International Agricultural Trade
Research Consortium

Agricultural Trade Liberalization in a
Multi-Sector World Model

by

Barry Krissoff
and Nicole Ballenger*

Working Paper #87-9

The International Agricultural Trade Research Consortium is an informal association of university and government economists interested in agricultural trade. Its purpose is to foster interaction, improve research capacity and to focus on relevant trade policy issues. It is financed by USDA, ERS and FAS, Agriculture Canada and the participating institutions.

The IATRC Working Paper series provides members an opportunity to circulate their work at the advanced draft stage through limited distribution within the research and analysis community. The IATRC takes no political positions or responsibility for the accuracy of the data or validity of the conclusions presented by working paper authors. Further, policy recommendations and opinions expressed by the authors do not necessarily reflect those of the IATRC.

This paper should not be quoted without the author(s) permission.

*Barry Krissoff and Nicole Ballenger are Agricultural Economists in the Agriculture and Trade Analysis Division, Economic Research Service, U.S. Department of Agriculture, Washington, D.C.

Correspondence or requests for additional copies of this paper should be addressed to:

Dr. Barry Krissoff
USDA/ERS/ATAD
624 NYAVEBG
1301 New York Ave. N.W.
Washington, D.C. 20005-4788

December 30, 1987
Impacts of agricultural and nonagricultural trade liberalization on agriculture are assessed in a multi-commodity, multi-country framework. By modeling simultaneously all goods sectors of the economy, we evaluate the importance of (1) relative price changes between sectors and (2) income and exchange rate adjustments that follow trade liberalization in a world of floating rates.

Specifically, we compare two cases using a static world policy simulation (SWOPSIM) model: agricultural multilateral liberalization and complete multilateral liberalization with floating exchange rates for all countries/region. In both cases agricultural commodity prices tend to increase, an effect which is more pronounced when currency values adjust. The developing countries, in particular Argentina, Brazil, and Mexico, have the most significant advances in agricultural and total domestic product when exchange rates vary. Moreover, the gains from international trade are extended to all countries/regions explicitly specified in the model.
I. Introduction

The United States and other members of the General Agreement on Tariffs and Trade (GATT) are participating in an eighth round of multilateral trade negotiations (MTN) in which resolving agricultural issues is a top priority. The importance of agriculture in these negotiations is related to current problems in the international agricultural trade environment. Although many factors account for adverse agricultural market conditions, the agricultural policies of trading countries are thought to be important contributors to mounting surpluses, falling commodity prices, and declining levels of world trade values in the eighties. Trade barriers, price and income support programs, and other domestic agricultural policies buffer agricultural producers in many countries from world price movements and discourage supply adjustments.

Most analyses of agricultural protectionism have been conducted in a partial equilibrium framework. For example, the OECD (1987) and World Bank (Tyers and Anderson, 1986; World Bank, 1986) studies examine a liberalization in a multi-agricultural commodity model but do not consider nonagricultural sectors. Yet a reduction in protection for the nonagricultural sector can cause changes in nonagricultural and agricultural prices, changes in income, and changes in relative prices across countries via exchange rate movements. This would influence resource allocations across sectors and countries and thereby affect agricultural production, consumption, and trade. The nonagricultural component of the economy may have even more influence than sector-specific policies.
In view of the potential importance of a broad-based framework, we develop a multi-commodity, multi-country static model and attempt to assess the effects of complete (agricultural and nonagricultural) trade liberalization on the agricultural sector. By modeling all goods sectors of the economy, we are able to compare a total trade liberalization scenario in which exchange rates are endogenous with a scenario in which only agricultural trade is liberalized and there are assumed to be no exchange rate changes.

To undertake the scenarios, we use a static world policy simulation model (SWOPSIM) (Roningen, 1986; Dixit and Roningen, 1986) which includes eight countries/regions [United States, European Community, Japan, Canada, Argentina, Brazil, Mexico, and rest-of-world (ROW)] and a breakdown of commodities for each country into agricultural goods (wheat, corn, soybeans, rice, sugar, dairy, beef and poultry), a composite "other" agricultural good, a composite nonagricultural traded good and a nontraded good. A base level (1984) is established for demand and supply, consumer prices, producer prices, and world prices. For each country producer and consumer prices (or the implicit per unit values) deviate from world price by an ad valorem rate of protection. The levels of government intervention in agriculture are measured by producer and consumer subsidy equivalents (USDA, 1987). For nonagricultural goods, ad valorem tariff and nontariff barrier tariff-equivalent rates are used for protection measures (Whalley, 1985, 1986; Deardorff and Stern, 1986; Anjaria et al., 1985).

II. Analytical Framework

The framework for this analysis has its origins in studies by Valdez (1985) and Deardorff and Stern (1986). We set up a "more complete" partial equilibrium model with all produced and consumed goods specified in demand and
supply functions. The model falls short of a general equilibrium characterization since factor markets are not explicitly described.

Our approach has the advantage over agricultural sector models of accounting for feedback from one sector to another as relative prices alter. Additionally, because all goods in the economy are accounted for (and hence, the total balance of trade), income and exchange rates can be modeled endogenously and the effect of floating rates (or exchange rate liberalization) can be evaluated.

The model is developed for m countries/regions, i = 1 to m, producing and trading n goods, j = 1 to n, and producing additionally a nontraded good, k. The traded goods include a breakdown of agricultural goods (1,...,n-2), a composite "other agricultural" good (j = n-1), and a composite nonagricultural good (j = n).

The demand and supply functions, assumed to be derived from consumer and producer maximizing behavior, depend on all prices and income as delineated below:

\[D_{Aij} = D_{Aij}(P_{Aij}, P_{Tin}, P_{Hik}, Y_i) \] \hspace{1cm} (1)
\[D_{Tin} = D_{Tin}(P_{Aij}, P_{Tin}, P_{Hik}, Y_i) \] \hspace{1cm} (2)
\[D_{Hik} = D_{Hik}(P_{Aij}, P_{Tin}, P_{Hik}, Y_i) \] \hspace{1cm} (3)
\[S_{Aij} = S_{Aij}(P_{Aij}, P_{Tin}, P_{Hik}) \] \hspace{1cm} (4)
\[S_{Tin} = S_{Tin}(P_{Aij}, P_{Tin}, P_{Hik}) \] \hspace{1cm} (5)
\[S_{Hik} = S_{Hik}(P_{Aij}, P_{Tin}, P_{Hik}) \] \hspace{1cm} (6)

where D and S are demand and supply equations, respectively, P are prices, Y is income, A denotes agricultural goods, T represents the nonagricultural
traded products either exported or imported, and H represents the nontraded good. Farm input prices are included implicitly in the price of nonagricultural goods faced by agricultural producers; likewise, agricultural prices represent both prices of inputs and prices of alternative outputs to nonagricultural producers.

Income is defined to equal total absorption:

\[Y_i = \sum_{j=1}^{n} P_{ij} D_{ij} + P_{ik} D_{ik} \]

(7)

Alternatively, income equals the value of production plus (minus) foreign borrowing.

The domestic economy reaches an equilibrium when home goods have an excess supply equal to 0 and when net traded goods (including agricultural goods) equal "net capital flows" (F). F is defined as including capital and service accounts and accommodating changes in international reserves. For country i,

\[E_{Hik} = S_{Hik} - D_{Hik} = 0 \]

(8)

and

\[\sum_{j=1}^{n} \sum_{i=1}^{n} E_{Siij} = S_{Siij} - D_{Diij} = F \]

(9)

World markets clear when excess supply of a good across all countries is equal to 0. For agricultural commodities, this occurs when

\[\sum_{i=1}^{m} \sum_{i=1}^{m} E_{SAij} = S_{SAij} - D_{DAij} = 0 \]

(10)

for each j, j = 1 to n - 1. For the nonagricultural good that is traded, n, equilibrium occurs when

\[\sum_{i=1}^{m} \sum_{i=1}^{m} E_{S廷} = S_{廷} - D_{廷} = 0 \]

(11)
The traded price in each country's home currency is

\[PT_{ij} = E_i P_{WTj} \]

(12)

where \(E_i \) equals home currency per U.S. dollar, \(P_{WTj} \) is the world dollar price of good \(j \) for all traded \(j \)'s.

Various government policies can place a wedge between the world price of a traded good and the domestic price or implied per unit value of that good. (In the model, we assume no changes in transportation costs and margin markups.) Consider the possibility that the home country affects traded prices (prices faced by producers and consumers) by either imposing an ad valorem subsidy or tax on exports or imports. This has the effect of modifying equation (12) to

\[PT_{ij} = E_i P_{WTj} (1 + t_{ij}) \]

(13)

where \(t_{ij} \) can be interpreted as an export subsidy or import tariff \((t_{ij} > 0) \), or export tax or import subsidy \((t_{ij} < 0) \) and is assumed to be exogenous. If the home country wants to encourage (discourage) exports, they can subsidize (tax) exports implying \(t > 0 \) \((t < 0) \). If the home country wants to discourage (encourage) imports, they can tax (subsidize) imports implying \(t > 0 \) \((t < 0) \).

A shock to the system—in terms of a change in protection in either sector of the economy, in any country or commodity market—leads to changes from base values in quantities produced, consumed, and traded and world and domestic prices. The system also determines either (1) changes in each country's balance of trade under the assumption of fixed exchange rates and the availability of external financing or (2) changes in each country's exchange rate under the assumption of floating rates which return all countries' trade balances to their initial equilibria. Thus, in the second case, we are assuming that changes in trade protection can change currency values depending
on the elasticities of demand and supply for traded and nontraded goods. Since the elasticities approach does not consider a world with capital flows, we are implicitly assuming that the shock effects only the trade balance and does not induce changes in capital flows. Corden (1987) argues that the capital account depends on savings and investment decisions and it is ambiguous whether there would be a capital flows effect with implementation or removal of protection measures. While we could have arbitrarily selected to limit the change in the trade balance so that it did not always equal zero, there is no rigorous criteria to do so.

Through a series of differentiations and substitutions (see Appendix), we can obtain an expression for changes in the balance of trade (which equals changes in net capital outflows) in terms of changes in protection and exchange rate policies, and changes in world prices of both agricultural and nonagricultural traded goods:

\[(\Pi_1 + \Pi_2)E^* + \Pi_1 \left[PWA^* + (1 + tA)^* \right] + \Pi_2 \left[PWT^* + (1 + tT)^* \right] = F^* \] (14)

where the *'s indicate percentage changes in the variables and the \(\Pi \)'s are parameters consisting of supply and demand elasticities, sector expenditure shares, and the shares of agriculture and nonagriculture in trade.

Under a fixed exchange rate system, \(E^*=0 \), the balance of trade changes in response to changes in protection in the agriculture and nonagriculture sectors and changes in the world prices of traded goods. External financing is assumed to be forthcoming to balance the change in the value of net trade. Trade policy changes do not directly influence capital flows, but do so.
indirectly in order to balance the trade account. 1/ In the small country

case agricultural markets would be affected (a) directly by changes in the
country's agricultural protection, (b) indirectly by changes in prices of
nonagricultural and nontraded goods resulting from changes in the country's
nonagricultural protection, and (c) by gains in income resulting from
liberalization. In the large country case, the additional effects of changes
in world prices feed back to domestic prices and affect domestic production
and consumption, and consequently, trade.

Under a floating exchange rate system, the country's currency would depreciate
or appreciate following liberalization until the changes in the external
imbalance are eliminated, that is, until F*=0. Hence, the exchange rate
change causes a further feedback from world prices to domestic prices and
subsequent adjustments to quantities.

If the parameters of equation (14), Π1 and Π2, are positive, then a
reduction in protection leads to a depreciation of the exchange rate which
offsets, to some extent, the negative impacts on domestic prices of a
reduction in protection levels. If the agricultural protection levels are
initially negative (for example, most agricultural commodities in Argentina)
and nonagricultural protection is initially positive, then a reduction of
protection can lead to a depreciation which would reinforce the positive
effects of liberalization on domestic agricultural prices.

1/ Trade policy changes do not directly influence capital flows, but do so
indirectly in order to balance the trade account.
The appendix differentiates the entire system of equations and derives reduced form equations for prices and exchange rates in terms of the exogenous variables, protection in the agricultural and nonagricultural sectors.

III. Simulation Results

Although there are many alternative scenarios which we could have simulated, we chose two cases: (1) a 100 percent multilateral liberalization of agriculture for all countries under the assumption of fixed exchange rates for all countries/regions in the model and (2) a 100 percent multilateral liberalization of all sectors for all countries under the assumption of endogenous exchange rates for all countries/regions in the model. 2/

These scenarios were designed not to predict actual outcomes of trade negotiations, but to explore the bias in agricultural trade liberalization analyses which do not account for cross-sector linkages, income, or exchange rate effects due to changes in protection.

In tables 1 and 2, we report selected results focusing on the effects of liberalization on world agricultural prices and volumes, exchange rates, and trade. In table 3, we present a measure of economic well being -- domestic

2/ The model developed in the analytical section and described further in the appendix is more appropriately suited for changes of small magnitudes. However, we opted for large liberalization shocks, albeit small prices changes occurred for most commodities. The difficulty in undertaking a less than complete liberalization for each commodity brings up a problem regarding the resulting price transmission. A 50 percent reduction of a subsidy equivalent, for instance, does not tell us whether the policy distorting instrument has changed also. Thus, the price transmission may remain ambiguous. With complete liberalization, the price transmission is clearly one.
Table 1--Changes in World Agricultural Prices and Volume

<table>
<thead>
<tr>
<th></th>
<th>Prices</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case 1</td>
<td>Case 2</td>
</tr>
<tr>
<td>Wheat</td>
<td>1.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Corn</td>
<td>0.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Soybeans</td>
<td>-5.4</td>
<td>-4.9</td>
</tr>
<tr>
<td>Rice</td>
<td>6.6</td>
<td>13.2</td>
</tr>
<tr>
<td>Sugar</td>
<td>29.1</td>
<td>33.4</td>
</tr>
<tr>
<td>Dairy</td>
<td>20.0</td>
<td>25.5</td>
</tr>
<tr>
<td>Beef</td>
<td>12.9</td>
<td>14.7</td>
</tr>
<tr>
<td>Poultry</td>
<td>4.9</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Table 2--Changes in the Value of Trade and Exchange Rates

<table>
<thead>
<tr>
<th></th>
<th>AGRICULTURE</th>
<th>NONAGRICULTURE</th>
<th>TOTAL</th>
<th>Exchange Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case 1</td>
<td>Case 2</td>
<td>Case 1</td>
<td>Case 2</td>
</tr>
<tr>
<td>US</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EC</td>
<td>-66</td>
<td>-56</td>
<td>0</td>
<td>390</td>
</tr>
<tr>
<td>JA</td>
<td>-35</td>
<td>-37</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>CA</td>
<td>-16</td>
<td>-12</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>AR</td>
<td>70</td>
<td>74</td>
<td>0</td>
<td>-186</td>
</tr>
<tr>
<td>BZ</td>
<td>28</td>
<td>66</td>
<td>0</td>
<td>-136</td>
</tr>
<tr>
<td>MX</td>
<td>-828</td>
<td>-188</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>RW</td>
<td>219</td>
<td>109</td>
<td>0</td>
<td>-15</td>
</tr>
</tbody>
</table>

1/ A minus sign represents depreciation relative to the dollar.

Table 3--Changes in Economic Well Being: GNP 1/

<table>
<thead>
<tr>
<th></th>
<th>AGRICULTURE</th>
<th>NONAGRICULTURE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case 1</td>
<td>Case 2</td>
<td>Case 1</td>
</tr>
<tr>
<td>US</td>
<td>4</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>EC</td>
<td>-3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>JA</td>
<td>-6</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>CA</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>AR</td>
<td>20</td>
<td>25</td>
<td>-1</td>
</tr>
<tr>
<td>BZ</td>
<td>5</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>MX</td>
<td>0</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>RW</td>
<td>10</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>
product gains or losses resulting from liberalization. Domestic product is computed by multiplying world prices (in local currency terms) times quantities supplied.

In both scenarios, world prices of all agricultural goods except soybeans rise. Sugar prices increase the most (29 percent in scenario 1 and 33 percent in scenario 2), followed by dairy prices (20 percent in scenario 1 and 26 percent in scenario 2), reflecting the relatively high levels of protection in these commodity markets. (Note, though, that the new domestic prices of the goods may be lower than initial domestic prices which included the trade barriers.) Soybean prices decline because of the increased Argentine and Brazilian exports following the removal of producer taxes and consumer subsidies in these two countries (Krissoff and Ballenger, 1987). The price increases and volume expansion combine to produce an unambiguous rise in the value of world agricultural trade.

The effects on world prices are similar in the two scenarios, but total liberalization, and the resulting exchange rate movements, tend to reinforce the price effects of liberalization confined to the agricultural sector. The largest difference in price changes is in the rice market. This is driven by an appreciation in ROW's currency which reduces ROW's willingness to export rice at the lower domestic price (in comparison to the fixed exchange rate case). The exchange rate effect, coupled with the elimination of the very high level of protection of Japanese rice, places additional upward pressure on world rice price. Soybean prices also differ significantly between the two scenarios. The depreciations of the Brazilian and Argentine currencies, in the second case, reinforce the export-stimulating effect of removing these countries' soybean producer taxes.
In both scenarios there are substantial changes in foreign exchange earnings or costs from agricultural trade following liberalization (table 2). In the total liberalization scenario, Argentina and Brazil post gains of 74 and 66 percent, respectively, as the volume of soybeans, sugar, dairy, and beef exports expand by a minimum of 40 percent. For Brazil particularly, this gain in agricultural export revenues is significantly larger than in the agricultural trade liberalization case. In these two countries, protection of the nonagricultural sector has generally represented a strong bias against agricultural exports.

Table 2 also shows that Japan and Mexico purchase considerably more foreign agricultural goods following the removal of high protection of agriculture, particularly dairy for Mexico and rice, sugar, dairy, and beef for Japan. When currency values vary, the Mexican peso depreciates 11 percent and net expenditures on agricultural imports are much smaller than in the fixed exchange rate case. Moreover, Mexico registers a 140 percent rise in foreign exchange earnings from the "other agricultural" good (such as tomatoes and fresh vegetables) over the base period and becomes a net exporter of sugar.

Case 1 results in a 66 percent increase in EC expenditures on agricultural imports, with sugar, dairy, beef, and poultry becoming imported goods while wheat remains as an export commodity. Imports of the "other agricultural" good, however, continue to account for more than half of foreign expenditures. Case 2 results in depreciation of the EC currency (4 percent) which mitigates somewhat the negative effects of agricultural liberalization on the Community's agricultural trade balance.
For the United States and Canada, the model generates decreases in net agricultural exports of 4 and 16 percent, respectively, in case 1 and a marginal increase and a 12 percent decrease, respectively, in case 2. In addition to removing the producer and consumer subsidy (tax) equivalents for specific U.S. agricultural commodities, we exogenously shifted wheat, corn, and rice supply to account for removal of acreage reduction programs. (The Canadian figures, however, were not adjusted to account for domestic supply management systems that control production of dairy; the decline in Canadian agricultural exports may be substantially overstated. If we exclude dairy and its export deterioration, Canadian agricultural exports rise by approximately 3 percent.) In both scenarios, U.S. net export values of wheat, beef, and poultry increase, soybean exports fall, and sugar and dairy net import values increase.

ROW improves its net export position in all agricultural goods except soybeans and "other agriculture". This is not surprising since we assumed that ROW, on net, has no trade barriers. With agricultural prices generally rising and perfect price transmission assumed, ROW increases its agricultural production and decreases its consumption. The improved net trade position of ROW, which is biased because of the lack of protection measures, enhances any decline or diminishes any improvement in other countries' commodity trade balances. In the total liberalization case, appreciation of ROW's currency causes its exports to be higher priced in dollar terms and, therefore, mitigates some of the bias.

In countries which originally had low or negative protection rates, agricultural liberalization (case 1) produces increases in agricultural production and value of total production (table 3). This is the case in
Argentina and Brazil, in particular: the values of their agricultural output (including "other agriculture") increases 20 and 5 percent, respectively, leading to 3 and 1 percent increases in total domestic products.

Much larger increases in total domestic product occur in the flexible exchange rate case. The appreciation of the dollar and ROW's currency relative to other countries' currencies and the general income increases due to complete trade liberalization lead to an expansion of total excess demand for both agriculture and nonagriculture. We observe domestic product increases, especially for Brazil (12 percent) and Mexico (16 percent). In the EC, agricultural and nonagricultural product both rise (5 and 7 percent, respectively). Japan's total GDP increases by 5 percent despite a decline in agricultural GDP.

IV. Conclusion

This paper compares the effects of liberalizing the agricultural sector with liberalizing agricultural and nonagricultural sectors under flexible exchange rates. In the second case, there are two additional factors that can influence agricultural markets, namely any cross price effects from price changes in the nonagricultural markets and changes in exchanges rates (which occur due to changes in trade balances). In this model the cross price elasticities between agricultural and nonagricultural sectors are very small and therefore there are only small effects resulting from this linkage. Since we were only able to provide very rough estimates for these elasticities, this becomes a fruitful area for further research. The second channel of influence--exchange rate movements--does have significant effects on the agricultural sector as well as on the general economies. Moreover, the income
effects of complete liberalization are greater than those associated with agricultural liberalization, especially for the industrialized economies. Some of our main findings are:

1. Simultaneous reductions in agricultural and nonagricultural protection, allowing exchange rates to vary, tend to reinforce the upward pressure on agricultural prices that follows from agricultural liberalization. In most commodity markets, the reinforcing price effect occurs because the United States and rest-of-world currencies appreciate relative to the other countries. These two regions account for 70 percent of world GDP. The appreciation of their currencies and the resulting contraction of their net export volumes put upward pressure on world prices.

2. For several countries—those that experience the largest exchange rate movements following trade liberalization such as Argentina and Brazil—the two simulations produce significantly different effects on agricultural trade values. The net agricultural export positions of Argentina and Brazil are favored by currency depreciations; while the negative effects of reducing agricultural protection on Mexican and EC agricultural trade balances are mitigated by their currency depreciations.

3. Total gross domestic product increases more for all countries (except ROW) in the total liberalization case than in the agricultural liberalization case. Total GDP and agricultural product benefit from the currency depreciations experienced by most countries because domestic production is valued in domestic currency at higher prices before liberalization. Higher world (dollar) prices and higher levels of income also translates into higher levels of GDP.

This paper illustrates the value of a broader approach to analyzing agricultural trade liberalization issues. Substantial differences for individual countries arise when results of the total liberalization scenario are compared with the results of the agricultural liberalization scenario. This model indicates, however, that these differences are smaller for the United States than those that could arise for other countries, particularly developing countries where the protection of the nonagricultural sector remains relatively high. Our analysis is limited by its high level of aggregation, the lack of information on protection for ROW, and its consideration of a narrow set of macroeconomic factors. Additional studies may want to consider changes in other macroeconomic policies concomitant with trade liberalization.
References

APPENDIX

Derivation of Reduced Form Equations

To determine the impact of small changes in the system for a single country, e.g. unilateral changes in protection, text equations (1) through (11) and (13) are differentiated. One agricultural good is assumed for purposes of exposition. Also, the country demarcation i is initially dropped for notational ease. The superscript * indicates percentage changes.

\[
\begin{align*}
DA^* &= m_A PA^* + m_T PT^* + m_H PH^* + m_Y Y^* \\
DT^* &= n_A PA^* + n_T PT^* + n_H PH^* + n_Y Y^* \\
DH^* &= r_A PA^* + r_T PT^* + r_H PH^* + r_Y Y^* \\
SA^* &= e_A PA^* + e_T PT^* + e_H PH^* \\
ST^* &= f_A PA^* + f_T PT^* + f_H PH^* \\
SH^* &= g_A PA^* + g_T PT^* + g_H PH^*
\end{align*}
\]

where the m's, n's and r's represent demand elasticities and e's, f's and g's represent supply elasticities with respect to domestic prices and income. Differentiation of equations (7) and (12), yield

\[
\begin{align*}
Y^* &= VA (DA^* + PA^*) + VT (DT^* + PT^*) + V_H (DH^* + PH^*) \\
PT^* &= E^* + PWT^* + (1 + tT)^* \\
\text{and} \\
PA^* &= E^* + PWA^* + (1 + tA)^*
\end{align*}
\]

where the V's are expenditure shares, $V_A = \frac{PADA}{Y}$, $V_T = \frac{PTDT}{Y}$, and $V_H = \frac{PHDH}{Y}$ and where we distinguish the nonagricultural good (tT) and the agricultural good (tA) policy wedges.
By substituting for Y^* from equation (A7) into the demand equations, we can eliminate income from (A1), (A2) and (A3):

$$DA^* = a_AAPA^* + a_TPT^* + a_HPH^*$$ \hspace{1cm} (A10)

$$DT^* = b_AAPA^* + b_TPT^* + b_HPH^*$$ \hspace{1cm} (A11)

$$DH^* = c_AAPA^* + c_TPT^* + c_HPH^*$$ \hspace{1cm} (A12)

where a, b, and c are parameters comprising price and income elasticities and expenditure shares.

To determine changes in price of the home good, we substitute equations (A6), (A8), (A9), and (A12) into the differentiated equation (7), $SH^* - DH^* = 0$,

$$PH^* = -\left[\frac{(c_A - g_A) - (c_T - g_T)}{c_H - g_H}\right] [E^* + PWA^* + (1 + tA)^*]$$

$$-\left[\frac{(c_T - g_T)}{c_H - g_H}\right] [E^* + PWT^* + (1 + tT)^*]$$ \hspace{1cm} (A13)

The home good price, therefore, is influenced by changes in the exchange rate, trade policy, and world prices of agricultural and nonagricultural goods.

More specifically, if the difference between $[(c_A - g_A)$ and $(c_T - g_T)]$ are positive, then a depreciation of the home currency, an increase in world prices, or an increase in protection would place upward pressure on the price of the home good. The next step is to differentiate the net trade equation (9):

$$\partial_1(SA^* + PA^*) - \partial_2(DA^* + PA^*) + \partial_3(ST^* + PT^*) - \partial_4(DT^* + PT^*)$$

$$= F^*$$ \hspace{1cm} (A14)
where $\theta_1 (\theta_2)$ is the share of the value of supply (demand) for agriculture and $\theta_3 (\theta_4)$ is the share of supply (demand) for nonagriculture relative to the value of net trade. By substituting from equations (A4), (A5), (A8) - (A11) and (A13) into (A14), we obtain an expression for changes in balance of trade in terms of changes in trade and exchange rate policies, and changes in world prices of both agricultural and nonagricultural traded goods (equation 14 in text):

$$\Pi_1 + \Pi_2)E^* + \Pi_1[PWA^* + (1 + tA)^*] + \Pi_2[PWT^* + (1 + tT)^*] = F^*$$ \hspace{1cm} (A15)

where

$$\Pi_1 = \theta_1(1+e_A) - \theta_2(1+a_A) + \theta_3f_A - \theta_4b_A - [(c_A-g_A)/(c_H - g_T)]$$

$$\theta_1e_A - \theta_2a_A + \theta_3f_A - \theta_4b_A$$

and

$$\Pi_2 = \theta_1e_T - \theta_2a_T + \theta_3(1+f_T) - \theta_4(1+b_T) - [(c_T-g_T)/(c_H - g_T)]$$

$$\theta_1e_T - \theta_2a_T + \theta_3f_T - \theta_4b_T$$

Next, we relax the assumption of a representative country and, instead, we assume there are two countries and three goods (an agricultural good, a nonagricultural good, and a nontraded good). The following equations illustrate the implications of bilateral changes of protection in this framework.

For countries 1 and 2:

$$(\Pi_1 + \Pi_2)E_1^* + \Pi_1[PWA^* + (1 + tA1)^*] + \Pi_2[PWT^* + (1 + tT1)^*] = F_1^*$$ \hspace{1cm} (A16)

$$(\Pi_2 + \Pi_2)E_2^* + \Pi_1[PWA^* + (1 + tA2)^*] + \Pi_2[PWT^* + (1 + tT2)^*] = F_2^*$$ \hspace{1cm} (A17)

Again, we can examine the two extreme possibilities: allowing capital flows to change or allowing the exchange rate to float. In the fixed exchange rate case, with $F_1^* + F_2^* = 0$ by definition, equations (A16 and A17) reduce to:
\[
\frac{1}{2}[\Pi_1 - \Pi_2]PWA^* + (\Pi_21 - \Pi_22)PWT^* + \Pi_1(1 + tA1)^* \\
- \Pi_2(1 + tA2)^* + \Pi_21(1 + tT1)^* - \Pi_22(1 + tT2)^*] = F1^*
\] (A18)

If country 1 liberalizes relatively more than country 2, assuming no changes in world price, then country 1 experiences a deterioration of the trade balance and, consequently, requires larger capital inflows. In the floating exchange rate case, with \(E2^* = -\frac{1}{E1E2}E1^*\) by definition, equations (A16 and A17) reduce to:

\[
-\frac{1}{\Gamma}[\Pi_1 - \Pi_2]PWA^* + (\Pi_21 - \Pi_22)PWT^* + \Pi_1(1 + tA1)^* \\
- \Pi_2(1 + tA2)^* + \Pi_21(1 + tT1)^* - \Pi_22(1 + tT2)^*] = E1^*
\] (A19)

where \(\Gamma = \Pi_1 + \Pi_2 + (1/E1E2)(\Pi_21 + \Pi_22)\). Again, if country 1 liberalizes relatively more than country 2, assuming no changes in world prices, then country 1 experiences a depreciation of its currency relative to country 2's.

In equations (A18) and (A19) there are three unknown variables: changes in world prices of agricultural goods, changes in world prices of nonagricultural goods, and changes in the trade balance or exchange rate. To complete the system, the market clearing conditions (equations (10) and (11)) need to be differentiated:

\[
SA1SA1^* + SA2SA2^* - DA1DA1^* - DA2DA2^* = 0
\] (A20)

and

\[
ST1ST1^* + ST2ST2^* - DT1DT1^* - DT2DT2^* = 0
\] (A21)

Substituting equations (A4), (A8) – (10) and (A13), into equation (A20) and equations (A5), (A8), (A9), (A11) and (A13) into equation (A21) yield

\[
\Gamma_2E1^* + (\phi_11 + \phi_12)PWA^* + (\phi_21 + \phi_22)PWT^* + \phi_11(1 + tA1)^* \\
+ \phi_21(1 + tA2)^* + \phi_12(1 + tT1)^* + \phi_22(1 + tT2)^* = 0
\] (A22)
\[\Gamma_3 E_1^* + (\phi_{11} + \phi_{12}) P_{WA}^* + (\phi_{21} + \phi_{22}) P_{WT}^* + \phi_{11}(1 + tA_1)^* \\
+ \phi_{21}(1 + tA_1)^* + \phi_{12}(1 + tT_1)^* + \phi_{22}(1 + tT_2)^* = 0 \quad (A23) \]

where

\[\Gamma_2 = \phi_{11} + \phi_{12} - (1/EIE_2)(\phi_{21} + \phi_{22}), \]

\[\Gamma_3 = \phi_{11} + \phi_{12} - (1/EIE_2)(\phi_{21} + \phi_{22}), \]

\[\phi_{11} = S_{A1}(e_{A1} - e_{H1}(c_{A1} - g_{A1})/(c_{H1} - g_{H1})) - D_{A1}(a_{A1} - a_{H1}(c_{A1} - g_{A1})/(c_{H1} - g_{H1})), \]

\[\phi_{12} = S_{A1}(e_{T1} - e_{H1}(c_{T1} - g_{T1})/(c_{H1} - g_{H1})) - D_{A1}(a_{T1} - a_{H1}(c_{T1} - g_{T1})/(c_{H1} - g_{H1})), \]

\[\phi_{21} = S_{A2}(e_{A2} - e_{H2}(c_{A2} - g_{A2})/(c_{H2} - g_{H2})) - D_{A2}(a_{A2} - a_{H2}(c_{A2} - g_{A2})/(c_{H2} - g_{H2})), \]

\[\phi_{22} = S_{A2}(e_{T2} - e_{H2}(c_{T2} - g_{T2})/(c_{H2} - g_{H2})) - D_{A2}(a_{T2} - a_{H2}(c_{T2} - g_{T2})/(c_{H2} - g_{H2})). \]

Under the assumption of floating exchange rates, reduced form equations can be calculated from equations (A19), (A22), and (A23):

\[E_1^* = \omega_1(1 + tA_1)^* + \omega_2(1 + tA_2)^* + \omega_3(1 + tT_1)^* + \omega_4 \]

\[(1 + tT_2)^* \quad (A24) \]

\[P_{WA}^* = \omega_5(1 + tA_1)^* + \omega_6(1 + tA_2)^* + \omega_7(1 + tT_1)^* + \omega_8 \]

\[(1 + tT_2)^* \quad (A25) \]

\[P_{WT}^* = \omega_9(1 + tA_1)^* + \omega_{10}(1 + tA_2)^* + \omega_{11}(1 + tT_1)^* \\
+ \omega_{12}(1 + tT_2)^* \quad (A26) \]

where \(\omega \)'s are the reduced form parameters. Changes in the exchange rate, the world prices of agricultural goods, and the world prices of non-agricultural goods depend on the exogenous changes in protection. \(\omega_1, \)
ω_3, ω_5, ω_6, ω_{11}, and ω_{12} are expected to be negative, while ω_2, ω_4, ω_7, ω_8, ω_9, and ω_{10} are expected to be positive. Reducing protection relatively more in country 1 than in country 2 should cause a decline in the value of country 1's currency relative to country 2's and should have a positive effect on world prices.

Data Sources

Three types of data are needed to develop the empirical model: (1) base year data, including quantities supplied, demanded, and traded, prices, and exchange rates for 1984; (2) elasticities, including own- and cross-price elasticities of supply and demand for agricultural and nonagricultural composite goods; and (3) measures of protection for agricultural and nonagricultural goods.

Base year data for agricultural supply and demand were obtained from the Foreign Agricultural Service, USDA, supply and utilization data base. Country GDP data, used to calculate other agricultural supplies and nonagricultural supplies (traded and nontraded), were obtained from United Nations Monthly Statistics (Special Table I, Gross domestic product and net material product by kind of economic activity), Eurostat Review (National accounts, gross value added at current market prices), and International Financial Statistics, International Monetary Fund. Trade flow figures were obtained from International Trade 1985–86, published by the GATT, Food and Agricultural Organization's Trade Yearbook, and, for Latin American countries, from country statistical trade yearbooks. Net trade for each good was subtracted from supply in order to obtain demand. In cases where 1984 data were unavailable, estimates were made based on the latest information available.
Elasticities were obtained from several sources. Price elasticities for agricultural commodities were compiled, based on estimates from a number of existing studies, by the Economic Research Service (ERS), USDA, for the purposes of its agricultural trade liberalization modeling work. Elasticities for nonagricultural goods were obtained from Deardorff and Stern (1986) or were estimated by applying the homogeneity conditions to the equations. All the elasticities should be considered medium term estimates, that is, three to five years.

Ad valorem equivalent rates of protection for nonagricultural traded goods were obtained from Whalley for developed countries and from the IMF for the Latin American countries. Agricultural protection rates, producer and consumer subsidy equivalents (PSE's and CSE's), were developed by USDA. These measures include estimates of the subsidy equivalents of domestic agricultural policies, such as direct payments and input subsidies, as well as the effects of trade barriers (USDA). Where agricultural PSE's and CSE's were unavailable, estimates of agricultural commodity protection were obtained from Tyers and Anderson (1986).