000050476 001__ 50476
000050476 005__ 20180122211006.0
000050476 037__ $$a838-2016-55720
000050476 041__ $$aen
000050476 084__ $$aA14
000050476 084__ $$aC71
000050476 084__ $$aC72
000050476 245__ $$aEndogenous Network Dynamics
000050476 260__ $$c2009
000050476 269__ $$a2009
000050476 270__ $$mfpage@indiana.edu$$pPage,   Frank H.
000050476 300__ $$a46
000050476 336__ $$aWorking or Discussion Paper
000050476 490__ $$aSD
000050476 490__ $$a28.2009
000050476 520__ $$aIn all social and economic interactions, individuals or coalitions choose not only with whom to interact but how to interact, and over time both the structure (the “with whom”) and the strategy (“the how”) of interactions change. Our objectives here are to model the structure and strategy of interactions prevailing at any point in time as a directed network and to address the following open question in the theory of social and economic network formation: given the rules of network and coalition formation, the preferences of individuals over networks, the strategic behavior of coalitions in forming networks, and the trembles of nature, what network and coalitional dynamics are likely to emerge and persist. Our main contributions are (i) to formulate the problem of network and coalition formation as a dynamic, stochastic game, (ii) to show that this game possesses a stationary correlated equilibrium (in network and coalition formation strategies), (iii) to show that, together with the trembles of nature, this stationary correlated equilibrium determines an equilibrium Markov process of network and coalition formation, and (iv) to show that this endogenous process possesses a finite, nonempty set of ergodic measures, and generates a finite, disjoint collection of nonempty subsets of networks and coalitions, each constituting a basin of attraction. We also extend to the setting of endogenous Markov dynamics the notions of pairwise stability (Jackson-Wolinsky, 1996), strong stability (Jacksonvan den Nouweland, 2005), and Nash stability (Bala-Goyal, 2000), and we show that in order for any network-coalition pair to persist and be stable (pairwise, strong, or Nash) it is necessary and sufficient that the pair reside in one of finitely many basins of attraction. The results we obtain here for endogenous network dynamics and stochastic basins of attraction are the dynamic analogs of our earlier results on endogenous network formation and strategic basins of attraction in static, abstract games of network formation (Page and Wooders, 2008), and build on the seminal contributions of Jackson and Watts (2002), Konishi and Ray (2003), and Dutta, Ghosal, and Ray (2005).
000050476 542__ $$fLicense granted by Nancy Elera (nancy.elera@feem.it) on 2009-05-29T14:15:34Z (GMT):

<center>  <h2> Deposit Agreement </h2> </center>
I represent that I am the creator of the digital material identified herein (&ldquo;Work&rdquo;).
I represent that the work is original and that I either own all rights of copyright 
or have the right to deposit the copy in a digital archive such as AgEcon Search. 
I represent that in regard to any non-original material included in the Work I have
secured written permission of the copyright owner (s) for this use or believe this 
use is allowed by law. I further represent that I have included all appropriate 
credits and attributions. I hereby grant the Regents of the University of Minnesota
(&ldquo;University&rdquo;), through AgEcon Search, a non-exclusive right to access, reproduce, 
and distribute the Work, in whole or in part, for the purposes of security, preservation,
and perpetual access. I grant the University a limited, non-exclusive right to make
derivative works for the purpose of migrating the Work to other media or formats in
order to preserve access to the Work. I do not transfer or intend to transfer any 
right of copyright or other intellectual property to the University. If the Deposit 
Agreement is executed by the Author�s Representative, the Representative shall separately
execute the following representation: I represent that I am authorized by the Author
to execute this Deposit Agreement on behalf of the Author.

000050476 650__ $$aInstitutional and Behavioral Economics
000050476 6531_ $$aEndogenous Network Dynamics
000050476 6531_ $$aDynamic Stochastic Games of Network Formation
000050476 6531_ $$aEquilibrium Markov Process of Network Formation
000050476 6531_ $$aBasins of Attraction
000050476 6531_ $$aHarris Decomposition
000050476 6531_ $$aErgodic Probability Measures
000050476 6531_ $$aDynamic Path Dominance Core
000050476 6531_ $$aDynamic Pairwise Stability
000050476 700__ $$aPage, Frank H.
000050476 700__ $$aWooders, Myrna H.
000050476 8564_ $$s500342$$uhttp://ageconsearch.umn.edu/record/50476/files/28-09.pdf
000050476 887__ $$ahttp://purl.umn.edu/50476
000050476 909CO $$ooai:ageconsearch.umn.edu:50476$$pGLOBAL_SET
000050476 912__ $$nSubmitted by Nancy Elera (nancy.elera@feem.it) on 2009-05-29T14:18:54Z
No. of bitstreams: 1
28-09.pdf: 500342 bytes, checksum: 69e93f896f06e034726ef45febf25611 (MD5)
000050476 912__ $$nMade available in DSpace on 2009-05-29T14:18:55Z (GMT). No. of bitstreams: 1
28-09.pdf: 500342 bytes, checksum: 69e93f896f06e034726ef45febf25611 (MD5)
  Previous issue date: 2009
000050476 982__ $$gFondazione Eni Enrico Mattei (FEEM)>Sustainable Development Papers
000050476 980__ $$a838