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ABSTRACT 

Buying environmental services from private landholders using tendering mechanisms are usually 

subject to a budget constraint. Auction theory has mostly focused on target-constrained auctions 

and is not well developed for this type of auction. This paper examines the predictive capacity of a 

simple model developed for budget-constrained tenders, already used to design new conservation 

programs, by submitting it to controlled lab experiments. We study the capacity of the model to 

predict both experimental bids and the performance of the auction institution, based on the kind of 

limited information typically available to a conservation agency. We conclude there exists an 

optimal level of information on bidders’ costs, neither too large nor to small, making the tender 

worth considering as a policy option as well as allowing an ex-ante assessment of its economic 

performance.       
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I. INTRODUCTION  

Buying environmental services from private landholders using tendering mechanisms 

usually involves budget-constrained, procurement-type auctions. This poses a problem to the 

extent that auction theory has been well developed, since Vickrey’s 1962 paper (less well-known 

than his much-cited 1961 paper), for target-constrained (TC) auctions, but much less so for budget-

constrained (BC) auctions (Müller and Weikard, 2002). In a target-constrained auction or tender1, 

the number of contracts or hectares of land to come under contract is decided upon and is known; 

the risk is with what it might end up costing. In a budget-constrained auction or tender, the 

programme’s budget is decided upon and is known; the risk is with the number of contracts or 

hectares that might not come under contract, that is, with the degree of environmental effectiveness 

of the policy. It seems that target-constrained tenders are used where government cannot fall short 

of its objectives, as is typically the case with military procurement programmes. In the field of 

environmental policy, governments’ use of the budget-constrained tenders probably reflects their 

general political priorities. As a result, in the field of environmental policy, there is a gap between 

theory and practice for BC tendering mechanisms. A better theory would allow agencies to 

improve tender design and perhaps decide whether such a mechanism is worth going ahead with or 

not, given existing alternatives.  

This study sets out to investigate, using the techniques of experimental economics, the 

predictive capacity of a new model developed for BC tenders. This model was first proposed by 

Latacz-Lohmann and Van der Hamsvoort (henceforth, LH) in 1997 and further refined in 1998, 

where policy implementation was investigated. To the best of our knowledge, this is to date the 

only extension of auction theory which captures the particular features of conservation tenders. 

The model has been criticised, however, for not conforming to the standard assumptions of auction 

theory regarding optimal bid formulation. As explained by Müller and Weikard (2002), making the 

same assumptions in the BC auction model as in the better known TC model creates one more 

degree of freedom (since the final number of winners is not known), leading to a complex situation 

with multiple Nash equilibria and no dominant solution for choosing an optimal bid. LH (1997) 

solve this problem by introducing an exogenous parameter, the bidders’ expectation of the highest 

acceptable bid, knowing the budget constraint and the number of bidders. Bidders then use this 

best guess of theirs to form their optimal bids. The result is a very simple model, much simpler 

than the more standard TC model. This simplicity comes however at a cost, in that no theory or 

model for the formation of bidders’ expectations is offered.  

The purpose of this study is to investigate the validity and credibility of this new BC 

auction model. The focus here is thus on the performance of the BC model as opposed to the 

performance of the BC auction institution. The latter issue was investigated in Schilizzi and 
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Latacz-Lohmann (2007), where, in addition, they compared the performance of the BC and TC 

auction institutions relative to an equivalent fixed-price scheme. To the extent that government 

agencies have, to date, almost exclusively used the BC format in environmental policy, it seems 

important to test any model that might be used to inform the design of this type of policy 

instrument. In Australia, for example, the Victoria BushTender conservation program was directly 

inspired by the LH 1997 model. (Stoneham et al. 2003).  

To carry out this ‘proof of concept’ study, we implemented the institutional and 

informational conditions of the BC model using controlled economic experiments. In addition, 

since agri-environmental contracts are often issued over a sequence of years, as the United States 

Conservation Reserve Program typifies, we extend the problem to repeated auctions. With 

repetition, as shown in Hailu and Schilizzi (2004), bidders learn to bid so as to extract increasing 

information rents at the expense of budgetary cost-effectiveness, eventually defeating the purpose 

of the tender, as bidders learn to bid the government’s implicit reserve price.   

By testing the validity and credibility of the BC model we mean two things. First, we test 

whether optimal bids as computed by the model predict sufficiently well the bids as expressed by 

experimental subjects. Of course, this test holds only to the extent that the experiments correctly 

implement the model’s assumptions. Secondly, we test whether the model is capable of predicting 

the performance of the auction institution using ex-ante predicted bids rather than ex-post actual 

bids. In other words, using both model predictions and experimental results, would the model 

recommend the use of this institution when in fact it should not do so, and vice-versa? Importantly, 

how does the model’s as well as the institution’s performance depend on the cost-related bidder 

information available to the procurer? In general, the procurer only has a rough knowledge of 

bidders’ average participation costs. A more accurate knowledge would of course make the use of 

a tendering system redundant, since an auction also functions as a price or cost revelation 

mechanism.   

The remainder of the paper is organised as follows. Section two summarises the role of 

controlled laboratory experiments in relation to existing theory for allocating conservation 

contracts. Section three outlines the BC auction model and highlights the key differences with the 

more standard TC model. Section four describes the economic experiments, and section five 

provides and discusses the results. Section six concludes as to whether the LH (1997) model for 

conservation tenders is a credible tool or not for auction design and environmental policy.  
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II. THEORY AND EXPERIMENTS FOR CONSERVATION TENDERS  

The use of laboratory experiments to study tendering outcomes originated in the 

fundamental complexity of the auction institution. Following Vickrey’s seminal work in 1961, it 

was soon recognised that a large number of parameters influenced auction performance and that 

outcomes were very sensitive to the values of these parameters. These included for example the 

distribution of information (private-value versus common-value auctions), auction format (sealed-

bid versus open call), and payment format (first-price versus second-price), to name but a few 

(Klemperer, 1999, 2002, 2004; Milgrom, 1989). Theoretical investigations, which are constrained 

by analytical tractability, could only investigate the effect of one or a small number of parameters 

at a time, assuming all others constant. Major reviews of this literature include Cassady’s book 

(1967) and survey papers by Engelbrecht-Wiggans (1980), McAfee and McMillan (1987), 

Milgrom (1985, 1989), Wilson (1992), and Klemperer (1999). As a result, the theoretical literature 

on auctions remained divorced from the practical needs of auction implementation. This is well 

reviewed by Rothkopf and Harstad (1994) and Klemperer (2002).  

Economic experiments were called upon to bridge the gap between theory and practical 

implementation. Kagel’s review, in Kagel and Roth’s (1995) Handbook of Experimental 

Economics, remains a key reference for the contributions of the experimental effort up to that date. 

The Handbook of Experimental Economics Results (Plott and Smith, 2008), will, when all the 

volumes have been published, provide a very comprehensive update.  

The situation is exacerbated in the case of conservation tenders, as these are usually 

procurement (reverse), repeated, multi-unit auctions. They are procurement auctions in that the 

auctioneer (the government agency) buys rather than sells environmental services. They are multi-

unit auctions in that landholders sell units of different quality (environmental services per unit area 

vary across the landscape), they can sell several units each, and there is more than one winner. 

Conservation tenders are also repeated over time, as witnessed by the US Conservation Reserve 

Program (CRP) which has been run as a multiple sign-up scheme (Riechelderfer and Boggess, 

1988; Johansson, 2006). Auction theory is less well developed for procurement than for direct 

(selling) auctions, for multiple-unit than for single-unit auctions, and for repeated than for one-shot 

auctions. The main reason, on which we shall not dwell here, is the level of complexity involved 

by the characteristics of conservation tenders.  

Accordingly, conservation tenders have begun to be studied experimentally. This refers, 

strictly speaking, to controlled laboratory experiments, but can also be understood in a broader 

sense to mean the sequential combination of laboratory experiments and small-scale field trials. 

This was done in Australia in connection with the BushTender trials in the state of Victoria, where 

certain design problems, in particular the amount and choice of the information to be 
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communicated to landholders before the bidding session, was investigated experimentally (Cason 

et al., 2003). In the State of Georgia, USA, auctions for buying back water abstraction licences 

from irrigators in times of drought were not implemented before a number of controlled laboratory 

experiments had been carried out (Laury, 2002; Cummings et al., 2004). Cason and Gangadharan 

(2005) report the results of an economic experiment to investigate the outcome properties of 

uniform versus discriminatory-price auctions for reducing non-point source pollution. They find 

that although overbidding was more pronounced in the discriminatory-price auction, the 

discriminatory format had superior overall market performance.  

The present paper contributes to the experimental effort in the field of conservation tenders. 

In contrast to previous studies, which have investigated the outcome properties of alternative 

auction design options, the focus of this paper is on testing new theory – the first bidding model 

that attempts to capture the particular features of conservation tenders.  

 

III. THE BUDGET-CONSTRAINED BIDDING MODEL  

Key features of the budget-constrained model  

The sealed-bid discriminatory price budget-constrained (BC) model examined in this paper 

was first proposed by Latacz-Lohmann and Van der Hamsvoort (LH) in 1997. They considered 

landholders to hold private information about their opportunity costs of participating in the 

government’s conservation programme. These costs arise when management prescriptions divert 

farmers’ land management practices away from their current plan, assumed to be the most 

profitable one. The government’s problem, in order to attract farmers into the scheme, is to 

compensate them for the lost profits without knowing the magnitude of their opportunity costs. 

Auctions have the property of revealing at least part of this information. In order for the landholder 

to participate in the scheme, the payment he or she receives must be at least equal to his or her 

opportunity cost of participation.  

LH (1997) first assume that landholders’ bidding strategies are predicated on the belief that 

the conservation agency (the procurer) will decide on a maximum acceptable bid, or payment 

level, β. This is a common practice when the agency is subjected to a constrained budget. In actual 

fact, this maximum bid β is determined ex post, after all bids have been received, as the last 

(highest) bid accepted within the available budget. In other words, no individual bids above β will 

be accepted. β represents an implicit reserve price per unit of environmental service, unknown to 

bidders (and also unknown to the procurer until all bids have been received). This external 

parameter β represents a deviation from standard TC auction theory, where optimal bids are 

determined endogenously as a function of the number of bidders, the distribution of bidders’ 
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opportunity costs (assumed common knowledge), and the target to be achieved. In the BC auction, 

this target – the number of winners or hectares contracted – is unknown. A landholder will tender a 

bid b if the expected utility in case of participation exceeds his or her reservation utility.  

The second assumption in LH’s model is that bidders, not knowing the value of the bid cap 

β, will form expectations about it, which can be characterised by the density function f(b) and by 

the distribution function F(b). The probability that a bid is accepted can then be expressed as  

∫ −==≤
β

β
b

bFdbbfbp )(1)()(       (1) 

where p is probability and β represents the upper limit of the bidder’s expectations about the bid 

cap, or the maximum expected bid cap. The essence of the bidding problem is to balance out net 

payoffs and probability of acceptance. This means determining the optimal bid which maximises 

the expected utility over and above the reservation utility.   

Further assumptions are that there are no transaction costs in bid preparation and 

implementation, that payment is only a function of the bid (discriminatory price auction), and that 

bidders are risk-neutral2. A risk-neutral bidder simply maximises expected payoff. The optimal 

bid, b*, derived by LH (1997) is given by equation (2), where c represents the opportunity costs of 

participation:  

  b* = c + 
)(

)(1
bf

bF−         (2) 

LH (1997) further assume that bidders’ individual expectations about the bid cap β are 

uniformly distributed in the range [β, β ], where the lower and upper bounds represent the 

bidder’s minimum and maximum expected bid cap. A bidder’s expectations are that any bid equal 

to or below β has a probability of 1 of being accepted, and any bid equal to or above β  has a 

probability of zero of getting accepted. Then the expression for the optimal bid becomes (LH, 

1997):  

b* = max [
2
1 (c + β ), β ]   s.t.   b* > c       (3’)  

This is true for each of the i bidders, so that expression (3’) also reads as:  

bi
* = max [

2
1 (ci + β i), β i ]   s.t.   bi

* > ci      (3”) 

Expressions (3) show that the optimal bidding strategy of a risk-neutral bidder increases 

linearly with both the bidder’s opportunity costs ci and his or her expectations about the bid cap, 

characterized by βi and β i. Bids thus convey information about opportunity costs, which are 
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private information unknown to the procurer; they thereby reduce the information asymmetry, but 

not completely: indeed, the auction’s cost revelation property is blurred by the fact that bids also 

reflect bidders’ beliefs about the bid cap. This creates room for bidders to bid above their true 

opportunity costs and thereby to secure for themselves an information rent. With repetition, when 

bidders have the opportunity to learn from the results of past bidding strategies, this blurring is 

expected to be further exacerbated: from Hailu and Schilizzi’s (2004) results, one would expect 

bids to depend increasingly on bid cap expectations (the β’s) and less on opportunity costs (the ci).  

 

Key differences with the better known target-constrained model  

As discussed by Müller and Weikard (2002), target-constrained (TC) auctions differ from 

budget-constrained (BC) auctions by allowing endogenous expectations to form and optimal bids 

to be formulated without the need for exogenous bid caps. As a result, the nature of the two models 

is different. While the BC model is a best-response model, the TC model is a Nash equilibrium 

model. This is because, unlike a limited budget, knowing the target also tells bidders how many 

winners there will be or contracts will be allocated, and thereby yields fewer degrees of freedom 

than the BC auction. This explains why TC auctions were the first to be modelled.  

Following his 1961 work, Vickrey (1962) formulated a Nash equilibrium bidding model in 

the case of single-unit sealed-bid discriminative price auctions (when agents bid only for one unit) 

and demonstrated that the Revenue Equivalence Theorem holds for risk-neutral bidders with 

individual values for the auctioned objects drawn from a uniform distribution. Harris and Raviv 

(1981) generalised the Vickrey model for bidders’ valuations drawn from general distribution 

functions and when all bidders have identical concave utility functions. All subsequent extensions 

(Milgrom and Weber, 1982; Cox et al, 1984) focused on “selling” auctions, of little relevance to 

conservation programmes. In the literature, optimal bid formulas have been explicitly given for 

direct or selling auctions (e.g. Cox et al. 1984) but not for procurement tenders. Hailu et al. (2005) 

customised the Harris and Raviv (1981) approach to model the Nash equilibrium risk-neutral bid 

functions in a procurement multi-unit sealed-bid tender, relevant for government conservation 

schemes. After showing that, even in the single-unit case, the optimal bid formulas for 

discriminatory-price ‘selling’ and procurement auctions are not symmetrical3, they derived a 

general formula for the optimal bid in a multiple-unit procurement auction:  

   
∫
∫= sup

sup

)'(

)'(
)( v

v

v

v

duuG

duuuG
vB       (4) 

 where n is the number of bidders, m the number of units sought (i.e. the target), v the bidder’s own 

value, and u the integrand between v and vsup, the value or cost of the highest cost bidder. G(v) is 



 

 8

derived from the expression of the probability distribution of the mth order statistic on a (n-1) 

sample in that distribution. The formula is made explicit for bidder values (or opportunity costs) 

uniformly distributed on [0, 1], yielding:   

∫
∫

−−−

−−

−

−
= 1 11

1 1

)1(

)1(
)(

v

mnm

v

mnm

duuu

duuu
vb       (5) 

where here u is the integrand for values varying between v and vsup = 1.  

The assumptions underlying this model are that bidders are risk-neutral, each bidder can 

sell more than one unit, winners get paid their own bid (discriminative price auction), and the 

uniform probability distribution of values on support [0,1] is common knowledge to all. A key 

difference with the BC model appears in the upper bound of the integrals: whereas bidders in a TC 

auction are modelled as forming their bids in reference to other bidders’ values (vsup), bidders in 

the BC auction form their bids in reference to their expected bid cap (β). In addition, both models 

make bids depend (equivalently) on bidders’ values or costs, but the BC model’s bid dependence is 

only on the bidder’s own value or cost, whereas in the TC model the bid depends on an assumed 

distribution over all values or costs.  

In terms of outcomes, both models predict that the optimal bidding strategy is one of 

overbidding (b>c or b>v). Moreover, the level of overbidding is high for low-value bidders and 

low for high-value bidders. Overbidding decreases as the private value or cost increases, with the 

bids from high-value or high-cost bidders asymptotically approaching their respective 

values: vb
v

=
∞→

)(lim  or cb
c

=
∞→

)(lim .    

Thus both BC and TC models predict overbidding as an optimal strategy. This is in 

accordance with the theory of discriminative (first-price) sealed-bid auctions4. However, in a real 

policy setting, as opposed to controlled laboratory experiments, such over-bidding is likely to be 

somewhat dampened, due to other-than-profit motivations, such as environmental stewardship, 

cross-compliance constraints, or fear of future regulatory action, all of which would push their bids 

down somewhat, for at least some of the bidders. In this setting, however, we focus on the prime 

profit motive in order to link theory and experiment. This can be considered as a ‘worse case 

scenario’ in terms of the institution’s economic performance.   

 

IV. EXPERIMENTAL SETUP  

The purpose of the experiments described below was to assess the predictive capacity of 

the non-standard BC model, in order to decide whether it is a credible tool or not for informing 

budget-constrained auction design for allocating conservation contracts. By ‘predictive capacity’, 
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we mean two things: first, the difference between the observed experimental bids and those 

calculated based on equation 3; and second, whether the performance of the tendering institution 

using predicted bids is close to that using actual ex-post bids, as expressed by experimental 

subjects. This should shed some light on whether experimental results can be used for guiding the 

use of BC tendering mechanisms.  

 

Preliminary bidder surveys 

Prior to holding the experiment, we surveyed our experimental subjects along two 

dimensions: their attitude towards environmental conservation, and towards risk. The first question 

was asked so as to be able, after the experiment, to relate the amount of bid shading to 

environmental attitudes, since the auction was set in a land conservation context. One would 

assume that in a real policy setting, the more environmentally concerned bidders would shade their 

bids less than the less concerned. Whether such a reduction in bid shading would also be observed 

in laboratory experiments would depend on the extent to which the context is effective in 

influencing participants’ decisions.  

 Bidders’ risk attitudes were measured using a certainty-equivalent method, whereby 

they were asked to state the minimum price they would accept from selling a lottery ticket that had 

been given to them. This measure was also hypothesised to explain possible differences in bid 

shading, whereby more risk-averse bidders would shade their bids less than the less risk-averse. As 

it turned out, environmental attitudes, as measured in this survey, did not appear to be related in 

any way to bid shading, whereas, as will be detailed later, risk attitudes, as measured, did have 

some impact in the expected direction. The implication of this is that contextual effects such as 

environmental concerns did not affect experimental outcomes – a positive feature in terms of 

experimental control.  

 

General experimental setup  

Experiments were first carried out at the University of XXX, K, then at the University of 

YYY in P.1 The P experiment replicated the K experiment, in order to check for the robustness of 

results.  

The K experiment was carried out with first-year students in agricultural economics. The 

total number of students was about 44 (the number varied slightly across sessions). The auction 

setup referred to reductions in nitrogen fertiliser on a wheat crop, in order to meet EU regulations 

                                                 
1 K and P are used in lieu of actual institution and location names to preserve anonymity in the reviewing process: they 
will be replaced by the original names in the final version of this paper.  
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regarding limits to nitrate concentration in groundwater (50 mg/litre). This is a serious concern in 

rural areas of northern K, and one which students in K would be aware of and sensitive to. 

Participants were offered would-be contracts for committing themselves to reduce applications of 

nitrogen fertiliser from their currently most profitable level down to a predefined constrained level, 

equal to 80 kg per hectare. Each participant was given a different production function for nitrogen 

fertiliser in wheat production and thus faced a different opportunity cost resulting from the 

adoption of the nitrogen reduction programme. Participation costs were spread uniformly between 

€5 (the lowest-cost farmer) and €264 (the highest-cost farmer). Bidders knew their own 

opportunity costs but not those of rival bidders (see appendix). Participants were told that not all of 

them would be able to win contracts and that they were therefore competing against each other. To 

keep things very simple, each participant could put up just one land unit of wheat, the same area 

for all participants. They were told that if they won a contract, they would be paid the difference 

between their bid and their opportunity cost.  

Three identical rounds were held. The purpose of this was to investigate the performance of 

the model with repetition. That is, was the BC model able to maintain the quality of its predictions 

as bidders get to “play the game” several times? Three rounds are not many, but if already in the 

third round a clear tendency was observable, it would be an indication that repetition does affect 

predictive power of the model. In rounds two and three, exactly the same setup was used, except 

that bidders knew of their own result in the previous round(s), and successful bidders had been 

paid their net gains at the end of each round. More rounds were not run due to time and resource 

limitations.  

 

Specifics of experimental setup 

Since auctions are very sensitive to information structure, it was important to control for 

this aspect. In the first round, bidders were informed of the available budget for the current session. 

The cost range (€5 to €264) was not given, but bidders were told that costs were uniformly 

distributed. Each bidder knew his or her own opportunity cost and was given a rough estimate of 

where he or she stood compared to rival bidders in terms of opportunity costs. This was done by 

informing bidders in which cost quartile they belonged: lower quarter, second quarter, third 

quarter, upper quarter (see appendix). It was assumed that bidders could look around and estimate 

the number of competitors in their group: between 40 and 44 depending on sessions in the K 

experiment, and 27 in the P experiment.  

The budget constraint announced (€3900) was clearly distinguished from the actual 

payments made at the end of the session5. Actual bidder payments would be proportional to their 

gains calculated as own bid minus participation cost. Bidders were asked two pieces of numerical 
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information, their estimate of the maximum expected bid cap ( β i), and their bid (bi). We did not 

ask for the lower bound βi as it could have confused the participants and it was unlikely to be 

binding in the formulation of their bids. In the following two rounds, bidders also knew whether 

they had previously been successful or not, and if so, what their net gains were. No information 

regarding other bidders was given, as e.g. who the winners or what their gains were.  

 

The P replicate  

The P experiment was in all points identical to the K experiment, save for the following 

logistical details. Participants were mostly second-year students, with a few third and fourth years 

as well as a handful of postgraduates – all in the area of agriculture or natural resource 

management. They totalled about 27 in number, with a variation of one or two between sessions. 

To reflect the smaller number of participants in the P experiment, the budget constraint was 

lowered proportionately, compared to the K experiment ($2300).  

A slight difference in the P experiment was the twist given to the story. Rather than 

nitrogen leaching into the groundwater, the government agency was buying back from 

horticulturalists in the P catchment (around P) a composite good made of nitrogen and phosphorus, 

and the problem was eutrophication in the P river following excess runoff of these two nutrients – 

a socially and politically sensitive issue in P.   
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V. RESULTS AND DISCUSSION  

Organizing the results 

The results are organized as follows. We first examine the BC model’s predictive performance 

by confronting the theoretically optimal bids, computed using equation (3”), with experimentally 

observed bids. Secondly, we examine whether the model’s performance is affected by repetition, 

by confronting computed and experimental bids in subsequent rounds. We try to understand the 

model’s performance by examining whether bid and beta formation obey the rationale assumed by 

the model. We are then ready to extend the analysis to how well the model predicts the economic 

performance of the institution. We first do this by comparing its predictions using the 

experimentally observed bids to that using the computed bids, computing the bids using the 

individually expressed β’s (third subsection). We then shift the focus from the experimenter’s 

point of view to that of the policy-maker’s by constructing a counterfactual in terms of the 

information available on bidders’ costs (fourth subsection). We do this by assuming only average 

costs used in the experiments, a single-point overall average cost and a four-point quartile cost 

distribution.  Recall that the quartile cost information was also that provided to the bidders 

themselves.  

Using the BC model to examine whether it can predict ex-ante the economic performance 

of a tendering mechanism warrants further explanation. The question is this: can model predictions 

based on experimental results provide a reliable basis for predicting the performance of a budget-

constrained tender? That is, instead of evaluating the tender ex-post, after the bids have been 

received, we would like to know whether an ex-ante evaluation, based on predicted bids rather 

than actual bids, is possible. The rationale for this is provided in Table 1.  

 

Table 1 about here 
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Table 1: Use of the BC model for predicting the performance of a BC tender 
 
Knowledge by 
procurer  

Costs (and N) Bid caps 
β 

Computed bids 
b* 

Auction 
performance 

Pre-
experimental 
knowledge  

cQ  (and NQ) 
or 

cA  (and NA) 

 
--- 

 
--- 

 
--- 

Experimental 
knowledge 
 

 
ci (experimental) 

 
βi = fi (ci) 

 

 
bi* = fi (ci, βi) 

Experimental 
auction,  

based on bi* 

Post-experim., 
pre-auction 
knowledge 

cQ 
or 
cA 

βQ = fi (cQ) 
or 

βA = fi (cA) 

bQ* = fi (cQ, βQ) 
or 

bA* = fi (cA, βA) 

Based on 
bQ* or bA* 

Post-auction 
knowledge 
 

cQ 
or 
cA 

 
--- 

 
--- 

Based on 
actual bids 
from the 

field 
N = amount of Nitrogen abated 

 

The key issue is the information available to the procurer agency. In terms of the BC 

model, the only information a government agency can reasonably be assumed to have is some 

rough estimate of the participation costs incurred by program participants. Of course, this 

information must be sufficiently rough and inaccurate for a cost-revealing mechanism to be worth 

implementing; otherwise, the conservation contracts could be priced as a function of participation 

costs. In the analysis that follows, we examine two limited-information scenarios:  

- A minimal information scenario, where the procurer only has a single point estimate of the 

overall average cost of implementing the environmental program: this can be understood as 

representing the participation costs of a typical, average farm in the policy region. 

- A medium information scenario, where the procurer has been able to obtain a four point 

estimate of program implementation costs, and which represents the quartile distribution. 

Recall that bidders in the experiments were given this level of information on the 

distribution of costs, by telling them only which cost quartile they belonged to.  

The procuring agency is assumed to have one or the other level of information. We call the single-

point cost estimate the ‘average cost scenario’ or ACS and the four-point cost estimate the ‘quartile 

cost scenario’ or QCS. The costs in the ACS case will yield a single estimate of β, the average 
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expected bid cap, and a single bid estimate, the overall average bid, which will be used to 

determine the auction’s performance.  

In the absence of experimental implementation, the model could not be directly used for 

policy guidance other than in broad qualitative terms. The extra information provided by its 

experimental implementation is the dependence of theβ’s on individual costs: indeed, the model 

provides no β-theory on the formation of bid cap expectations, which underlie bid formulation. 

Transposing this relationship from the experimental setting to the field is of course fraught with 

danger and subject to the ‘external validity’ criticism (Schramm, 2005; Guala and Mittone, 2005); 

the danger is however minimized if the extrapolation, as we shall clarify shortly, is kept under 

control. The β = f(c) relationship, empirically estimated using the experimental data, is then 

applied to whatever knowledge of costs, ‘average’ or ‘quartile’, is available, and the optimal bid 

formula in equation (3) is then applied to estimate the bids. These are then used for computing the 

performance criteria of the institution, such as budgetary cost-effectiveness and the rate of bidder 

information rents.  

 Underlying this approach are careful assumptions on the distribution of information. 

In general, in experiments for test-bedding tendering mechanisms, there are four players: the 

experimenter, the policy maker, the experimental bidders, and the bidders in the field. Deciding 

who knows what is crucial to the validity of the analysis. In the present case, the distinction 

between experimental and field bidders is not essential, whereas that between the experimenter and 

the policy maker is. We simulate the latter’s information level by assuming unknown what the 

former knows; namely, the experimental βi’s and the experimental bids bi. The policy maker, 

instead, can only know the computed average bA* or quartiles bQ*, depending on the information 

scenario. The experimenter can then evaluate the performance of the institution by comparing its 

estimate using the experimental bids and its estimate using the computed bids. The focus is on the 

direction and order of magnitude of the ‘error’ made by using the computed bids. It is the analysis 

of that ‘error’ which provides the information necessary for policy guidance. 
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The raw experimental data are provided in Appendix II. 

 

How well does the BC model predict the one-shot tender?  

The two frames in Figure 1 plot predicted optimal bids against experimentally observed 

bids for the BC auction in replicates K and P. Optimal bids were computed for each bidder using 

equation (3”). The 45 degree line represents perfect prediction, if all data points were situated on it. 

The closer the linear coefficient is to 1.00, the better the fit, provided the coefficient’s t statistic is 

good enough. Two things can be observed. Firstly, prediction is less than perfect, as one would 

have expected. Secondly, the model underestimates the experimental bids in K slightly but 

systematically, the linear fit being everywhere above the 45 degree line.  

Figure 1 about here 
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Bid prediction: K1

b = 0.93(b*) + 25
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 Figure 1: One-shot model performance: First-round theoretically computed versus experimentally 
observed bids in K and P for a BC auction.  The 45 degree lines of perfect fit are shown. The *** 
indicate significance at the 1% confidence level.  
 

One feature of the model may explain this slight overbidding: bidders are assumed in 

equation (3) to be risk-neutral. The bidders in the K experiment were found to be somewhat risk-

prone, with an average certainty equivalent ratio of 107%, slightly greater than the 100% reflecting 

risk neutrality. This may partly explain the underestimation of the model, since risk-prone bidders 

can be shown to optimally over-bid relative to risk-neutral bidders. 
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The P data confirm this. P participants were risk-averse, with an average certainty 

equivalent ratio of 88%, and the model no longer underestimates the bids, but rather, as expected, 

overestimates them. However, in both K and P experiments, the linear fit has a smaller slope than 

1, the 45 degree line, with the difference more marked in P. The BC model slightly predicts low 

bids higher than it does high bids. This is because the model computes optimal bids which, as 

mentioned in section 3, reflect higher bid shading for low cost bidders than for high cost bidders. 

Although these results are statistically significant at the 1% level in both replicates (Figure 1), the 

K results appear to be more reliable, probably because of the larger number of participants (44 

instead of 27 in P). Specifically, as reflected by a higher R2 (0.83 instead of 0.61), the K bids are 

less dispersed than in P along the 45 degree line.  

 

How robust is the BC model to repetition and potential bidder learning?  

In order to obtain some insight into the predictive capacity of the BC model with repetition, 

we first pooled the data for the three bidding rounds and conducted the following regressions for 

each treatment: Actual (experimental) bids = f (optimal bids, round dummies, risk attitudes, 

environmental attitudes), where the last two variables were informed by the pre-experimental 

surveys; the dummies were defined for each round to allow the pooling of data over multiple 

rounds. The results, reported in Table 2:  

• show that a learning effect over the three repetitions is manifest provided the data 

set is large enough: when both K and P data are pooled together, as well as with the 

largest of the two data sets, the K set (N = 115);  

• reveal an influence of risk attitudes on bidding behaviour;  

• reveal only a weak effect of environmental attitudes on bids.  

The negative sign of the environmental attitudes coefficient suggests that more conservation-

oriented bidders tender lower bids on average. Although this is only a weak effect, it does meet 

one’s expectations, given that the experiment was conducted within a resource-conservation 

context. The two other trends suggested by Table 2 also meet our sign expectations: higher risk-
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averse bidders tend to bid lower, and bids tend to increase, on average, with repetition. These 

indicate the existence of a learning effect to the extent that costs do not increase over rounds; as a 

result, bidder information rents increase instead.  

 

Table 2 about here 

Table 2: Statistical test for the quality of bid prediction by the BC model in K and P (all three 
rounds combined) 

Equations: Actual bid = A*Optimal bid + B*Round dummy + C*Risk + D*Env  

Regression coefficient              
(t - statistics)  

 
 
 

Treatment 
Optimal 

bid 
Repetition 

effect 
Risk 

proneness 
Conservation  

oriented 

 
 
 
 
 

 Model 
R²  
 

K+P  
(n = 190) 

0.86***  
(24.1) 

10.60***  
(3.81) 

0.30***   
(5.21) 

−4.46**         
(−2.13) 0.96 

K  
(n = 115) 

0.89***    
(20.6) 

9.90***   
(3.14) 

0.24***   
(3.22) NS 0.97 

P  
(n = 75) 

0.82***  
(14.3) NS NS NS 0.94 

      Legend : NS  = non significant  
  *** = significant at 1% level  
  **   = significant at 5% level  

 

By un-pooling the data and considering each round successively, it is possible to see 

whether the model’s capacity to predict the experimental bids is maintained or deteriorates. As 

Table 3 shows, the results are not consistent across the two replicates. The K data set reveals a 

steady decline in the capacity of the model to accurately predict the experimental bids: indeed, the 

regression coefficient increases its distance from the maximum value of 1 (by 0.07; 0.16 and 0.22). 

Given that the regression constant increases, we are seeing the experimental bid curve gradually 

becoming more horizontal than the predicted bid curve: the model increasingly under-estimates 

low-cost bids. The P data show no such trend.  

Table 3 about here 
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Table 3: Quality of bid prediction: b = f(b*):  b = u(b*) + cst  using individual βi’s 

       
 K1 K2 K3 P1 P2 P3 
Coefficient 0.93 0.84 0.78 0.79 0.83 0.83 
t statistic 14.4 9.0 12.7 6.3 9.3 8.3 
Regr. constants  25 62 66 NS NS NS 
       

Notes:  All linear coefficients are significant at the 1% confidence level.  

The regression constants in the P data set are not statistically significant.  

 

The predictive capacity of the model can be envisaged from another angle, by considering 

the dispersion of bid predictions over the three bidding rounds. Table 4 (rows 1, 2 and 3) first 

compares the coefficients of variation of observed and computed bids. If the difference between 

them increases over rounds, then the predictive capacity of the model can be said to deteriorate. 

Again, the K and P data do not tell the same story. The K data show a deteriorating trend while the 

P data do not.  Row 4 measures the mean of the absolute difference between the computed and the 

observed bids. It does not reveal any consistent increase over the three rounds, in neither of the two 

replicates. From this perspective, it does not appear that the BC model loses much of its predictive 

capacity with repetition. Bid computations were of course done in the spirit of the LH 1997 model: 

in each round bidders were asked to provide their estimate of the bid cap (thus βi
1, βi

2 and βi
3) and 

these, as well as their individual costs (ci
1, ci

2 and ci
3), were used to compute the predicted bids in 

each round.  

 

Table 4 about here 
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Table 4 : Dispersion of bid predictions over the three bidding rounds 

   K data   P data  

#  K1 K2 K3 P1 P2 P3 

1 CV (observed 

bids) 

40% 29% 26% 43% 32% 36% 

2 CV (computed 

bids)  

43% 35% 36% 44% 35% 38% 

3 CV(obs) – 

CV(cmp) 

3% 6% 10% 1% 3% 2% 

4 mean (cmp. – 

obs.) 

€23 

($37) 

€37 

($59)  

€31 

($49) 

$35  $21 $24  

        

Legend: CV = coefficient of variation  SD   = standard deviation   
 cmp = computed bids  obs = observed bids  
Note: 1 €  = $1.60 approx. at the time of writing  
 
 

This lack of deterioration in the model’s predictive capacity is somewhat surprising, given 

the evidence that bidders are learning the implicit reserve price. How can this be explained? The 

only possibility, given the fact that bids depend here only on costs and expected bid caps, is that 

some adjustment is happening in how this dependence operates. A natural hypothesis to make is 

that, as bidders learn, their bids should depend less on their costs and more on their bid cap 

expectation. Is this the case?  

As Table 5 shows, this is indeed the case for the K data set, at least regarding the falling 

dependence on costs. This trend is also visible in the P data, though less clearly. The corresponding 

rise in dependence on the bid cap expectations is also apparent, though less marked than that on 

costs. In fact, the main changes happen after the first round, with the changes between the second 

and third rounds being less marked. Nevertheless, it can be said that bids do indeed show a 

tendency to form by gradually shifting the weight from cost information to bid cap expectations. A 

greater number of experimental repetitions would probably clarify and settle this point. 

 

Table 5 about here 
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Table 5 : Linear coefficients u and v of b = f(c, β) = u.c + v.β + cst  

       (t-statistics given between brackets) 

   K data    P data  
  K1 K2 K3 P1 P2 P3 

       
Cost 
coeff. 

0.64 
(8.86) 

0.30 
(3.80) 

0.26 
(6.23) 

0.81 
(14.05) 

0.47 
(4.92) 

0.62 
(7.03) 

       
Beta 
coeff. 

0.25 
(3.30) 

0.72 
(6.65) 

0.60 
(9.58) 

0.12* 
(2.57) 

0.34* 
(2.59) 

 
(NS) 

       

Constant 42 
(3.21) 

 
(NS) 

37 
(3.34) 

42 
(2.67) 

47** 
(2.00) 

76 
(3.22) 

 Results with an * mean significant only at the 5% confidence level. 
Results with an ** mean significant only at the 10% confidence level. 
Results with no asterisk are significant at the 1% confidence level.   

 

The next step in understanding the experimental results is clear: the results above beg a 

closer analysis of how bid cap expectations are formed – something about which, we may 

remember, the LH (1997) model has nothing to say: it provides no ‘β-theory’. Do the experimental 

results provide us with any insights? Do the expected bid caps evolve in any specific way? As 

shown in Table 6, the average absolute difference between individual expectations and the actual 

cut-off bid (the marginal bid) falls from the first to the third round, by 45% and 58% in the K and 

P replicates, respectively. This fall shows that bidders in both replicates adjust their expectations of 

the bid cap (the maximum acceptable bid), reflecting some learning of its position.  

 

Table 6 about here 

Table 6: Average absolute difference between expected and actual cut-off bids in % of the actual 
cut-off bid 

Replicate Round 1 Round 2 Round 3 

K 29% 20% 16% 

P 43% 26% 25% 

 

 

This raises a question regarding the behaviour of the expected βi over successive rounds, as 

observed in the experiments. Figure 3 tells an interesting story. It shows, first, that their individual 
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distribution depends on the cost-related information available to bidders, the cost quartile to which 

each bidder knows he or she belongs. On average, high cost bidders expect the bid cap to be higher 

than low cost bidders. That is, expected bid caps are an increasing function of one’s own known 

costs. Secondly, the bids appear to approximate a normal distribution around the quartile mean. 

Note that this is totally independent of the BC model’s assuming a uniform distribution of where 

the bid cap might lie, which holds for an individual bidder, not across bidders. Thirdly, the 

variance of the bid cap expectations falls with higher known costs, and remains true across 

repeated rounds. Fourthly, the variance of bid cap expectations falls with repetition. These last two 

results can be observed by comparing the two panels in Figure 3.  

Whereas this fourth result can easily be attributed to bidder learning, the third result can 

not. The decrease in variance with knowledge of higher costs is simply due to the smaller margin 

between one’s known cost and the maximum acceptable bid which appears most likely to the 

bidder, given her knowledge of the budget constraint and the number of bidders. This also explains 

why βQ’s increase with costs on average.  

 

Figure 3 about here 

K1 : Expected bid cap distribution 
by cost quartiles
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Figure 3 : Influence of repetition on the distribution of bid cap expectations 

 

 Can we go any further? How exactly do the β’s depend on costs? To answer this question, 
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the relationship between individual βi’s and the corresponding individual costs ci was investigated. 

In round 1, the K replicate yielded the following relationship: 

β = 0.53 c + 133       (6) 

and the P replicate yielded 

β = 0.44 c + 180        (7) 

In both cases, the statistical fit was quite poor (low R2 and low statistical significance of the c 

coefficient), but the two samples do yield similar relationships. The value of the constants 133 and 

180 are somewhat larger than the average costs of about 125. Across the two samples, an average 

β would equal 200 and 235 respectively, a difference of 8%.  

 However, the quality of these relationships is also subject to how the cost coefficient 

behaves over repeated rounds. Table 7 yields bad news. For one to have some faith in this 

relationship, one would like the trend in the cost coefficient to be consistent across the two 

replicates and, secondly, to show a monotonic trend over repetitions. Neither of the two happens. 

The K replicate exhibits an imperfect downward trend and the P replicate exhibits no trend at all.  

Table 7 about here  

Table 7 :  Linear fit of β = f(c) = u.c + cst, using individual experimental data  

β = u.c + 
cst Round 1 Round 2 Round 3 

    
K data 

(t statistic) 
0.53c + 133 

        (4.69) 
0.38c + 170 

       (3.46) 
0.39c + 156 

       (4.48) 
    

P data 
(t statistic) 

* 0.44c + 180 
       (1.94) 

0.49c + 157 
       (4.39) 

0.43c + 163 
       (4.04) 

The * indicates significance at the 6% confidence level only. All other results are significant at 1%.  

 

The conclusion is clear. With the information available from our experiments, it is not 

possible to produce a β-theory; that is, a theory describing the formation of bid cap expectations by 

bidders, based on their imperfect knowledge of costs. For the time being, we only have at our 

disposal some empirical relationships. If we interpreted the results of Table 7 as indicating 

invariance of β formation given the parameters of the tender (budget constraint, number of bidders 
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and cost distribution), then, at the very most, one could formulate an average relationship, formed 

by taking the average of all the coefficients over both replicates, yielding:  

 β = 0.44 c + 160        (8)  

 

 Based on the empirical relationships of Table 7, we can construct Table 8 which will be 

needed in the next section for examining the capacity of the BC model to predict the institution’s 

performance. Since the policy maker will be primarily interested in knowing in advance whether to 

initiate the process or not, we shall focus on first round results only.  Columns (1), (2), and (3) in 

both data sets K and P represent actual experimental data, costs, bids and expected bid caps 

respectively. Column (4) is directly computed using the relationships in Table 7 and the costs in 

column (1). Column (5) shows the quartile-specific average of the individually computed bids, 

using equation (3”). Column (6) computes an average quartile-specific bid using columns (1) and 

(4) and equation (3’).  

 

Table 8 about here  

Table 8: Computations for assessing the model’s predictive performance, given limited 

information on bidder costs 

 (1) (2) (3) (4) (5) (6)   (1) (2) (3) (4) (5) (6) 
K1 

Quartiles 
Ave 
ci 

Ave 
bi 

Ave 
βi βQ 

Ave 
bi* bQ*  

P1 
Quartiles

Ave 
ci 

Ave 
bi 

Ave 
βi βQ 

Ave 
bi* bQ* 

Q1 24 112 157 146 92 85  Q1 24 68 204 191 114 107 

Q2 88 131 162 179 125 134  Q2 89 143 198 219 144 154 

Q3 159 195 213 217 186 188  Q3 160 181 206 250 183 205 

Q4 228 254 251 254 240 241  Q4 240 261 292 286 266 263 

               
Ave K1 123 174 196 198 160 161  Ave P1 122 157 223 234 172 178 

 

 
 
How well does the BC model predict the institution’s performance?  

The previous results form the groundwork necessary to examine whether the BC model is 

sufficiently reliable to be used for guiding environmental policy when a tendering system appears 

to be a reasonable option.  In this respect, the following results add to those obtained by Schilizzi 

and Latacz-Lohmann (2007).  We analyse the performance of the tendering institution in the same 



 

 24

terms as these authors, with the additional criterion of ‘% N abated’, a measure of the quantity of 

environmental service provided (see fourth criterion in Table 9). This percentage is defined as the 

amount abated by bidders accepted into the scheme relative to the amount that would have been 

abated had all bidders participated. Also, we limit ourselves here to round 1 since the policy maker 

will be primarily interested in knowing in advance whether to initiate the process or not.   

 Table 9 first provides the performance estimates as a function of the information available 

on bidders’ costs (both panels A for replicates K and P). This information on costs decreases from 

left to right. The first two columns represent the information known to the experimenter while the 

third and fourth columns represent that known to the policy maker. Panels B (for both replicates) 

take the institution’s performance measured with actual experimental bids (column 1) as a 

benchmark for assessing the performance estimated with the three computed bids (columns 2 to 4). 

Panels C and D consider a counterfactual aspect of the model’s predictive performance: whereas 

columns (3) and (4) use the average or quartile cost information for evaluating performance, as 

known to the policy maker, columns 5 and 6 evaluate performance using the real costs (and βi’s) 

known to the experimenter, as if evaluating the policy-maker’s own assessment. That is, to what 

degree would the assessment of the tender be ‘off’ compared to what it would be had the 

underlying costs been known. Although hypothetical in nature, since such knowledge of costs 

would undermine the need for a tender in the first place, this, as we shall see, is an informative 

counterfactual.  

  

The model’s predictive capacity from the point of view of the experimenter. In terms of the model’s 

predictive capacity using the experimentally observed βi’s, both replicates K and P perform 

roughly as well (Table 9, columns 1 and 2 in panels B): the modelled predictions are never off by 

more than 10% on any of the performance criteria. The results are all statistically significant at 

least at the 5% confidence level. There seems to be no systematic trend of over- or under-

estimation of model performance across the two replicates. Given our experimental data, the BC 
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model, implemented with bids computed using individually known βi’s, predicts auction 

performance with an error of less than 10% compared to what it would have predicted if real (ex-

post) bids were used.  

 

The model’s predictive capacity from the point of view of the policy maker. By contrast, when 

simulating the policy maker’s limited information on costs, the K replicate yields ‘better’ results 

than the P replicate, particularly in the QCS scenario (Table 9, column 3 in panels B). In the K 

replicate, estimating the institution’s performance using only a four-point estimate of bidder costs 

leads to surprisingly accurate predictions when column one (real bids) is taken as a benchmark: 

they are never off by more than 2%. On the other hand, the predictions in the P replicate can be out 

by as much as +42% for bidder information rents (the amount they are paid over and above their 

participation costs), in this case grossly over-estimating them at the rate of 2.09 relative to the 

‘real’ measure of 1.47.  

 Column (4) reveals that if information on bidders’ costs is limited to a single (average) 

point estimate, then model predictive performance is unreliable. In both replicates, results can be 

off by more than 20% on any of the performance criteria.  

     

Assessing the policy-maker’s assessment of the tender’s performance. When discussing the results 

for the ‘average’ and ‘quartile’ scenarios in panels A, we were doing so in terms of what we may 

call their ‘apparent’ performance; that is, in terms of  the performance criteria as measured using 

cost information assumed known to the policy maker. Panels C examine predictive performance 

using the individual costs known to the experimenter but not to the (simulated) policy maker, and 

panels D take the corresponding measures in panels A as a benchmark for panels C. Thus the 

budget cost-effectiveness of 2.69 in panel C of K (column 5) compares to the corresponding 

‘quartile’ measure of 2.66 in panel A of K (column 3) to the ratio of 0.99, shown in panel D. When 

considered from this vantage point, model performance (as opposed to the institution’s 

performance) using quartile cost information is remarkably accurate in both replicates (never off 
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by more than 6%), while the model using the single-point ‘average cost’ information performs 

poorly on all criteria, being off by at least 30% (budgetary cost-effectiveness in K) and by as much 

as 61% (information rents in P). This means that if only single point cost estimates are known, the 

performance predicted by the model will appear to be much higher or much lower than it really is. 

By contrast, such over- or under-estimates of institution performance are small if quartile cost 

estimates are known, at least on the basis of our experimental results.  

 

Conclusions regarding model capacity to predict the institution’s performance 

 

 From the results described above, three things stand out. The BC model predicts well, as 

already discussed in an earlier section, when individual βi’s, as expressed by the bidders 

themselves, are known. Table 3 showed the fit to the 45 degree perfect prediction line to be close 

to 1 with high statistical significance.  Second, the K replicate shows that, when cost quartiles are 

known, and thereby the corresponding four βQ’s, the model predicts nearly as well as when 

individual βi’s are known, whereas model performance deteriorates significantly when only one 

cost estimate (and therefore only one βA) is known. Thirdly, the P replicate does not yield as good 

measures of model predictive performance as the K replicate. This may be due to specific bidder 

behaviour or to the size of the bidding populations, or both. The K sample was 63% larger than the 

P sample (44 versus 27) and more homogenous: all students were of the same class, whereas the P 

sample included students with different backgrounds and academic levels. The K results are likely 

to be more reliable than the P results. 
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From the experimenter’s (and theoretician’s) point of view, if one provides the BC model 

with information on individual bidder costs and bid cap estimates, as per the model proposed by 

LH in 1997, then the model predicts experimental bids reasonably well, unless bidders have a high 

degree of risk aversion. In that case, the risk-neutral optimal bids are no longer a good enough 

approximation.  

The model predicts reasonably well only to the extent that it uses information unknown to 

the client, the policy maker. Individual costs and bid cap estimates are unknown.  However, if the 

policy maker has quartile information on bidders’ costs, the errors he will make in estimating the 

institution’s performance are likely to be small: this estimate will not be very far from that which 

he would have obtained had he known individual costs more accurately.  

This encouraging conclusion does not carry through to single-point cost estimates, which 

lead to errors in performance predictions that can differ significantly from those which would have 

been obtained with better knowledge of bidders’ costs. To make matters worse, our results do not 

allow us for the time being to specify the direction of these large errors: they could as easily be 

over- or under-estimates.  

These conclusions can be summarized by saying that it is worth the policy maker’s effort 

(and cost) to gather a certain amount of information on the variability of costs across potential 

bidders before running a conservation tender: too little information will not allow him to assess 

whether using a tendering mechanism is a reasonable policy given existing alternatives, and too 

much information will make the use of a tendering mechanism redundant, in addition to incurring 

high collection costs. Determining the amount of information that needs to be collected – quartiles, 

quintiles or deciles, for example – is a question beyond the scope of the present paper, but would 

depend, among other things, on the costs of collecting that information, which is likely to be highly 

specific to the policy region. However, on the basis of our results, it is reasonable to recommend as 

a rule of thumb that the procurer obtain a three or four point distribution of cost-estimates in the 

target region.  
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VI. CONCLUSIONS  

Summary of results 

 In a paper published in 1997 in the American Journal of Agricultural Economics, Latacz-

Lohmann and Van der Hamsvoort (LH) proposed a model for budget-constrained auctions to fill a 

gap existing in the literature. While auction theory has mostly focused on target-constrained 

auctions, government-funded tenders for allocating conservation contracts to landowners have 

nearly always been carried out under a budget constraint. The LH model subsequently inspired 

conservation-oriented tendering programs, the BushTender program in Victoria, Australia, being a 

notable example (Stoneham et al., 2003). Because of its ‘advisory’ success, the present paper 

investigates how reliable the LH model really is for guiding environmental policy.  

 The first requirement is that an economic model make reasonable assumptions about 

people’s behaviour, in this case, bidding behaviour. Accordingly, controlled experiments with 

university students were carried out in two different countries that simulated the conditions of the 

conservation-oriented budget-constrained (BC) tendering mechanism. In addition, three 

consecutive rounds were carried out to see whether repetition induced any noticeable effects. 

Given the information assumed known in the model by bidders, and reproduced in the 

experiments, the first question was whether bids computed using the model predicted the 

experimental bids to a satisfactory degree. This was found to be true not only in the first round, but 

also in subsequent rounds. To the extent that evidence of bidder learning was found to be 

happening, the BC model appears to maintain its capacity to predict actual bidding behaviour at 

least over three repetitions, and this, in spite of the fact that, as shown in Schilizzi and Latacz-

Lohmann (2007), the performance of the institution itself deteriorates.  

This result was somewhat intriguing and was therefore further investigated. In particular, 

the way bidders collectively adjust their bidding strategies was studied, and revealed that, in the 

terms of the BC model, bidders progressively shift the emphasis in bid formation from using 

information based on their own (roughly known) position in the cost distribution to that based on 

their bid cap expectations. Given that the cost distribution remained unchanged across the three 
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rounds, this naturally led to investigate how bid cap expectations evolve. Here, however, the 

experimental setup, and the BC model itself, showed its limits: no consistent pattern was 

discernible regarding the formation of bid cap expectations, at least not in terms of the only piece 

of information allowed, the bidders’ own roughly known cost positioning (cost quartiles). 

However, a clear set of empirical relationships was established, and was used for the next step in 

the study.  

A theoretical model by itself can only be useful for guiding policy in broad qualitative 

terms. This study investigated whether combining a theoretical model with results from 

appropriately designed experiments could lead to improved information for policy guidance. The 

answer seems to be yes. The difference between the experimenter and the policy maker is the 

nature and quality of the information available. The experimenter can help the policy maker by 

comparing experimental results with and without certain pieces of crucial information. In this case, 

the crucial information refers to bidders’ participation costs, as well as their bid cap expectations. 

Whereas the policy maker only has rough average estimates of the first and no information on the 

second, the experimenter has accurate information on both. The question was, could the BC model 

be used to predict the performance of a BC tendering mechanism given that other competing 

policy mechanisms might also be available?  

It was found that insufficient information about bidders’ costs led to performance 

predictions that differed markedly from those made with full experimental information. It appears 

a certain amount of information needs to be collected before being able to decide whether a BC 

tendering mechanism will perform satisfactorily or not, using performance criteria such as budget 

cost-effectiveness or the rate of bidder information rents. At the same time, however, having too 

much information on costs defeats the purpose of a tender since contracts can then be priced as a 

direct function of the known costs.  

   

Implications for policy 
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 Some clear conclusions result from this study for policy purposes. This paper does not 

explicitly study how a budget-constrained tendering mechanism compares with other institutional 

mechanisms. Schilizzi and Latacz-Lohmann (2007) addressed one aspect of this question by 

making the comparison with traditional fixed price schemes. The present work does however 

provide information as to what a policy maker would need to do in order to know whether going 

ahead with a specific type of tender was likely to be worth it or not.  

 If the procurer has decided to use a budget-constrained tender, provided the stakes are high 

enough to warrant the associated expenses, it is suggested he use the skills of the appropriate 

specialists to simulate, in controlled lab experiments, the conditions of the projected tender: ratio 

of budget to number of eligible bidders, number of repetitions projected, if any, and appropriate 

cost distributions.  He should invest some (limited) effort in collecting some information about the 

distribution of bidders’ likely participation costs, which will usually be done on a mixture of 

science-based analysis of the environmental works needed and of information on landholders’ 

properties already available. Estimates of minimum and maximum possible participation costs 

would help define boundaries to the cost distribution in the target region. In the future, with 

sufficient experience and controlled experiments, it may even be possible to apply a sort of 

‘benefit transfer’ approach and not need to run further specifically designed experiments: 

knowledge of the key tender parameters may suffice for predicting the value of running a tender.  

 In the meantime, the use of the BC model designed by LH in 1997, coupled with results 

from its appropriately designed experimental implementation, should provide useful guidance for 

knowing whether a specific BC tender is likely to perform satisfactorily or not, using performance 

criteria such as those proposed by Schilizzi and Latacz-Lohmann (2007). The key insight from this 

study is that the value of running such a tender depends critically on the knowledge of bidders’ 

participation costs.  

 

Limitations and further research 
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 We end this paper by critically reviewing the key results and highlighting their limitations. 

The BC model proposed by Latacz-Lohmann and Van der Hamsvoort (LH) in 1997 appears to 

either under-estimate or over-estimate the experimental bids. It would appear, given the 

information collected from experimental subjects, that risk aversion could be a determining factor. 

The version of the 1997 BC model used was the risk-neutral formulation; it would be interesting to 

make explicit the general formulation of the risk-averse version and check whether risk attitudes 

do indeed explain the discrepancies observed using risk-neutral optimal bids. An interesting 

extension of the experimental setup would be to sort a large enough population of participants into 

groups with different levels of risk aversion, previously measured. However, this is probably an 

issue of secondary importance, as the discrepancies were small.  

 A second extension would be to computerise our pencil-and-paper experiment and examine 

a greater number of repetitions, in particular to see whether a specific pattern in the evolution of 

bid cap estimates emerges, which might suggest the ‘β-theory’ the BC model presently lacks. 

What information do bidders use when trying to guess the bid cap? Several exploratory statistical 

analyses of the experimental data were carried out, but to no avail; probably because of the way 

the experiments were designed. They aimed at testing the existing model, not at developing it 

further. The existing model only suggests costs and one’s own past bids as relevant information; 

but there could be other sources of relevant information.  

Thirdly, the BC model gives equal weight to both the known costs and the expected bid 

caps, but it must be remembered that it formulates optimal bids rather than learning bidders. It 

would therefore be necessary, in a future study, to know if after many repetitions where, in each 

round, bidders express their bid cap expectations, the relative weights tend towards a fifty-fifty 

split or not. If such were not the case after controlling for the risk aversion effect, it would, a 

posteriori, invalidate the assumption of uniform distribution made by the model about individual 

bid cap expectations.    

The fact that the BC model formulates optimal bids rather than ‘learning bids’ and yet 

manages to predict experimental bids satisfactorily must be set against the fact that it maintains its 
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predictive capacity over several repetitions where evidence of bidder learning is manifest 

(Schilizzi and Latacz-Lohmann, 2007). Does this lead to a contradiction? How can there be 

learning going on if the model, computing optimal “fully learned” bids predicts well in the first, 

inexperienced round? This would mean bidders bid optimally from the start and had nothing to 

learn. Is it that ‘learning’ is not the correct interpretation of what is going on? Or are there different 

types of learning, as clearly described for instance by Brenner (1999), and bidders in the 

experiments do not ‘learn’ in the terms allowed by the formulation of the BC model? As often 

happens in science, it could be those terms in which the problem is framed that may be creating the 

problem.    

Paul Klemperer, a widely cited auction specialist, is known to have stated that auctions are 

an excellent institution for studying all kinds of economic behavior (Klemperer, 2004: chapter 2). 

The depth of perspective provided by our experimental results seems to confirm Klemperer’s 

judgment. In spite of extensive analysis, we cannot say to have exhausted the possibilities made 

available by our data.  
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Table 9: Comparative predictions of auction performance for K and P, round 1  

 Column number (1) (2) (3) (4)  (5) (6) 

K1 Actual   Predicted (apparent) performance  
      Real but unknown 
predicted performance 

 Panel A bi Bi Beta-Q Ave Beta Panel C Beta-Q Ave Beta 
Performance criteria Measure Real bids Indiv Beta's 4-bid estim 1-bid estim 4-bid estim 1-bid estim 
Budg. Cost-Effectiveness Payts / kg N 2,72 2,56 2,66 2,68 2,69 3,83 
Econ. Cost-Effectiveness Opp Costs / kg N 1,67 1,71 1,68 2,06 1,65 1,41 
Information Rents Payts / Opp Costs 1,62 1,50 1,58 1,30 1,64 2,71 
Environ. Effectiveness % N abated 54% 58% 55% 55%   
        
    Using real bid performance as benchmark       Apparent / real ratio 
 Panel B bi Bi Beta-Q Ave Beta Panel D Beta-Q Ave Beta 

Performance criteria Measure Real bids Indiv Beta's 4-bid estim 1-bid estim 
4-bid 
estim 1-bid estim 

Budg. Cost-Effectiveness Payts / kg N 1,00 0,94 0,98 0,99 0,99 0,70 
Econ. Cost-Effectiveness Opp Costs / kg N 1,00 1,02 1,00 1,23 1,02 1,46 
Information Rents Payts / Opp Costs 1,00 0,92 0,98 0,80 0,97 0,48 
Environ. Effectiveness % N abated 1,00 1,07 1,02 1,00   
        
            Real but unknown 

P1  Actual   Predicted (apparent) performance  predicted performance 
 Panel A bi Bi Beta-Q Ave Beta Panel C Beta-Q Ave Beta 

Performance criteria Measure Real bids Indiv Beta's 4-bid estim 1-bid estim 
4-bid 
estim 1-bid estim 

Budg. Cost-Effectiveness Payts / kg N 2,49 2,49 3,15 3,03 3,21 4,70 
Econ. Cost-Effectiveness Opp Costs / kg N 1,69 1,86 1,51 2,07 1,45 1,24 
Information Rents Payts / Opp Costs 1,47 1,34 2,09 1,46 2,22 3,78 
Environ. Effectiveness % N abated 58% 56% 44% 48%   
        
    Using real bid performance as benchmark       Apparent / real ratio 
 Panel B bi Bi Beta-Q Ave Beta Panel D Beta-Q Ave Beta 

Performance criteria Measure Real bids Indiv Beta's 4-bid estim 1-bid estim 
4-bid 
estim 1-bid estim 

Budg. Cost-Effectiveness Payts / kg N 1,00 1,00 1,27 1,22  0,98 0,64 
Econ. Cost-Effectiveness Opp Costs / kg N 1,00 1,10 0,89 1,23  1,04 1,66 
Information Rents Payts / Opp Costs 1,00 0,91 1,42 0,99  0,94 0,39 
Environ. Effectiveness % N abated 1,00 0,97 0,76 0,83    
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APPENDIX I  

Pages 2 and 4 of the Budget-Constrained Auction sheet in P 
(Page 1 provided the ‘story’ and the motivation.) 

 
Individual farm data (page 2)  
to work out the costs of your participation in our P River protection program.  
 
Suppose you are a horticulturalist and producing vegetables for P. Output as a function of 
NP fertiliser use is given by the following graph:  

 
       80 kg                 NP*=  kg NP/ha 
 
The optimal fertiliser amount maximises value of output minus cost of inputs (NP 
fertilisers).  
 
This results in the following:  
 With NP = 80 With NP* Difference  
 
Net revenue ($/ha)  
 

 
 

  
 

 
My costs of participation are ………………… $/ha (= the income difference)  
 
Important:  

• Your costs of participation are known only to you and your private adviser; they are 
not known by the environmental authority, or anyone else.  

• Your competitors all have different participation costs. So that you may have a 
better idea of how you compare relative to your competitors, we give you the 
following information: you are in one of the following four quartiles:  

 
 
 

  

                 
        lower quarter           second quarter  third quarter  upper quarter    

 
(Page 3 provided “some advice from your private consultant”)  

Tonnes /ha 

Optimal  
NP-Fertilisation 

Contract-limited 
NP-Fertilisation 

Loss in yields 
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Bidding sheet (page 4) 
 
Now it is time you put in your bid. Please first write in your full name. We shall need it to 
pay you your gains if you are among the winners.  
 
 
 
Name: ………………………………………………………………………… 

               
 
 
1)  First please write down the highest possible bid you believe will be accepted. This must 
be your best guess:  
 
 
 
Highest acceptable bid (best guess):  ............................................................ $/ha 
 
 
 
2) Now please write in the amount we must pay you so that you accept to participate in our 
P River protection program:   
 
 
 
Your bid: ..........................................................................................................  $/ha 
 
 
 
The selection of participants will be made on the ground of their bid in $/ha. The lowest bid 
will be selected first, then the second lowest, then the third lowest, and so on until the 
available budget of $2300 is exhausted.  
 
 
For paying the winners in real money, the following rules hold:  
 

• The successful bidders will be paid, not their bid, but the gains from their 
participation in the program, that is: bid minus participation costs.  

 
• Unfortunately, because of limited research funds, we cannot pay out the full value 

of the gains, but only a fixed percentage of the gains. This percentage will be 
calculated after the end of the bidding session. Of course, the higher your gains, the 
higher your proportional payment. For this session the funds we have available for 
payment to this group total an amount of approx. $300.   
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APPENDIX II : Raw experimental data from both replicates (ci, βi and bi)   

      Data are ordered by bids, with indication of cut-off line. 

   K1    K2    K3    P1    P2     P3   
# ci βi bi ci βi bi ci βi bi  ci βi bi ci βi bi ci βi bi 
                           

1 18 50 48 5 60 45 39 55 50  13 275 25 39 200 43 5 109 20 
2 15 300 60 54 61 60 103 110 109  9 100 50 56 120 98 33 180 63 
3 31 85 61 65 113 103 18 200 130  18 400 55 18 150 100 13 100 85 
4 54 80 63 27 250 145 59 137 136  33 148 60 87 260 140 65 300 100
5 5 75 75 6 155 154 44 150 140  5 100 65 5 180 145 39 150 130
6 11 100 85 39 160 159 5 175 150  39 80 69 116 160 156 9 145 138
7 77 105 100 11 180 160 6 151 150  49 130 70 103 160 160 77 190 149
8 35 250 100 114 175 164 81 165 151  56 200 100 103 270 160 56 170 150
9 59 125 100 103 210 170 35 200 160  87 160 119 137 200 160 98 250 150
10 81 120 100 35 174 173 11 180 160  108 190 128 77 200 160 103 300 154
11 27 120 109 144 180 173 65 170 165  27 400 150 13 163 163 125 165 160
12 49 135 130 44 200 175 137 168 167  137 155 154 125 200 165 116 190 160
13 98 140 130 150 180 176 114 210 169  65 160 160 27 201 180 49 200 160
14 39 150 133 131 185 179 119 200 169  103 180 160 157 200 185 147 260 175
15 108 150 140 9 195 180 15 200 170  157 85 162 186 191 190 27 200 180
16 44 145 144 31 220 180 131 170 170  171 250 180 164 250 190 179 200 195
17 137 148 148 81 190 185 54 180 175  164 250 186 171 200 195 137 300 200
18 65 300 150 71 190 185 108 180 178  116 300 190 147 290 200 186 210 210
19 119 175 150 59 200 192 77 200 180  186 195 191 108 250 200 210 250 218
20 144 170 160 164 200 199 31 195 181  179 210 191 196 201 201 196 250 220
21 150 188 166 18 220 200 85 200 190  125 300 200 210 225 225 203 223 223
22 6 200 170 49 310 200 125 195 190  237 245 245 203 255 230 221 225 225
23 131 180 170 125 200 200 150 195 194  203 500 253 237 270 250 229 250 250
24 114 178 177 157 200 200 164 200 194  229 400 260 221 251 251 249 260 260
25 186 195 194 177 170 203 22 195 195  249 280 264 229 260 259 258 300 265
26 171 200 198 108 250 210 27 230 195  258 150 268 258 300 280 264 270 270
27 103 250 200 191 212 211 182 200 200  264 175 275 264 400 325      
28 125 200 200 119 215 214 98 218 204           
29 177 210 200 182 220 215 177 217 207           
30 216 219 219 186 220 219 205 215 214           
31 9 275 225 171 230 225 210 220 220           
32 210 140 230 205 230 225 216 220 220           
33 221 235 233 216 170 230 224 240 240           
34 224 250 235 210 240 239 226 250 249           
35 205 240 239 237 195 240 186 230 250           
36 191 250 240 200 350 250 237 255 250           
37 234 246 245 231 250 250 249 215 250           
38 157 256 255 234 200 260 255 215 255           
39 182 350 260 221 300 284 191 400 300           
40 255 270 264 255 350 300 261 185 300           
41 249 279 274 15 345 345              
42 237 295 283 249 190 350              
43 261 290 285                   
44 200 295 290                   
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ENDNOTES 

                                                 
1 For the sake of clarity, we will use the term ‘tender’ rather than ‘auction’ to refer to buying 

mechanisms as opposed to selling mechanisms.  
2 This is not an essential assumption and could be relaxed to include risk aversion, as done by LH in 

their 1997 paper. However, it would not add much to the present argument and might confuse matters 

unnecessarily.   

3 The optimal bid formula in the single-unit selling case is vn
nvB 1)( −=  (Wolfstetter, 1996), while 

the corresponding optimal bid in the single-unit procurement case is given by 
nvn

nvB 11)( +−=  

(Hailu, Schilizzi and Thoyer, 2005).  

4 By contrast, uniform (second-price) sealed-bid auctions should in theory lead to bidding one’s true 

opportunity costs; but they have not to date been used in conservation contracting programs.  

5 This budget constraint of 3900€ was in “nominal” lab euros, which reflected the production functions 

underlying the costs imposed by reduced nitrogen applications. This was clearly distinguished from the 

limited funds available for each session of the experiment (300€). Salience was preserved through the 

fixed proportionality rate between gains in nominal lab euros and payments in hard currency.  


