Measuring Interactions among Agricultural Productivity, Trade Openness, Agricultural GDP, and Income in Korea (1972- 2007)

Seong-Hoon Cho¹, Tun-Hsiang “Edward” Yu¹, and Yong-Taek Kim²

Copyright 2010 by Cho, Yu, and Kim. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

¹ Assistant Professor, Department of Agricultural Economics, University of Tennessee, Knoxville, TN.
² Senior Director, Korea Rural Economic Institute, Seoul, Korea.
Agriculture in South Korea has developed in line with the progress of the national economy. While agriculture used to be the backbone of the country's economy, it has become a smaller component of national income. Even with the decline, the agricultural sector is still crucial for the country's rural economy as 7 percent of the economically active population lives in rural areas, where agriculture provides most employment opportunity (Statistics Korea 2010). Given the importance of the agricultural sector, the South Korean government has expanded the public funds allocated to the agricultural sector to sustain agricultural growth. The support for the agricultural sector has increased further since the country opened its agricultural market through the Uruguay Round of General Agreement on Tariffs and Trade of multilateral negotiations (the “Uruguay Round”) that was completed in 1997. The change of South Korean agricultural structure seems inevitable as liberalizing agricultural trade continues and its corresponding agricultural policies have been restructured. This paper applies the directed graph and times series model to measure interactions among agricultural productivity, trade openness, agricultural GDP, and income in South Korea during the period of 1972–2007.

TFP (Total-factor productivity): A variable which accounts for effects in total output not caused by inputs

1. \(TFP = \frac{Y}{Z} \) where \(Y \) is total product and \(Z \) is total input

2. \(\frac{dTFP}{dt} = [\ln Y(t) - \ln Y(t - 1)] - [\ln Z(t) - \ln Z(t - 1)] \)

where \(\ln Y(t) - \ln Y(t - 1) = \sum \sigma_i [\ln y_i(t) - \ln y_i(t - 1)] \)

where \(\ln Z(t) - \ln Z(t - 1) = \sum \beta_i [\ln z_i(t) - \ln z_i(t - 1)] \)

where \(y_i(t) \) is total product of \(i^{th} \) category of agriculture \((i=1...9)^*\) during time \(t \) and \(\beta_i \) is weight of \(i^{th} \) category of agriculture between \(t \) and \(t-1 \)

where \(z_i(t) \) is total input of \(p^{th} \) category \((p=1...4)^*\) during time \(t \) and \(\sigma_i \) is weight of \(p^{th} \) category between \(t \) and \(t-1 \)

Real Ag GDP ($1,000,000): Real Ag GDP adjusted by exchange rate

Real Income Per Capita ($1,000,000): Real income divided by population

Openness: (Ag including livestock exports + Ag including livestock imports) / Nominal Ag GDP

* The 9 agricultural categories consist of rice, barley, grains, legumes, potatoes, fruits, vegetables, livestock, and others including specialty crops such as cotton and sesame, tobaccos and ginsengs, and silkworms.

** The 4 inputs consist of labor, capital, fertilizer, and land.