Energy Sorghum as A Biofuel Feedstock: Effects On GHG Offsets and Sector Performance

Yuquan Zhang, Ruth A. Aisabokhae and Bruce A. McCarl
Department of Agricultural Economics, Texas A&M University, College Station, TX

Poster prepared for presentation at the Agricultural & Applied Economics Association 2010
AAEA, CAES, & WAEA Joint Annual Meeting, Denver, Colorado, July 25-27, 2010

Copyright 2010 by Yuquan Zhang, Ruth A. Aisabokhae and Bruce A. McCarl. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Energy Sorghum as a Biofuel Feedstock: Effects on GHG Offsets and Sector Performance

Yuquan Zhang, Ruth A. Alisabokhae and Bruce A. McCarl
Department of Agricultural Economics, Texas A&M University, College Station, TX

INTRODUCTION

The biofuel industry in the U.S. has experienced a rapid expansion during the past decade. This growth has largely involved the 1st generation biofuels mainly from corn and has contributed to higher food prices in domestic and international markets (Boddiger, 2007; Headey and Fan, 2008).

The effect on export markets has been argued as a force fueling overseas deforestation that can result in considerable carbon emissions and carbon debts (Searchinger et al., 2008). These factors undermine the legitimacy of adopting biofuels as a strategy for reducing greenhouse gases (GHG) emissions and perhaps as a strategy for enhancing U.S. energy security. In response, the 2nd generation biofuels that utilize cellulosic, non-food feedstocks are suggested as replacements (EPA, 2010). The recent crop-energy sorghum — has been posed as a high yielding energy crop that can help alleviate the induced land use change issue and export implications.

This study aims to investigate the implications of various aspects regarding energy sorghum’s participation in the renewable fuel standards (RFS2) provisions of the Energy Independence and Security Act of 2007 (EISA).

EISA mandates that 36 billion gallons of renewable fuel to be produced by 2022 and 21 billion must be from cellulosic and other advanced sources.

METHOD

The agricultural component of the Forest and Agricultural Sector Optimization Model – Greenhouse Gases Version (FASOM GHG) was used for this study. FASOM GHG is a dynamic, nonlinear and price endogenous programming model for the forest and agricultural sectors in the U.S. plus export markets. It simulates the allocation of land over time to competing activities in the forestry and agricultural sectors, suggesting resultant consequences for the markets of commodities supplied by these lands with welfare evaluation (Adams et al., 2005).

The use of energy sorghum as ethanol feedstock was simulated under a variety of scenarios. See Scenario Definition for more information.

ACKNOWLEDGEMENTS

This study was funded by National Sorghum Producers (NSP) and Environmental Protection Agency (EPA).

RESULTS

Crop Acreages & Export Implications

Crop Prices & Welfare Changes

Ethanol Production & GHG Offsets

Scenario Changes in Feedstock Use under Carbon Scenarios (2020)

Breakdown of EnergySorghum13E36_c0 by Feedstocks (2020)

Breakdown of EnergySorghum07E36_c0 by Feedstocks (2020)

Conclusions & Discussions

• Energy sorghum plays a significant role in cellulosic ethanol production under RFS2. Its competitiveness improves under higher yield growth rate scenarios. The introduction of carbon prices ($ per ton) would further increase energy sorghum’s share in the ethanol industry. Energy sorghum displaces switchgrass in providing cellulosic ethanol.

• Acreages of major crops are affected by RFS2. Overall, the presence of energy sorghum would not have significant effects on agriculture were not considered in this study. Results were obtained from FASOM GHG with 11 supply regions.

• Caveats: climate change effects on agriculture were not considered in this study. Results were obtained from FASOM GHG with 11 supply regions.

REFERENCES


Yuquan Zhang, Department of Agricultural Economics, Texas A&M University, College Station, TX 77431-2124 Email: wolfgangzhang@tamu.edu

FURTHER CONTACT

Yuquan Zhang, Department of Agricultural Economics, Texas A&M University, College Station, TX 77431-2124 Email: wolfgangzhang@tamu.edu

Image 1: Energy Sorghum as a Biofuel Feedstock: Effects on GHG Offsets and Sector Performance

Image 2: Breakdown of EnergySorghum13E36_c0 by Feedstocks (2020)

Image 3: Breakdown of EnergySorghum07E36_c0 by Feedstocks (2020)