PFC)</td>
<td>Net Present Value model which includes individual government payments and farm location procedure (farm)</td>
<td>Land values: ↑ $1 in PFC ⇒ ↑ by $4.06 per-acre</td>
</tr>
<tr>
<td>Goodwin et al. (2003b) (PFC)</td>
<td>“”</td>
<td>Land values: ↑ $1 in PFC ⇒ ↑ by $4.94 per-acre</td>
</tr>
<tr>
<td>Roberts et al. (2003) (PFC, LDP and other payments)</td>
<td>Model of land rents equal to expected returns less payments to factors other than land and including government payments</td>
<td>Land rents: ↑ $1 in G ⇒ ↑ by $0.33-1.55 per-acre</td>
</tr>
<tr>
<td>Roe et al. (2003) (PFC)</td>
<td>Intertemporal three-sector CGE model</td>
<td>Model is calibrated to 1997 U.S. data</td>
</tr>
<tr>
<td>Frandsen et al. (2003) (Single uniform payment based on land)</td>
<td>Multi-regional, static CGE model under certainty</td>
<td>Calibrated to GTAP(^b) database with adjustments made to capture the features of the Agenda 2000 reforms</td>
</tr>
<tr>
<td>Goodwin and Mishra (2006) (PFC)</td>
<td>EU maximization</td>
<td>Econometric estimation using the two-step estimation procedure and farm-level data</td>
</tr>
</tbody>
</table>

\(^a\)The PEM model stands for Policy Evaluation Matrix model and was developed by the OECD.

\(^b\)The area payment requires that land be in arable use. The paper also considers area payments which require mandatory production. The results here provide a lower bound.

\(^c\)The production and trade impact ratios measure the effect on production and trade of a given change in support provided by area payments relative to the estimated impact on production and trade of the same monetary change in market price support.

\(^d\)Goodwin et al. (2003a) uses data for the years 1998-2000, while Goodwin et al. (2003b) uses data for the years 1998-2001. The explanatory variables used in the two studies also differ.

\(^e\)G includes among others, PFC and LDP payments.

\(^f\)The paper assumes that $6.11 bn is paid to farmers as PFC payments in 1997 and that these payments are made in each period of time from 1997 in perpetuity.

\(^g\)GTAP stands for Global Trade Analysis Project.

\(^h\)Land idling refers to the number of acres not harvested. An alternative measure of land idling used was the number of acres not cropped. The elasticity for this measure was -0.16.
<table>
<thead>
<tr>
<th>Papers</th>
<th>Methodology</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagerkvist (2005) (Area Payments)</td>
<td>Investment decision model under timing and support uncertainty</td>
<td>Expected ↓ in DP ⇒ Farmers become more inclined to over-invest</td>
</tr>
<tr>
<td>McIntosh et al. (2006) (CCP)</td>
<td>Random-effects model under price and policy uncertainty and DARA preferences</td>
<td>Shift in base acres towards program crop of 7.92%<sup>a</sup></td>
</tr>
<tr>
<td>Bhaskar and Beghin (2007) (DP<sup>b</sup>, CCP)</td>
<td>Acreage choice under price, yield and policy uncertainty</td>
<td>Maximum increase in acreage of 6%<sup>c</sup></td>
</tr>
</tbody>
</table>

^aEach participant is endowed with “tokens”, representing base acres. The participant has to invest the tokens in either a “Blue” option or a “Red” option or a combination of the two. Blue tokens represented a program crop, while a red token represented a non-program crop or a program crop which the farmer has not planted earlier.

^bDP represents the direct payments made under the 2002 FSRI Act.

^cConditional on price equal to $2.125/bu and the farmer’s subjective probability about the expected base update equal to 1.
Table 6: Other Effects of Decoupled Payments

<table>
<thead>
<tr>
<th>Papers</th>
<th>Approach (Mechanisma)</th>
<th>Methodology</th>
<th>Elasticity otherwise noted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams et al. (2001)</td>
<td>-</td>
<td>Econometric Estimation using mixed estimation methods and state-level data</td>
<td>Acreageb 0.026</td>
</tr>
<tr>
<td>(PFC and MLA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guyomard et al. (2004)</td>
<td>One sector static model under certainty (DP_m influences the entry-exit decision of farmers by requiring production for eligibility; DP is fully decoupledc)</td>
<td>-</td>
<td>↑ in DP ⇒ ↑ in Total Profit</td>
</tr>
<tr>
<td>(Lump sum payments)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serra et al. (2005b)</td>
<td>Dual model of technology (The optimal use of pesticides depends on land allocation which is affected by area payments)</td>
<td>Econometric estimation using Zellner’s SURd and farm-level data</td>
<td>Pesticide use in:</td>
</tr>
<tr>
<td>(Area Payments)</td>
<td></td>
<td></td>
<td>Cereals 0.3549</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oilseeds and Protein Crops 0.3919</td>
</tr>
<tr>
<td>Chau and de Gorter (2005)</td>
<td>One sector static model under certainty (DP influences entry-exit decision by enabling farmers to cover fixed costs)</td>
<td>Model calibrated to 1998 U.S. wheat sector</td>
<td>Output 0.034</td>
</tr>
<tr>
<td>(PFC)</td>
<td></td>
<td></td>
<td>Exports 0.106</td>
</tr>
<tr>
<td>Beckman and Wailes (2005)</td>
<td>Nerlove model of supply response</td>
<td>Econometric estimation using ordinary LS and state-level data</td>
<td>Acreagee Rice: 0.197f</td>
</tr>
<tr>
<td>(CCP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodwin and Mishra (2006)g</td>
<td>EU maximization</td>
<td>Econometric estimation using the two-step estimation procedure and farm-level data</td>
<td>Acreage:</td>
</tr>
<tr>
<td>(PFC)</td>
<td></td>
<td></td>
<td>Corn 0.0317</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soybeans 0.0204</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wheat 0.0428</td>
</tr>
</tbody>
</table>

aThe mechanism by which the particular DP effects the different variables is identified. In the case of Adams et al. (2001), Beckman and Wailes (2005) and Goodwin and Mishra (2006) the exact mechanism is not identified, only the effects of DP are measured.

bAcreage is the aggregate acreage of 7 crops across 11 states.

cDP is decoupled payment without mandatory production and DP_m is decoupled payment with mandatory production.

dSUR represents Seemingly Unrelated Regressions.

eAcreage harvested in Arkansas, California, Louisiana, Mississippi, Texas and Missouri for long and medium grain rice.

fShort-run elasticity

gThe elasticity derived here does not include the effect of PFC payments on the risk-averse nature of farmers or on credit constraints faced by farmers. In the paper these effects are defined to be the “direct” effects of the PFC payments.