NY Pollution Discharge Elimination Permits for CAFOs, Management Adjustments and the Environment

Dolapo Enahoro, Todd M. Schmit and Richard N. Boisvert
Applied Economics and Management, Cornell University

Copyright 2010 by Dolapo Enahoro, Todd M. Schmit and Richard N. Boisvert. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
NY Pollution Discharge Elimination Permits for CAFOs, Management Adjustment & the Environment

Dolapo Enahoro, Todd M. Schmit & Richard N. Boisvert*
Applied Economics & Management, Cornell University

Introduction
• NY’s 2009 CAFO regulations may exacerbate pressure on dairy farm operating margins
• NY’s Pollution Discharge Elimination for CAFO
 ✓ Set manure application rates consistent with Cornell’s nutrient recommendations
 ✓ Prohibits application where soil P is excessive
 ✓ Limits application where soil P test is high
• Reduced opportunities for manure application will increase off-farm disposal costs
• Feed costs are below 2008 record high, but remain well above historic levels
• NY dairy producers look for cheaper feeds
 ✓ Existing DDGS supplies in Western NY
 ✓ More to come if second plant reopens
• New OME Group’s DDG contract may help manage feed cost risk

A Three-county Study Region in Western New York
• A concentration of Dairy CAFOs
• A major portion of the Genesee River Watershed, draining into Lake Ontario
• Finger Lakes to the east natural barrier to transport manure for disposal

Some Regional Data

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Ave./farm</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Dairy CAFOs</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>No. Dairy Cows</td>
<td>81,034</td>
<td>734</td>
</tr>
<tr>
<td>Cropped in CAFOs (ac.)</td>
<td>1,377,485</td>
<td>1,419</td>
</tr>
<tr>
<td>Live Crop (ac.)</td>
<td>1,377,785</td>
<td>1,420</td>
</tr>
</tbody>
</table>

A regional mathematical programming model that:
Maximizes expected income over variable costs for dairy CAFOs

Key Components of the Model:
• Livestock:
 ✓ Rations: lactating cow, dry cow, replacement heifers (CPM-Dairy program, Cornell & U of Penn)
• Forage bases: 60/40 & 40/60 corn silage/hay crop silage
• DDGS products: 8% and 12% fat
• Milk and manure production (incl. levels of N & P) differ by ration
• Crops (with rotation restrictions):
 ✓ Alfalfa, orchardgrass, corn silage, corn grain (grow, buy, sell)
• Manure must be applied to cropland or disposed of off-site
• Different manure disposal costs to reflect different average distance to site
• Cropland assigned to three land classes based on
 ✓ Soil capability class
 ✓ Soil characteristics & silage yields (4.9, 5.3, and 5.9 t/acre, DM)
 ✓ From survey data:10%, 65%, & 25% high, medium, & low quality land, respectively
 ✓ CAFO Regulations: Apply N&P from manure/purchased fertilizer based on soil test P (STP)
• From county soil P test data:
 ✓ 7%, 53%, & 40% of cropland in HP, MP, & LP, respectively

Analytical Approach

Dairy Rations:
• For both scenarios rations for dairy cows include 10% DDGS & 8% DDGS for dry cows & replacements

Off-site disposal:
• Base = 0.0 t/cow
• Policy = 15.5 t/cow (53% of total)

Net Return: Initial drop (<10%) due to increased disposal cost
• Higher disposal cost (e.g., greater travel distance), 20% drop
• Corn acres fall by 20%, manure is spread on increased alfalfa acres

Environmental quality:
• P runoff (ROp) based on corn land using Vada, et al. (J. Environ. Qual. 2006) & differ by soils & weather

Ave. runoff:
• Base = 7.2 lbs/ac.
• Policy = 2.9 lbs/ac.

Safety-first: Drop in threshold runoff exceeded 10% of the time
• Base P (ROP), > 15.8 lbs/ac., 0.1
• Policy P (ROP), > 6.0 lbs/ac., 0.1

Implications & Conclusions
• Policy requires off-site disposal of half the manure
• Net revenue sensitive to availability of nearby land suitable for disposal
• CAFO land with low soil P has enhanced value for crop production and waste disposal
• Off-site disposal may require additional oversight to realize/ensure environmental improvements from CAFO permits

*Research supported in part by USDA Hatch funds NYC-121-6429

NYC Pollution Discharge Elimination Permits for CAFOs, Management Adjustment & the Environment

Dolapo Enahoro, Todd M. Schmit & Richard N. Boisvert*
Applied Economics & Management, Cornell University

Introduction
• NY’s 2009 CAFO regulations may exacerbate pressure on dairy farm operating margins
• NY’s Pollution Discharge Elimination for CAFO
 ✓ Set manure application rates consistent with Cornell’s nutrient recommendations
 ✓ Prohibits application where soil P is excessive
 ✓ Limits application where soil P test is high
• Reduced opportunities for manure application will increase off-farm disposal costs
• Feed costs are below 2008 record high, but remain well above historic levels
• NY dairy producers look for cheaper feeds
 ✓ Existing DDGS supplies in Western NY
 ✓ More to come if second plant reopens
• New OME Group’s DDG contract may help manage feed cost risk

A Three-county Study Region in Western New York
• A concentration of Dairy CAFOs
• A major portion of the Genesee River Watershed, draining into Lake Ontario
• Finger Lakes to the east natural barrier to transport manure for disposal

Some Regional Data

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Ave./farm</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Dairy CAFOs</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>No. Dairy Cows</td>
<td>81,034</td>
<td>734</td>
</tr>
<tr>
<td>Cropped in CAFOs (ac.)</td>
<td>1,377,485</td>
<td>1,419</td>
</tr>
<tr>
<td>Live Crop (ac.)</td>
<td>1,377,785</td>
<td>1,420</td>
</tr>
</tbody>
</table>

A regional mathematical programming model that:
Maximizes expected income over variable costs for dairy CAFOs

Key Components of the Model:
• Livestock:
 ✓ Rations: lactating cow, dry cow, replacement heifers (CPM-Dairy program, Cornell & U of Penn)
• Forage bases: 60/40 & 40/60 corn silage/hay crop silage
• DDGS products: 8% and 12% fat
• Milk and manure production (incl. levels of N & P) differ by ration
• Crops (with rotation restrictions):
 ✓ Alfalfa, orchardgrass, corn silage, corn grain (grow, buy, sell)
• Manure must be applied to cropland or disposed of off-site
• Different manure disposal costs to reflect different average distance to site
• Cropland assigned to three land classes based on
 ✓ Soil capability class
 ✓ Soil characteristics & silage yields (4.9, 5.3, and 5.9 t/acre, DM)
 ✓ From survey data:10%, 65%, & 25% high, medium, & low quality land, respectively
 ✓ CAFO Regulations: Apply N&P from manure/purchased fertilizer based on soil test P (STP)
• From county soil P test data:
 ✓ 7%, 53%, & 40% of cropland in HP, MP, & LP, respectively

Analytical Approach

Dairy Rations:
• For both scenarios rations for dairy cows include 10% DDGS & 8% DDGS for dry cows & replacements

Off-site disposal:
• Base = 0.0 t/cow
• Policy = 15.5 t/cow (53% of total)

Net Return: Initial drop (<10%) due to increased disposal cost
• Higher disposal cost (e.g., greater travel distance), 20% drop
• Corn acres fall by 20%, manure is spread on increased alfalfa acres

Environmental quality:
• P runoff (ROp) based on corn land using Vada, et al. (J. Environ. Qual. 2006) & differ by soils & weather

Ave. runoff:
• Base = 7.2 lbs/ac.
• Policy = 2.9 lbs/ac.

Safety-first: Drop in threshold runoff exceeded 10% of the time
• Base P (ROP), > 15.8 lbs/ac., 0.1
• Policy P (ROP), > 6.0 lbs/ac., 0.1

Implications & Conclusions
• Policy requires off-site disposal of half the manure
• Net revenue sensitive to availability of nearby land suitable for disposal
• CAFO land with low soil P has enhanced value for crop production and waste disposal
• Off-site disposal may require additional oversight to realize/ensure environmental improvements from CAFO permits

*Research supported in part by USDA Hatch funds NYC-121-6429