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Empirically Evaluating the Flexibility of 
the Johnson Family of Distributions: A 
Crop Insurance Application 
 
Yue Lu, Octavio A. Ramirez, Roderick M. Rejesus, Thomas O. 
Knight, and Bruce J. Sherrick 
 
 This article examines the flexibility of the Johnson system of distributions by assessing its per-

formance in terms of modeling crop yields for the purpose of setting actuarially fair crop in-
surance premiums. Using data from corn farms in Illinois coupled with Monte Carlo simula-
tion procedures, we found that average crop insurance premiums computed on the basis of the 
Johnson system provide reasonably accurate estimates even when the data are normal or come 
from a non-normal distribution other than the Johnson system (i.e., a beta). These results sug-
gest that there is potential for using the Johnson system to rate previously uninsured crops that 
do not have historical insurance performance data upon which to base premium calculations. 
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A number of studies have been undertaken to 
address the issue of identifying an appropriate 
probability distribution for crop yield modeling 
(see, among others, Gallagher 1987, Nelson and 
Preckel 1989, Moss and Shonkwiler 1993, Rami-
rez, Moss, and Boggess 1994, Ramirez 1997, 
Goodwin and Ker 1998). These efforts are driven 
in part by the fact that an accurate representation 
of the probability distribution of crop yields is 

critical to the measurement of risks in agricultural 
production and, consequently, in setting crop in-
surance premiums. Incorrect representation of the 
probability distribution of crop yields can lead to 
inaccurate premiums and cause moral hazard or 
adverse selection in crop insurance (Coble et al. 
1997). 
 Given the importance of crop yield modeling in 
agricultural risk analysis, a number of different 
statistical procedures have been developed to ad-
dress this issue. These procedures fall under three 
general categories: (i) parametric approaches, (ii) 
non-parametric approaches, and (iii) semi-para-
metric approaches. Each of these general ap-
proaches has distinct advantages and disadvan-
tages [see Ramirez and McDonald (2006a) for a 
brief discussion of this issue]. The focus of this 
paper is on the parametric approach to crop yield 
modeling, where it is assumed that the stochastic 
behavior of the underlying variable of interest 
(i.e., crop yield) can be adequately represented by 
a particular parametric probability distribution 
function (pdf). Note that the main drawback of a 
parametric approach is the potential inference er-
ror from using a pdf that is not flexible enough to 
accurately model crop yield data. On the other 
hand, the main advantage of the parametric ap-
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sample applications. As such, the main parametric 
distributions that have been used in previous 
studies are the gamma (Gallagher 1987), the beta 
(Nelson and Preckel 1989), the log-normal (Tur-
vey and Baker 1990, Jung and Ramezani 1999, 
Stokes 2000), the Weibull (Sherrick et al. 2004), 
and the inverse hyperbolic sine (Ramirez 1997). 
 Recently, Ramirez and McDonald (2006a and 
2006b) introduced an expanded form of the John-
son family of distributions as another alternative 
parametric approach for modeling crop yields. 
They argue that, because the Johnson family can 
accommodate all mean-variance-skewness-kurto-
sis (MVSK) combinations that may be theoreti-
cally exhibited by a random variable, it should 
provide a reasonably accurate approach for mod-
eling any yield distribution that might be en-
countered in practice. This would address the 
main disadvantage of parametric models cited in 
the literature, i.e., the lack of flexibility and the 
associated specification error risk. 
 However, the flexibility of the Johnson family 
of distributions has not been empirically exam-
ined with regard to its potential contribution for 
more accurately setting crop insurance premiums. 
Although there have been studies that evaluated 
the effects of different parametric distributional 
assumptions on crop insurance premiums, most of 
them only compared the premium rates from a 
particular parametric distribution (i.e., a beta or a 
gamma) relative to the rates derived from a nor-
mal distribution. 
 Furthermore, for studies that made premium 
rate comparisons under different parametric yield 
distributions (for example, Sherrick et al. 2004), 
none have used the procedures in Ramirez and 
McDonald (2006b) for proper yield distribution 
and premium rate comparisons. In fact, Norwood, 
Roberts, and Lusk (2004, p. 1111) alluded that 
empirical application of the procedures in Rami-
rez and McDonald (2006b) would be a good con-
tribution to the literature since it would allow for 
more valid empirical crop yield model compari-
sons and, consequently, more accurate evaluation 
of crop insurance premium rate effects of differ-
ent parametric distributions. 
 Therefore, the main objective of this paper is to 
empirically examine the flexibility of the Johnson 
family of distributions by assessing its accuracy 
in the determination of crop insurance premiums 
when the true underlying distribution of crop 

yields does not belong to the Johnson system but 
instead follows an alternative distribution such as 
a beta or a normal. To achieve this objective, a 
multi-year, farm-level dataset from Illinois corn 
producers is utilized, in conjunction with simula-
tion-based analytical procedures that build upon 
the theoretical approach in Ramirez and McDon-
ald (2006a and 2006b). 
 The results of this study have important im-
plications in modeling crop yields for risk analy-
sis in general, and for crop insurance premium 
setting in particular. This study also contributes to 
the literature by providing a reasonable approach 
to the problem of setting crop insurance premi-
ums for crops that have not been previously in-
sured and hence on which there is no historical 
insurance program performance upon which to 
base the premium calculations. 
 Premium-setting procedures for “traditional 
crops” with established crop insurance coverage 
are primarily experience-based, i.e., based on the 
actual loss history of participating producers. How-
ever, this approach is not feasible in setting rates 
for newly insured crops. Therefore, if accurate 
premium rates can be derived from a flexible pa-
rametric yield distribution like the Johnson sys-
tem, then this distribution would be helpful in rat-
ing “non-traditional crops” that have not previ-
ously been insurable. Further, providing a reason-
able premium rate setting approach for “non-tra-
ditional” crops that have not been covered by 
crop insurance before would be consistent with 
the Agricultural and Risk Protection Act (ARPA) 
of 2000, which made increasing the availability 
of crop insurance instruments for producers of 
specialty and underserved agricultural commodi-
ties a major policy priority. 
 
The Expanded Johnson System: A Brief 
Description 
 
Unlike other frequently assumed distributions 
such as the beta and the gamma, the original 
Johnson system, which includes the SU, SB, and 
SL (or log-normal) distributions, exhibits the key 
property of being able to accommodate any theo-
retically feasible skewness-kurtosis (S-K) combi-
nation (see Johnson, Kotz, and Balakrishnan 1994). 
In fact, the SU and the SB alone are sufficient for 
this purpose, as the SL only spans the curvilinear 
boundary between the SU and SB. The lower 
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bound of the SB distribution is given by K = S 2 – 
2, which is also the upper bound for the theoreti-
cally impossible S-K region. Figure 1 illustrates 
the different S-K regions covered by each of the 
three distributions in the Johnson system, as well 
as by the beta and the gamma. 

ers of the Endowment Farms control over 11,000 
acres distributed among farms ranging from 40 
acres to 1,200 acres. Twenty-six Endowment Farms 
are located in 12 counties in Illinois. The farms 
are rented to more than 40 farm operators pre-
dominantly under the common practice of 50-50 
share rental arrangements. The manner in which 
the farms are operated is similar to commercial 
operations in Illinois and provides high quality 
yield data under accurate and consistent record-
keeping practices. Crop yield data from 1959 to 
2003 are available for the 26 Endowment Farms, 
with sample size varying from 20 observations to 
45 observations. 

 Note that, in contrast to the SU and SB, the 
gamma distribution only spans a curvilinear seg-
ment on the upper right quadrant of the S-K 
plane. Although, as the SL, the gamma distribu-
tion can be adapted to cover the mirror image of 
this segment on the upper left quadrant, the com-
binations of S-K values allowed by it are still 
very limited. Also note that the gamma segment is 
the upper boundary of the S-K area covered by 
the beta distribution. Although the beta covers a 
significant area of the S-K plane, the SB can ac-
commodate all S-K combinations allowed by the 
beta, while the beta only covers a subset of the S-
K area spanned by the SB. 

 Using the approach in Ramirez and McDonald 
(2006a), we parametrically fit the Johnson system 
(i.e., the SU, SB, and SL), the beta, and the normal 
distribution to the yield series of each of the 26 
farms. The log-likelihood functions that are maxi-
mized to obtain estimates for the parameters of 
the expanded SU, SB, SL, and beta distributions are 
obtained from Ramirez and McDonald (2006a). 
The best-fitting model is determined by simple 
comparison of the maximum log-likelihood func-
tion values (MLLFV). 

 In addition to their limited coverage of the S-K 
plane, the gamma and the beta exhibit the same 
handicap of the original Johnson system. That is, 
because they are two-parameter distributions, any 
particular S-K combination is always arbitrarily 
associated with a specific set of mean and vari-
ance values. To address this problem, Ramirez 
and McDonald (2006a and 2006b) developed a 
re-parameterization procedure that allows the 
Johnson system to accommodate the same skew-
ness-kurtosis (S-K) combinations spanned by the 
original system in conjunction with any mean and 
variance. This approach can also be used to re-
parameterize the gamma or the beta distribution 
so that the statistical performance of these two 
distributions can be fairly compared with the 
Johnson system and also increase their flexibil-
ity.1 

 The beta distribution is the alternative non-nor-
mal distribution used in this comparative evalua-
tion of the Johnson system because, relative to the 
other parametric distributions used in the past 
(e.g., the gamma), it covers a substantially wider 
area of the skewness-kurtosis (S-K) plane (Figure 
1). Theoretically, the beta distribution is also not 
directly related to the Johnson system. In addi-
tion, most of the empirical literature in agricul-
tural economics over the past decade has used the 
beta distribution to model crop yields [see, for 
example, Babcock, Hart, and Hayes (2004), among 
others]. Therefore, it is evident that the beta dis-
tribution is the best candidate for conducting a 
comparative evaluation of the Johnson family. 

 
Data and Research Methodology 

 A Constrained Maximum Likelihood (CML) 
procedure was used to estimate the parameters of 
the expanded SU, SB, SL, and beta distributions for 
each of the 26 farm yield data series. The mean, 
variance, skewness, and kurtosis implied by each 
of the fitted models were computed based on 
those parameter estimates and the formulas pro-
vided by Ramirez and McDonald (2006a). Also, 
as in Ramirez and McDonald (2006a), the means 
and standard deviations are specified as second 
and first degree polynomials of time: 

 
 The data used in this study are from the Uni-
versity of Illinois Endowment Farms. The manag-

 
1 Hereinafter, the re-parameterized distribution using the Ramirez and 

McDonald (2006b) approach is also referred to as the “expanded” ver-
sion of the distribution (i.e., expanded Johnson, expanded beta). The 
words “re-parameterized” and “expanded” are used interchangeably. 
Please see Ramirez and McDonald (2006a and 2006b) for a detailed, 
step-by-step discussion of this re-parameterization procedure. The in-
terested reader may also consult Mood, Graybill, and Boes (1974) for 
more information on this topic. 
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Figure 1. SU, SB, SL, Beta, and Gamma Distributions in the S-K Plane 

 
 
(1) , and 2

0 1 2β β β βt tX tΜ = = + + t
 
(2) 0 1σ ( σ) σ σt tZ t= = + ; t = 1, … ,T. 
 
Thus, with the exception of the SL in which the 
parameter µ is overidentified (i.e., it is redundant 
and, therefore, has to be set to zero), all non-nor-
mal models initially included seven parameters 
(β0, β1, β2, σ0, σ1, θ, and µ), where the last two 
parameters control the kurtosis and skewness 
combination implied by the fitted distribution.2 
 Of the 26 farm yield series investigated, the 
best-fitting distribution was found to be SU for six 
farms, the SB for seven farms, and the beta for 
eight farms. The null hypothesis of normality, 
conducted through likelihood ratio tests (Ramirez 
                                                                                    

2 Note that these parameters are also estimated and presented in Ra-
mirez and McDonald (2006a). The interested reader is referred to that 
article for more details about the issues related specifically to the 
estimation procedures. 

and McDonald 2006a), could not be rejected (α = 
0.10) in five cases, and the distributions were thus 
considered to be normal (Table 1). There were no 
cases where the SL distribution was the best-fit-
ting. This is expected since corn yields in the Mid-
western United States have previously been found 
to be negatively skewed (Nelson and Preckel 
1989, Taylor 1990, Ramirez 1997, Ker and Coble 
2003, Harri et al. 2005) and the SL allows only for 
positive skewness (Figure 1). 
 Based on these results, eight farm yield series 
were selected to empirically evaluate the flexibil-
ity of the Johnson family of distributions: two 
farms for which SU was best-fitting (Farms A and 
R, hereinafter  and ), two farms for which 
SB was best-fitting (Farms B and N, hereinafter 

 and ), two farms for which beta was best-
fitting (Farms U and V, hereinafter Beta1 and 
Beta2), and two farms for which normality could 
not be rejected (Farms F and Z, hereinafter Norm1 

1
US 2

US

1
BS 2

BS
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Table 1. Maximum Log-Likelihood Function Values (MLLFVs) of the 26 Illinois Corn Farms 
Based on the Fitted SU, SB, SL, Beta, and Normal Distributions 

Farm Label Sample Size SU  MLLFV SB MLLFV 
Beta 

MLLFV 
Normal 
MLLFV LRTS 

Best-Fitting 
Model 

A 44 -183.62 -186.67 -187.24 -191.64 16.03 3 SU 

B 32 -123.81 -123.81 -126.39 -134.94 22.27 3 SB 

C 44 -186.38 -182.15 -185.00 -187.61 10.91 3 SB 

D 43 -189.23 -189.39 -189.54 -192.55 6.63 2 SU 

E 25 -108.09 -108.00 -107.72 -112.23 9.01 2 Beta 

F 27 -128.31 -127.08 -127.55 -128.98 3.81 0 Normal 

G 31 -133.58 -133.57 -133.26 -140.68 14.83 3 Beta 

H 34 -161.15 -160.20 -160.93 -161.80 3.20 0 Normal 

I 43 -181.27 -184.84 -184.94 -185.62 8.71 2 SU 

J 32 -145.96 -145.94 -146.56 -149.20 6.53 2 SB 

K 27 -120.75 -118.66 -118.98 -126.11 14.90 3 SB 

L 29 -132.56 -132.49 -132.55 -132.56 0.13 0  Normal 

M 37 -169.08 -169.08 -168.95 -171.97 6.02 2  Beta 

N 45 -197.46 -195.15 -196.37 -197.47 4.64 1  SB 

O 42 -189.54 -188.40 -188.55 -194.36 11.92 3  SB 

P 42 -195.34 -195.28 -195.31 -197.77 4.97 1  SB 

Q 40 -174.07 -173.55 -172.74 -178.18 10.88 3  Beta 

R 33 -145.36 -145.47 -145.67 -159.09 9.46 3  SU 

S 40 -181.77 -182.35 -182.50 -184.12 4.70 1  SU 

T 29 -131.07 -131.05 -129.44 -133.79 8.69 2  Beta 

U 44 -201.83 -201.21 -200.55 -204.01 6.91 2  Beta 

V 29 -131.07 -126.34 -125.69 -131.64 11.91 3  Beta 

W 29 -127.78 -131.24 -131.20 -132.56 2.71 0  Normal 

X 20 -93.45 -93.96 -94.00 -98.42 9.94 3  SU 

Y 29 -135.14 -135.00 -134.35 -136.90 5.08 3  Beta 

Z 30 -143.92 -143.26 -143.37 -144.92 3.32 0  Normal 

Note: MLLFV represents the maximum log-likelihood function values of the estimated distribution. LRTS stands for the likeli-
hood ratio test statistic, which compares the non-normal model (with the highest MLLFV) to the normal model. The superscripts 
1, 2, and 3 denote rejection of the null hypothesis of normality at the 10 percent, 5 percent, and 1 percent levels of significance, 
respectively, using the LRTS; the 0 superscript indicates non-rejection at the 10 percent level. If the null hypothesis of normality 
is rejected at the 10 percent level, the best-fitting model is the one with the highest MLLFV; otherwise, the best-fitting model is 
the normal distribution. 
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and Norm2). The location of these selected farms 
in the S-K plane is shown in Figure 2. 
 For the purpose of this evaluation, it is assumed 
that the best-fitting distribution for each of the 
selected farms is in fact the true underlying data-
generating process (DGP).3 The next step is to 
simulate 20 datasets (45 observations per dataset) 
from each of the eight best-fitting distributions.4 
These datasets were simulated so that the 45 ob-
servations in each dataset followed the estimated 
time trends for the means and the variances of the 
yield distributions. Once the 160 datasets (8 se-
lected farms × 20 datasets) are simulated, SU, SB, 
beta, and normal distributions are fitted to each of 
these datasets, resulting in 640 models (160 data-
sets × 4 distributions fitted to each). 
 The actuarially fair premiums (AFPs) for an 
Actual Production History (APH) insurance plan 
(in year 45) are calculated at different coverage 
levels (λ) on the basis of each of the 640 yield 
distribution models. For a traditional APH con-
tract that guarantees a percentage or coverage 
level (λj = 0.65, 0.70,…, 0.80, 0.85) of the “his-
torical” yield (y e ) in 5 percent increments, an 
AFP can be defined as the dollar value of the ex-
pected loss E(L): 
 
(3) ( ) gAFP E L P= × , 
 

                                                                                    
3 This assumption suggests that the true underlying DGP for all the 

farms in the data can only be SU, SB, beta, or normal. Two reviewers 
raised the question: what if the true DGP is not one of these four? The 
ideal (but practically infeasible) way to address this issue is to fit all 
possible parametric distributions and then compare the performance of 
the Johnson system relative to all the other parametric distributions. 
Given the practical limitation of doing this, we simply chose the four 
distributions above to test the core hypothesis about the flexibility of 
the Johnson family to calculate actuarially fair premiums (vis-à-vis the 
beta and normal). Therefore, there is no assurance that the results of 
this paper will apply when comparing the Johnson versus other para-
metric distributions (i.e., Weibull or gamma). But we feel that the 
approach in this paper is a reasonable first step to assess the flexibility 
of the Johnson family in the context of crop insurance premium rate-
setting because the distributions we choose can accommodate all theo-
retically feasible mean-variance-skewness-kurtosis combinations. Fur-
thermore, the beta and the normal are popular distributions used for 
crop yield modeling in the agricultural economics literature. Exploring 
the performance of the Johnson family relative to other parametric 
distributions (other than beta and normal) would certainly be a worth-
while endeavor in the future, but is outside the scope of the current 
paper.  

4 Investigating the implications of using an alternative number of 
datasets and/or observations is beyond the scope of this study. How-
ever, this is an interesting issue that merits further exploration in the 
future. 

where E(L) is the magnitude of the expected loss 
(in bushels/ac in this case) and Pg is the price 
election selected, which in this analysis is as-
sumed to be $2.20/bu. 
 To calculate the AFP in equation (3) based on 
the 640 fitted yield distributions, we first use the 
estimated mean and variance functions in equa-
tions (1) and (2) to estimate the mean and the 
variance for the last year of the series (i.e., year 
45). The estimated mean from equation (1) is then 
regarded as the mean yield (y e), from which a 
yield guarantee at j coverage levels can be com-
puted as follows: λg g

j jy = y . The actual yields 
for the last year of the series (yi) are then simu-
lated by drawing skewness and kurtosis values 
one million times from each of the fitted distribu-
tions (i.e., i = 1 to 1 million). The loss magnitude 
(in bu/ac) for a given actual yield occurrence (yi) 
can then be defined as 
 
(4) ( )max ,0g

ji j iL y y⎡ ⎤= −⎣ ⎦ . 

 
The expected loss for any coverage level λ j is 
then computed as 
 

(5) , 
1

( ) ( ) /
m

jij
i

E L L m
=

= ∑

 
where m is the number of simulated actual yield 
observations (one million in this case). From the 
calculated value in equation (5), we can then com-
pute the AFP at j different coverage levels for 
each fitted yield distribution using equation (3). 
The calculated AFPs are then used to evaluate the 
economic flexibility of the Johnson family—i.e., 
how far off the calculated AFP is when the yield 
distribution is assumed to be SB but the actual 
data-generating process is, say, beta. 
 
Results and Discussion 
 
Flexibility Evaluation 
 
The first step of the evaluation is to ascertain the 
frequency with which the true underlying distri-
bution can be identified using the likelihood ratio 
test (LRT) and, if normality is rejected (α = 0.10), 
using the maximum log-likelihood function value 
(MLLFV) criteria to select the best-fitting distri- 
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Figure 2. Location of the Selected Farms in the Standardized S-K Plane 
 
 
bution (Table 2). For example, of the 40 datasets 
(2 farms × 20 datasets) for which the SU is the 
true underlying distribution, 30 are correctly iden-
tified as SU—i.e., normality is rejected—and the 
SU model shows the highest MLLFV in these 30 
cases. Of the other 10 cases, three are identified 
as SB, four as beta, and normality cannot be re-
jected in three cases. Of the 40 simulated datasets 
that are normal, 34 are correctly identified as nor-
mal based on the LRT, i.e., normality is not re-
jected in 34 cases. These results indicate that for a 
sample size of 45, when the true distribution is 
normal or SU, the LRT and MLLFV criteria are 

able to identify the correct distribution underlying 
the data (in most cases). This means that in prac-
tice, when the true DGP is unknown, but can be 
reasonably assumed to be one of the four DGPs 
we consider in this study—SU, SB, beta, and nor-
mal—if it is found that an SU distribution best fits 
the data, one can be reasonably confident that the 
true DGP is SU. 
 In contrast, when the true underlying distribu-
tion is SB, only 20 of the datasets are identified as 
SB by the LRT and MLLFV criteria, but, inter-
estingly, the beta exhibits the highest MLLFV in 
16 of the other 20 datasets. The remaining 4 cases  
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Table 2. Frequency by Which the Underlying 
Data-Generating Process (DGP) is Identified 
Using MLLFV Values and LRTs (α = 0.10) 

Underlying 
DGP 

Number of Times (out of 20) the 
Distribution Below is Best-Fitting 

 SU SB Beta Normal 

1
US  16 0 1 3 

2
US  14 3 3 0 

1
BS  4 11 5 0 

2
BS  0 9 11 0 

Beta1 3 6 5 6 

Beta2 0 12 8 0 

Norm1 0 2 1 17 

Norm2 0 1 2 17 

 
are classified as SU. Alternatively, when the true 
underlying distribution is beta, only 13 of the 
datasets are identified as beta, 18 are identified as 
SB, three as SU, and normality is not rejected in 
six cases. In short, when the true underlying dis-
tribution is SB or beta, the LRT/MLLFV criteria 
favors one of these two distributions in most cases. 
 This preliminary analysis empirically supports 
the following theoretical hypotheses which are 
originally based on the regions of the S-K space 
that these distributions can span: 

 ▪ The SB and the beta are fairly “interchangeable” as 
probability distribution models; i.e., according to the 
MLLFV criteria, the SB can represent beta DGPs as 
well as the beta itself, while, in many cases, the beta 
can be a good model for the SB DGPs. 

 ▪ In most cases, the SB and the beta are not “interchange-
able” with the SU as probability distribution models, 
and vice-versa. 

 Additional evidence regarding the flexibility of 
the SB and the beta to substitute for each other as 
probability distribution function models can be 
obtained by comparing the MLLFVs, skewness, 
and kurtosis estimates from the fitted distributions 
(Table 3).5 First, for Farms Beta1 and Beta2, no-

                                                                                    
5 In the interest of space, only the average MLLFV, skewness, and 

kurtosis values are reported. Those averages are calculated over the 20 
datasets for each of the farms where the true DGPs are SU, SB, and beta. 

tice that the average MLLFV value is actually 
slightly higher for the SB models even though the 
DGPs in these cases are beta. Although this is ob-
viously a random occurrence (i.e., under a large 
sample size or on average over a large enough 
number of samples that the model based on the 
true distribution will always yield the highest 
MLLFV), it is an indication that the SB model can 
represent beta DGPs quite well. That is, when the 
DGP is beta, both models exhibit a similar likeli-
hood of having generated the data. 
  Alternatively, for Farms  and  where the 
SB is the underlying DGP, the beta models exhibit 
noticeably lower MLLFVs than the SB models. 
This suggests that the beta model might not be 
able to approximate an SB DGP as well as the SB 
can represent the beta. In addition, note that the 
SU models, on average, exhibit moderately to sub-
stantially smaller MLLFVs than the SB and the 
beta models when the DGP is SB or beta, and the 
SB and beta models show markedly lower MLLFVs 
than the SU when the DGP is SU. 

1
BS 2

BS

 In general, we also find that the average skew-
ness and kurtosis values implied by the fitted SB 
distributions are closer to the true skewness and 
kurtosis of the underlying beta DGPs, compared 
to how close the average skewness and kurtosis 
from the beta models are to the correct skewness 
and kurtosis of the underlying SB DGPs. Similar 
to what was observed in the MLLFV compari-
sons, the SB and beta models are better able to 
estimate the skewness-kurtosis combinations of 
each other’s DGPs than the SU can, and the SU 
does a relatively poor job of estimating the skew-
ness and kurtosis of both the SB and the beta 
DGPs. 
 When taken together, the results from the analy-
ses in this sub-section suggest that the Johnson 
family (in particular, the SU and the SB distribu-
tions) might be an acceptable approach to model-
ing crop yields when the true underlying DGP is 
unknown (but can be reasonably assumed to be 
one of the four DGPs we consider in this study—
SU, SB, beta, and normal). At the very least, it can 
be concluded that the Johnson system is more 
  
________________________________________________________ 

Note that the normal is not included because the skewness and kurtosis 
of this distribution will always be zero and three, respectively. The in-
dividual MLLFV, skewness, and kurtosis values for each of the fitted 
distributions are available from the authors upon request. 
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Table 3. Average MLLFV, Skewness, and Kurtosis Values for the Fitted Distributions Calculated 
Over the 20 Simulated Data Sets for Each Selected Farm 

Selected 
Farm/Fitted 
Distribution 

Average 
MLLFV 

St. Dev. of 
MLLFV 

Average 
Skewness 

St. Dev. of 
Skewness 

Average 
Kurtosis 

St. Dev. of 
Kurtosis 

A. Farm 1
US        

 True -- -- -3.94 -- 58.33 -- 

 SU -180.49 8.51 -2.28 1.90 35.86 43.81 

 SB -185.42 8.13 -0.91 0.61 1.90 2.32 

 Beta -185.97 8.30 -0.73 0.44 0.89 3.43 

B. Farm 2
US        

 True -- -- -2.10 -- 10.01 -- 

 SU -196.47 7.54 -1.86 0.71 8.22 6.24 

 SB -197.89 6.60 -1.26 0.58 3.24 3.81 

 Beta -198.25 7.25 -1.14 0.34 2.00 1.14 

C. Farm 1
BS        

 True -- -- -2.73 -- 13.56 -- 

 SU -173.33 7.28 -4.76 1.99 77.61 80.82 

 SB -172.56 7.36 -2.10 1.34 11.38 20.34 

 Beta -173.09 7.81 -1.63 0.25 3.75 1.17 

D. Farm 2
BS        

 True -- -- -0.10 -- -1.13 -- 

 SU -198.79 4.34 -0.31 0.47 0.58 1.04 

 SB -191.64 2.51 -0.08 0.19 -1.27 0.18 

 Beta -192.93 4.86 -0.17 0.31 -0.81 0.60 

E. Farm Beta1       

 True -- -- -0.87 -- 0.98 -- 

 SU -202.54 5.09 -1.04 0.53 2.73 2.81 

 SB -202.20 5.13 -0.72 0.37 0.49 1.29 

 Beta -202.21 5.09 -0.77 0.36 0.67 1.08 

F. Farm Beta2       

 True -- -- -1.86 -- 5.10 -- 

 SU -195.44 5.64 -5.27 2.44 104.82 97.24 

 SB -193.68 5.46 -1.52 0.62 2.92 4.05 

 Beta -194.20 5.39 -1.76 0.13 4.51 0.65 

Note: The “true” value above is based on the estimated values from the assumed underlying DGP of the farm (i.e., Farm Beta1’s 
DGP is assumed to be beta with the “true” skewness and kurtosis values reported above). 

 



88    April 2008 Agricultural and Resource Economics Review 
 

                                                                                   

likely to provide a reasonably accurate represen-
tation of an unknown underlying DGP than the 
beta distribution. 
 In practice, one can first estimate the expanded 
SU and SB models for the particular yield data 
series of interest. If normality is rejected by the 
LRT and the SU has the highest MLLFV, then 
based on the previous results one can be fairly 
confident that the underlying DGP is SU rather 
than SB or beta, and that the estimated skewness 
and kurtosis values will be fairly close to the true 
ones. In addition, if it is found that the yield se-
ries is non-normal and the SB has the highest 
MLLFV, it can be expected that the estimated 
skewness and kurtosis values are fairly close to 
the true ones even if the DGP is beta rather than 
an SB. More importantly, it is likely that if a beta 
model were to be estimated in such an instance, 
its MLLFV would not be noticeably higher than 
the SB—i.e., a significant improvement in the 
goodness-of-fit should not be expected. 
 Overall, the results of this sub-section can be 
summarized as follows: 

 ▪ The SB is a reasonably close “surrogate” model for the 
beta, while the beta appears to be less capable of prop-
erly substituting for the SB (at least in some cases). 

 ▪ The SB and the beta are generally not very good sub-
stitutes for the SU, and the SU is a poor surrogate for 
either the beta or the SB. 

 Although MLLFV and skewness-kurtosis esti-
mate comparisons clearly support the previously 
stated conclusions, a final assessment of whether 
one distribution can be considered a close enough 
substitute for another can be made only on the 
basis of whether using the substitute instead of 
the exact underlying distribution can substantially 
affect the results of an economic analysis. Such 
an assessment is conducted in the following sub-
section. 
 
Flexibility Assessment Using AFPs 
 
Further empirical investigation of the flexibility 
of the Johnson family is undertaken by comparing 
the AFPs calculated on the basis of the estimated 
distributions (SU, SB, beta, and normal) versus the 
correct AFP calculated using the true underlying 
distribution for each of the eight previously dis-
cussed cases. At the individual farm level (n = 45 

observations), it is observed that using any esti-
mated distribution, even the correct one, will gen-
erally lead to imprecise AFPs.6 It is important to 
emphasize that this imprecision also holds when 
the correct estimated distribution is used to com-
pute the premium. In other words, such lack of 
accuracy appears to be due to the use of single, 
relatively small samples rather than to the choice 
of an erroneous distributional model. 
 The average of the 20 premiums calculated on 
the basis of the estimated Johnson system (i.e., 
either the SU or the SB distribution depending on 
which exhibits the highest MLLFV)7 and the true 
distribution, for eight different coverage levels 
(0.5, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, and 0.85), 
are presented in Table 4. First note that the premi-
ums obtained from the estimated Johnson system 
are quite close to the true premiums regardless of 
the distribution underlying the DGP. Specifically, 
in the two cases when the DGP is beta (Beta1 and 
Beta2), the average of the Johnson system premi-
ums are $5.12 and $1.33, respectively, versus the 
average of the correct premiums for both beta 
farms of $5.74 and $1.34. Notice that the average 
premiums implied by the estimated beta models 
for the two Beta farms are $4.72 and $1.05, re-
spectively, which is further from the true premi-
ums (Table 4). 
 For the Johnson system, the average of the ab-
solute differences (AAD) between the estimated 
and the true premiums across the eight coverage 
levels is $0.62 in the case of the first beta DGP 
(Beta1) and $0.06 in the case of the second 
(Beta2). Interestingly, in contrast, the AAD be-
tween the premiums computed from the estimated 
beta models (Table 4) and the true ones are $1.02 
and $0.29, respectively. That is, on average, the 
Johnson system does better than the correct model 
in estimating the true premiums in these two par-  

 
6 In the interest of space, AFPs at the individual level (640 AFPs) are 

not reported here but are available from the authors upon request. 
7 This means that the “Johnson system” approach discussed here (and 

in Table 4) is where we calculate premiums for the individual farms 
(i.e., one of the 20 for each underlying DGP) using either an SU or SB, 
depending on which one had the highest MLLFV. For example, if in 
the 20 farms/datasets under Beta1 there are eight farms where SU had 
the highest MLLFV and twelve farms where SB had the highest 
MLLFV, then the average premium reported in Table 4 is the average 
premium based on individual premiums calculated based on eight SU-
fitted series and twelve SB-fitted series. In contrast, an average pre-
mium based on, say, SB alone, is calculated by using all twenty SB-fit-
ted series (regardless of whether or not eight farms showed that an SU 
should be a better fit). 
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Table 4. Average AFPs Calculated Over 20 Simulated Data Sets Using the Combination of Best-
Fitting Johnson Distributions (i.e., SU or SB) for All the Selected Farms 

Farm/Fitted 
Distribution Coverage Level 

Avg. 
Premium 

Avg. Abs. 
$ Diff. 

 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85   

Farm 1
US            

 True 1.80 2.14 2.57 3.11 3.82 4.74 5.99 7.72 3.99 -- 

 Johnson 1.87 2.21 2.64 3.21 3.97 5.01 6.45 8.50 4.23 0.24 

 Beta 0.22 0.33 0.51 0.80 1.26 2.00 3.22 5.18 1.69 2.30 

Farm 2
US            

 True 1.97 2.44 3.04 3.81 4.82 6.14 7.86 10.14 5.03 -- 

 Johnson 1.58 1.98 2.50 3.18 4.10 5.35 7.05 9.35 4.39 0.64 

 Beta 0.42 0.64 0.98 1.46 2.18 3.23 4.76 6.95 2.58 2.45 

Farm 1
BS            

 True 0.60 0.84 1.16 1.59 2.18 2.98 4.09 5.65 2.39 -- 

 Johnson 1.10 1.33 1.62 2.00 2.51 3.25 4.35 6.06 2.78 0.39 

 Beta 0.13 0.20 0.32 0.50 0.80 1.29 2.09 3.44 1.10 1.29 

Farm 2
BS            

 True 0.00 0.00 0.00 0.00 0.06 0.84 2.86 6.28 1.25 -- 

 Johnson 0.00 0.00 0.00 0.00 0.02 0.71 2.94 6.77 1.31 0.09 

 Beta 0.04 0.07 0.13 0.24 0.44 1.02 2.58 5.53 1.26 0.26 

Farm Beta1           

 True 1.51 2.12 2.94 4.03 5.47 7.33 9.73 12.77 5.74 -- 

 Johnson 1.44 1.94 2.62 3.53 4.78 6.45 8.66 11.54 5.12 0.62 

 Beta 1.20 1.67 2.31 3.18 4.36 5.96 8.11 10.95 4.72 1.02 

Farm Beta2           

 True 0.10 0.17 0.30 0.52 0.90 1.55 2.66 4.55 1.34 -- 

 Johnson 0.16 0.23 0.34 0.53 0.85 1.43 2.53 4.57 1.33 0.06 

 Beta 0.07 0.12 0.21 0.37 0.66 1.17 2.07 3.69 1.05 0.29 

Farm Norm1           

 True 0.15 0.32 0.63 1.17 2.09 3.55 5.77 8.97 2.83 -- 

 Johnson 0.09 0.19 0.42 0.91 1.85 3.45 5.91 9.45 2.78 0.05 

 Beta 0.04 0.10 0.25 0.59 1.31 2.64 4.83 8.10 2.23 0.60 

Farm Norm2           

 True 0.00 0.01 0.04 0.12 0.33 0.80 1.77 3.58 0.83 -- 

 Johnson 0.01 0.02 0.03 0.09 0.24 0.68 1.71 3.71 0.81 0.02 

 Beta 0.03 0.05 0.10 0.20 0.46 1.06 2.31 4.55 1.10 0.27 

Notes: The average AFP for a farm is calculated by first taking the AFP of each dataset and then taking the average of the 20 cal-
culated AFPs. For the Johnson approach, the AFP for each dataset is calculated based on the best-fitting distribution (either the SU 
or the SB, whichever has the highest MLLFV). The average premium is then calculated by taking the average of the AFPs across 
coverage levels. 

“Avg. Abs. $ Diff.” is the average of the absolute dollar differences over all coverage levels. This is calculated by taking the ab-
solute value of the difference between the true AFP and the estimated AFP for each coverage level and then taking the average 
over the eight coverage levels. 
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ticular cases. Although this is not generally to be 
expected, it indicates that at a sample size of 45 
there is no evidence that if the underlying DGP is 
a beta, using an estimated beta model to compute 
the premiums would provide more accurate re-
sults than using the Johnson system. 
 The opposite, however, is not necessarily true. 
That is, when the DGP is the Johnson system, 
using estimated beta models to compute the pre-
miums can result in considerable imprecision 
(i.e., differences with the true premiums), even 
when looking at averages over 20 samples. As ex-
pected, the differences are particularly noteworthy 
when the underlying DGP is SU. Specifically, the 
AAD between the beta-estimated and the true 
premiums is $2.30 ( ) and $2.45 ( ), versus 
$0.24 ( ) and $0.64 ( ) when the premiums 
are computed on the basis of the estimated 
Johnson system (mostly the estimated SU model).8 

1
US 2

US
1
US 2

US

 Finally, it is important to note that these pre-
mium comparison analyses support the hypothe-
sis that the SB is generally better in approximating 
a beta-generated DGP than the beta is in ap-
proximating an SB distribution. Specifically, un-
der DGPs  and , the AADs between the 
beta-estimated and the true premiums are $1.29 
and $0.26, respectively (Table 4). Although not 
reported in Table 4, we find that when the true 
DGPs Beta1 and Beta2 are considered, the AADs 
between an SB-estimated premium (i.e., from SB 
alone) and the true premiums are $1.20 and 
$0.06.9 

1
BS 2

BS

 

                                                                                   

8 Although not presented here (due to space considerations), we also 
considered the case when the true DGP is SU but the AFP is calculated 
based solely on an SB. That is, we don’t use the “Johnson system” 
approach where we calculate the premiums based on either the SU or SB 
depending on which had the highest MLLFV (i.e., in the case not 
presented in the text, even if the SU is the best-fitting model in some or 
all of the 20 datasets for each DGP, we still used the SB distribution to 
calculate the premiums in this situation). In this case, the AAD 
between the SB-generated premium and the true premium (from an SU) 
is large as well. This supports the notion that the SB per se may not be a 
good surrogate for SU when calculating premiums over 20 samples. In 
addition, although not reported here, we also considered the case of 
calculating the AFP based solely on a normal distribution when the 
true DGP is non-normal (i.e., beta or SU or SB), and found that AFPs 
based on the normal distribution alone are also very imprecise. Results 
from this analysis are available from the authors upon request. 

9 As in footnote 8, we did not explicitly present this in Table 4, but 
we also considered the case when the true DGP is beta but the AFP is 
calculated based solely on an SB. The calculated AAD for this case is 
the one reported in the text. Again, results from this analysis are avail-
able from the authors upon request.  

 In short, the previously discussed empirical 
results support the theory-based hypothesis that 
the Johnson system is a fairly flexible parametric 
distribution model and can be used to fairly accu-
rately estimate AFPs for crop insurance when the 
true underlying distribution of crop yields is un-
known. Under such conditions, the results cer-
tainly demonstrate that the Johnson system should 
be preferred to the most commonly used paramet-
ric alternative, i.e., the beta distribution. Some 
measure of error should of course still be ex-
pected when using the Johnson system to estimate 
AFPs, but the magnitude of those errors seems to 
be reasonable. Specifically, when estimating an 
average AFP across 20 farm yield series (with 45 
observations each), the Johnson system is shown 
to provide reasonably accurate estimates even if 
the true underlying distribution is not part of the 
Johnson family (say, a beta or a normal). 
 
Conclusions and Implications 
 
This study examines the flexibility of the Johnson 
system (i.e., the SU and SB distributions) by evalu-
ating the accuracy of actuarially fair crop insur-
ance premiums estimated on the basis of this sys-
tem, when the true underlying yield distribution is 
not within the Johnson system. It is found that 
average AFPs calculated from the Johnson system 
are reasonably accurate estimates for the correct 
rates even when the true distribution underlying 
the data is a beta or a normal. The results imply 
that if an average premium rate is needed for a 
certain geographic area, the Johnson system can 
be used for reliably estimating this premium, pro-
vided that there are a sufficient number of farms 
to average across. 
 This may have strong implications in rating 
previously uninsured crops. Specifically, the av-
erage AFP for a particular base area (i.e., a county 
or a crop-reporting district) can be used as a basis 
for an Actual Production History (APH) crop 
insurance program (much like how the reference 
rate is now used in the current APH rating 
system). An individual risk classification system 
together with the average AFP calculated using 
the Johnson system can be used to generate indi-
vidual rates.10 

 
10 In the current APH, a yield ratio (the ratio of individual yield and 

county yield) and an exponential curve is used as the individual risk  
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 One caveat about the results reported in this 
article is that the crop insurance rating perform-
ance of the Johnson system is only evaluated rela-
tive to hypothetical scenarios where the underly-
ing yield distributions are beta or normal. Al-
though the results are indicative of the potential 
of the Johnson system to approximate other pa-
rametric distributions for the purpose of crop in-
surance premium setting, further research is needed 
using other underlying distributions such as the 
Weibull, gamma, or more complex normal mix-
tures in order to fully confirm this potential. 
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