Agricultural and Rural Finance Markets in Transition

Proceedings of Regional Research Committee NC-1014
St. Louis, Missouri

October 4-5, 2007
Dr. Michael A. Gunderson, Editor
January 2008
Food and Resource Economics
University of Florida
PO Box 110240
Gainesville, Illinois 32611-0240
An Economic Evaluation of Forecasts of Relevance to Agribusinesses and Agricultural Lenders

Prepared by

Sergio H. Lence, Jingtao Wu, and John Lawrence
Department of Economics
Iowa State University
Importance of Forecast Evaluation

- Forecasts for future business conditions are important.
- Developing forecasting models requires resources.
- Public and commercial forecasts are available.
- It is necessary to evaluate competing forecasts for the same variable.
Slide 3

Forecast Series Evaluated

- Cattle on-feed report forecasts.
 - On-feed
 - Placements
 - Marketings
- Inflation forecasts.
 - Federal Reserve Green Book
 - Survey of Professional Forecasters

Slide 4

Testing Framework

- A random variable can be expressed as the sum of its expected mean plus a residual.
 \[y_{t+1} = \mu_{t+1} + u_{t+1} \]
 \[\mu_{t+1} = E(y_{t+1} | \Psi_t) \]
 \[E(u_{t+1} | \Psi_t) = 0 \]

\(E(\cdot | \Psi_t) \) is “rational” expectation operator conditional on “public” information set \(\Psi_t \).
Testing Framework

- Information set available to analyst a as of time t is $\Psi_t^{a} \supseteq \Psi_t$

$$\mu^{t+1} = E(y_{t+1} | \Psi_t)$$

Let x_{at}^{t+1} denote analyst a’s forecast of y_{t+1} as of time t. If the forecast is rational, then

$$x_{at}^{t+1} = \mu_{at}^{t+1}$$

Testing Framework

- If the forecast is rational, then $\theta = 0, \psi = 1, Var(c), = 0$ in the following regression

$$x_{at}^{t+1} = \theta + A\mu_{at}^{t+1} + e_t$$

The difficulty with the above regression is that we do not know μ_{at}^{t+1}.

Testing Framework

- Analyst’s private information could forecast part of the residual u_{t+1}.

 $u_t^* = E(u_{t+1} | \Psi_t)$

 $\mu_{t+1}^{t+1} = \mu_{t+1}^t + u_{t+1}^*$

 Substitute into last regression,

 $x_{at}^{t+1} = \theta + A(\mu_{t+1}^{t+1} + u_{t+1}^*) + e_t$

 $x_{at}^{t+1} = \theta + A\mu_{t+1}^{t+1} + Au_{t+1}^* + e_t$

The Predictive System

- It can be shown that $\text{Var}(e_t) = \text{Var}(\gamma_t) - A\text{cov}(u_{t+1}, \gamma_t)$

- A unit-free measure of the amount of private information:

 $R^2 = \frac{\text{Var}(u_t^*)}{\text{Var}(u_t^*) + \text{Var}(u_{t+1}^*)} = \frac{\text{cov}(u_{t+1}, \gamma_t)}{A\text{Var}(u_{t+1})}$
Previous Rationality Tests

- The Mincer-Zarnowitz regression

\[y_{t+1} = a + bx_{t+1}^a + \epsilon_{t+1} \]

- In the current framework

\[y_{t+1} = x_{t+1}^a - \frac{\theta - e_t^u}{A} + \frac{\theta}{A} x_{t+1}^a + \frac{(u_t^a - e^u_t)}{A} \]

If \(\text{var}(\epsilon_t) \neq 0 \), \(x_{t+1}^a \) is correlated with the regression error. OLS is not consistent.

COF Report

- OLS

<table>
<thead>
<tr>
<th></th>
<th>On-Feed</th>
<th>Placements</th>
<th>Marketings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.01 (0.02)</td>
<td>-0.04 (0.06)</td>
<td>0.08 (0.04)</td>
</tr>
<tr>
<td>Slope</td>
<td>1.01 (0.02)</td>
<td>1.14 (0.06)</td>
<td>0.92 (0.04)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.97</td>
<td>0.84</td>
<td>0.92</td>
</tr>
<tr>
<td>F</td>
<td>0.33</td>
<td>2.64</td>
<td>2.91</td>
</tr>
<tr>
<td>Prob>F</td>
<td>0.72</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>N</td>
<td>63</td>
<td>63</td>
<td>63</td>
</tr>
</tbody>
</table>

- Predictive System

<table>
<thead>
<tr>
<th></th>
<th>On-Feed</th>
<th>Placements</th>
<th>Marketings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\theta})</td>
<td>0.06</td>
<td>0.22</td>
<td>-0.04</td>
</tr>
<tr>
<td>(\hat{\lambda})</td>
<td>0.96</td>
<td>0.05</td>
<td>0.86</td>
</tr>
<tr>
<td>(\hat{R}^2)</td>
<td>0.52</td>
<td>0.13</td>
<td>0.69</td>
</tr>
<tr>
<td>(\text{Var}(\epsilon_t))</td>
<td>1.49</td>
<td>0.51</td>
<td>5.47</td>
</tr>
</tbody>
</table>
Inflation Forecasts (Green Book)

OLS

<table>
<thead>
<tr>
<th></th>
<th>Current Quarter</th>
<th>1-Quarter-Ahead</th>
<th>2-Quarter-Ahead</th>
<th>3-Quarter-Ahead</th>
<th>4-Quarter-Ahead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.16 (0.34)</td>
<td>0.19 (0.48)</td>
<td>0.54 (0.66)</td>
<td>0.56 (0.66)</td>
<td>0.64 (0.86)</td>
</tr>
<tr>
<td>Slope</td>
<td>0.99 (0.08)</td>
<td>1.02 (0.08)</td>
<td>0.97 (0.11)</td>
<td>0.96 (0.12)</td>
<td>1.10 (0.32)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.7622</td>
<td>0.6139</td>
<td>0.4689</td>
<td>0.4218</td>
<td>0.5814</td>
</tr>
<tr>
<td>F</td>
<td>0.17</td>
<td>1.31</td>
<td>1.87</td>
<td>2.23</td>
<td>0.49</td>
</tr>
<tr>
<td>Prob>F</td>
<td>0.8441</td>
<td>0.274</td>
<td>0.1605</td>
<td>0.114</td>
<td>0.6177</td>
</tr>
<tr>
<td>N</td>
<td>91</td>
<td>91</td>
<td>90</td>
<td>87</td>
<td>64</td>
</tr>
</tbody>
</table>

Predictive System

<table>
<thead>
<tr>
<th></th>
<th>Current Quarter</th>
<th>1-Quarter-Ahead</th>
<th>2-Quarter-Ahead</th>
<th>3-Quarter-Ahead</th>
<th>4-Quarter-Ahead</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>0.24</td>
<td>0.32</td>
<td>0.44</td>
<td>0.52</td>
<td>0.47</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.65</td>
<td>0.68</td>
<td>0.89</td>
<td>0.12</td>
<td>0.68</td>
</tr>
<tr>
<td>R²</td>
<td>0.29</td>
<td>0.30</td>
<td>0.12</td>
<td>0.09</td>
<td>0.27</td>
</tr>
<tr>
<td>Var(\epsilon)</td>
<td>0.50</td>
<td>0.26</td>
<td>0.56</td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>
Inflation Forecasts (SPF)

- **OLS**
 - Current Quarter, 1-Quarter-Ahead, 2-Quarter-Ahead, 3-Quarter-Ahead, 4-Quarter-Ahead
 - Constant: -0.03 (0.42), 0.52 (0.58), 1.05 (0.75), 1.68 (0.91), 0.51 (0.87)
 - Slope: 1.04 (0.107), 0.96 (0.14), 0.75 (0.17), 0.85 (0.15)
 - R-squared: 0.6949, 0.4852, 0.3015, 0.1777, 0.332
 - F: 0.8, 1.2, 1.67, 1.85, 1.39
 - Prob>F: 0.4521, 0.3049, 0.1946, 0.1639, 0.2576
 - N: 91, 91, 90, 87, 64

- **Predictive System**
 - Current Quarter, 1-Quarter-Ahead, 2-Quarter-Ahead, 3-Quarter-Ahead, 4-Quarter-Ahead
 - \(\hat{\gamma} \) range: 0.54 to 0.87, 0.75 to 0.98
 - \(\hat{A} \) range: 0.87 to 0.98, 0.77 to 0.87, 0.74 to 0.87, 0.71 to 0.87
 - \(\hat{\rho} \) range: 0.18 to 0.21, 0.08 to 0.09, 0.03 to 0.03, 0.02 to 0.01
 - \(\text{Var} \) range: 0.45 to 0.69, 0.20 to 0.20

Conclusion

- **COF reports**
 - On-feed, placements, and marketings forecasts are unbiased. On-feed forecasts are not efficient. Other two are efficient.
 - Marketings forecasts contain the most amount of private information. OLS results indicate on-feed forecasts have the most information as shown by the R-squared value.
Inflation forecasts

- The current quarter GB inflation forecasts appear to be unbiased and efficient. Unbiasedness support for other horizons is weak. One quarter ahead forecasts are not efficient.
- SPF forecasts are biased and inefficient for all forecast horizons.
- OLS results show that for all forecast series, the joint null hypothesis that the intercept is zero and the slope is one can not be rejected at the 5% level.