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Volatility Persistence in Commodity Futures:

Inventory and Time-to-Delivery Effects

Most financial asset returns exhibit volatility persistence. We investigate this phe-
nomenon in the context of daily returns in commodity futures markets. We show that
the time gap between the arrival of news to the markets and the delivery time of futures
contracts is the fundamental variable in explaining volatility persistence in the lumber
futures market. We also find an inverse relationship between inventory levels and lum-
ber futures volatility.

Key words: volatility persistence, theory of storage, volatility, futures markets, lum-

ber

Introduction

Volatility of financial asset returns persists. High-volatility periods are apt to be fol-
lowed by high-volatility periods, and similarly for low-volatility periods. This has been
observed for returns to publicly traded stocks (Engle, 2004) and for returns to futures
contracts–both those written on financial assets (Li and Engle, 1998) and those written
on physical commodities (Pindyck, 2001, 2004; Ng and Pirrong, 1994).

Explanations for volatility persistence have been proposed from microstructure models.
The process of market price reaction to information flows is argued to result in such
persistence. See, for example, Kyle (1985) and Andersen and Bollerslev (1997). But
there are other reasons to expect volatility persistence in the case of futures contracts
written on commodities. Aggregate physical inventories play a shock absorbing role
in commodity markets, implying that when physical inventories are large, the size of
commodity futures price changes is small (see Thurman, 1988; Williams and Wright,
1991; Karali and Thurman, 2008). Further, aggregate inventories evolve slowly. Thus,
commodity futures volatility is characterized by phases of varying length, depending
on the speed of inventory changes for the particular commodity.

A second factor influencing volatility in commodity futures is the time gap between
when news arrives to the market and when the contract calls for delivery. The major
futures exchanges trade several contracts for a commodity, differing only by delivery
date. Near-term information shocks should have greater impact on contracts for near-
term delivery than on contracts for farther-out delivery due to the smaller elasticities
of supply and demand for shorter runs. The implications for volatility’s dependence
on time to delivery can only be studied by analyzing the multiple contracts that are
simultaneously traded.

We test these two theoretical implications in the lumber futures market. In earlier
work (Karali and Thurman, 2008), we study the effect of housing starts announce-
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ment surprises relative to Money Market Services survey forecasts on lumber futures
prices. We find statistically and economically significant announcement, inventory, and
time-to-delivery effects and show that the price response to observed information flows
depends on inventories and time to delivery. In this study, we extend the earlier work
by studying the response of lumber futures prices to unobserved information flows.
We hypothesize that, as in the case of observed information, the price response to
unobserved information flows should also depend on inventories and time to delivery.
Because the sign of the unobserved shock is unknown, we are naturally lead to use
absolute log price changes, a commonly used measure for volatility in the literature.
Specifically, we analyze daily lumber futures prices from the Chicago Mercantile Ex-
change (CME) from 1992 to 2005, defining volatility as the absolute value of log price
changes over a day. Studying time-to-delivery effects requires using data on all con-
tracts traded on a given day. This, in turn, requires a recognition of the correlation
among price observations from the same day, which are subject to common shocks.
We use a Generalized Least Squares (GLS) procedure similar to the one in Karali and
Thurman (2008) to take this contemporaneous correlation into account, resulting in
efficient use of futures price data and consistent standard errors of our estimates.

We find an inverse relationship between inventory levels and lumber futures volatil-
ity, as predicted by the theory of storage. As inventory levels become smaller lumber
futures contracts become more volatile. The relationship is both statistically and eco-
nomically significant. We also find an inverse relation between time to delivery and
volatility. The closer the contract trade date is to delivery time, the higher is price
volatility. We interpret this result in standard microeconomic terms. Lumber supply
and demand curves become more inelastic as time to delivery nears. Thus, shocks
originating from either the supply or demand side of the market have a larger price
impact as time to delivery nears. Further, we find that while volatility persistence is
statistically significant in the marginal distribution of lumber futures returns, much of
that persistence can be explained by the dependence on time to delivery.

A Three-Period Storage Model

We use the simple, finite-horizon storage model presented by Williams and Wright
(1991) to derive optimal storage rules via a social planner’s perspective. We then
use these storage rules in a simulation study to investigate the relationship between
expected price changes and inventories, which plays an important role in our empirical
analysis of futures prices.

Analytic Solution

The model has a finite horizon with three periods. The third and last period is period
T ; the second period is period T − 1; and the first period is period T − 2. The
carry-out from the last period has no value since the world ends beyond that time.
Therefore, carry-out in the last period is zero and everything available in the last
period is consumed, that is, ST = 0. Inverse consumption demand is assumed to be
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linear in quantity consumed such that

Pt = α + βqt, with α > 0, β < 0. (1)

Supply is perfectly inelastic with constant mean ȳ and is subject to a random additive
disturbance vt. The supply equation is given by

yt = ȳ + vt, (2)

where vt is a uniformly distributed random disturbance with mean zero and standard
deviation σ. Thus, the probability density function of vt, which is observable by ev-
eryone, is defined as

f(vt) =





1

2
√

3σ
, −√3σ ≤ vt ≤

√
3σ

0, elsewhere.
(3)

In any given period, total availability in the market is the sum of production in that
period and carry-in into that period, that is, At ≡ yt + St−1. Consumption in any
period satisfies

qt = yt + St−1 − St = At − St. (4)

Mean production level ȳ and vt is observed by all market participants in the beginning
of period t; thus, all decisions made in period t are conditioned on the realization of
vt. Marginal physical storage cost is denoted by c and is constant over time. The
one-period interest rate is r.

In order to find optimal storage in period T − 2, the social planner uses backward
induction. The planner first solves for the optimal storage rule in period T − 1, and
then uses it to derive the optimal storage rule in period T − 2. The social planner’s
optimal choice for storage in any period j is determined by the first order condition of
the following objective function:

Vj(Aj) = max
Sj

{ ∫ Aj−Sj

0

P (q)dq − cSj + (1 + r)−1Ej

[
Vj+1 (yj+1 + Sj − Sj+1)

]}

subject to

Sj ≥ 0. (5)

The first-order condition is then given by

∂Vj

∂Sj

= −Pj − c + (1 + r)−1Ej[Pj+1], Sj > 0. (6)

Using this first order condition, the planner’s optimal choice in period T − 1 satisfies:

PT−1 + c = (1 + r)−1ET−1[PT ], ST−1 > 0. (7)
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Substituting the inverse demand equation (1) into equation (7) and then using supply
equation (2) in equation (4) yields the optimality condition:

α+β(AT−1−ST−1)+ c = (1+ r)−1ET−1

[
α+β(ȳ + vT +ST−1)

]
, ST−1 > 0. (8)

The expectation on the right-hand side can be calculated using the probability density
function of the random disturbance vT , since vT is the only random variable in equation
(8). The optimal level of storage in period T − 1 is then found by solving the following
equation for ST−1

α + β(AT−1 − ST−1) + c =

(
1

1 + r

) (
1

2
√

3σ

) ∫ √
3σ

−√3σ

(
α + β(ȳ + vT + ST−1)

)
dv, (9)

and the solution is given by:

S∗T−1 = max

{
(1 + r)AT−1 − ȳ

(2 + r)
+

(
1 + r

2 + r

)(
c

β

)
+

(
r

2 + r

)(
α

β

)
, 0

}
. (10)

If the interest rate is set equal to zero, as done by Williams and Wright (1991) for
simplicity, the optimal storage rule for period T − 1 is the same as their equation (3.8)
on p. 59.

The first-order condition for optimal storage in period T − 2 is

PT−2 + c = (1 + r)−1ET−2[PT−1], ST−2 > 0. (11)

The solution for period T − 2 becomes complicated due to the possibility of storage
in period T − 1 and a fundamental nonlinearity. As seen from equation (10), optimal
storage in period T − 1 depends on total availability AT−1, which, in turn, depends
on the random disturbance to supply in that period, vT−1. Depending on the random
shock in period T−1, one will either observe no storage or a positive amount of storage.
This critical value of the random shock can be found by substituting total availability
in period T − 1 into the optimal storage rule for that period, and then by setting S∗T−1

equal to zero. The critical value of vT−1 is

vT−1 = −ST−2 −
(

c

β

)
−

(
r

1 + r

)
ȳ −

(
r

1 + r

)(
α

β

)
. (12)

Whenever vT−1 is less than the critical value, the planner will choose not to store in
period T − 1, that is, ST−1 = 0. Whenever vT−1 exceeds the critical value, the planner
will choose to store a positive amount in period T − 1, that is, ST−1 > 0. After
substituting the inverse demand function and consumption identity into equation (11),
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the optimality condition becomes

α + β(AT−2 − ST−2) + c =

(
1

1 + r

)(
1

2
√

3σ

) { ∫ −ST−2−(c/β)−(rȳ+rα/β)/(1+r)

−√3σ

(
α + β(ȳ + vT−1 + ST−2)

)
dv

+

∫ √
3σ

−ST−2−(c/β)−(rȳ+rα/β)/(1+r)

(
α + β(ȳ + vT−1 + ST−2 − S∗T−1)

)
dv

}
.

(13)
The right-hand side of equation (13) shows the weighted average of possible situations
with and without storage in period T − 1. Substituting equation (10) for S∗T−1 in
equation (13), and integrating over vT−1, results in a quadratic equation, the solution
to which gives the optimal storage rule in period T − 2:

S∗T−2 = max

{√
3σ

(
2r2 + 7r + 7

1 + r

)
−

(
c

β

)
−

(
rȳ + rα/β

1 + r

)

−
√

12σ2

(
r4 + 7r3 + 19r2 + 24r + 12

(1 + r)2

)
− 4

√
3σ

(
(2 + r)AT−2 −

(
2 + r

1 + r

)
ȳ

)

√
−4
√

3σ

(
2r2 + 7r + 6

1 + r

)(
c

β

)
− 4

√
3σ

(
r2 + 2r

1 + r

)(
α

β

)

√
−4
√

3σ

(
r2 + 4r + 4

1 + r

)(
rȳ + rα/β

1 + r

)
, 0

}
.

(14)

As seen from equation (14), the optimal level of storage in the first period, T − 2,
depends on current availability AT−2 and model parameters. Availability in period
T−2 equals the sum of supply in that period and carry-in from period T−3. Formally,

AT−2 = yT−2 + ST−3

= ȳ + vT−2 + ST−3.
(15)

The level of carry-in into the first period will affect optimal storage in this period,
which, in turn, will affect optimal storage in the second period. Therefore, one should
expect varying storage and price paths depending on initial carry-in levels.

Simulation Results

With a starting value of carry-in into the first period, ST−3, one can simulate the
three-period model by drawing from the probability distribution of the random supply
shock. The explicit storage rules derived in the previous section show how many units
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will be stored in each period given availability in those periods. The amount stored
in each period then will determine consumption and price in those periods. In this
way, one obtains a path for each endogenous variable. When this process is repeated
many times with the same initial values but with different draws of the random shock,
one obtains a conditional frequency distribution for each variable in each period. For
instance, for price, we obtain Pt,i with t = T − 2, T − 1, T and i = 1, 2, · · · , n, where n
is the number of iterations.

We repeat this process for several values of initial carry-in, ST−3. For each value of
ST−3, we compute ∣∣∣∣∣

1

n

n∑
i=1

(PT−2,i − PT−3)

∣∣∣∣∣ , (16)

where

PT−3 =

(
1

1 + r

) (
1

n

n∑
i=1

PT−2,i

)
− c,

to represent ET−3[|PT−2 − PT−3|]. We choose model parameters as follows. Inverse
consumption demand equation has intercept of α = 600 and slope of β = −5, that
is, Pt = 600 − 5qt. Marginal physical storage cost, c, is $2 per period. The interest
rate, r, is zero. The mean production level, ȳ, is 100 units. The random disturbance
vt lies between -15 and +15, that is,

√
3σ = 15, where σ is the standard deviation of

the random disturbance. The number of iterations, n, is 100,000.

Figure 1(a) shows the relationship between the expected absolute price change from the
initial period T−3 to the first period T−2 and the level of initial carry-in. As inventory
levels become larger, the expected magnitude of price movement becomes smaller.
Figure 1(b), shows how the variance of price movement declines with inventories. So,
the absolute price changes seem to capture the variance pattern pretty well. This
simulation result demonstrates one important conclusion: the assertion of the theory of
storage that Et[Pt+1] is decreasing in St, also holds for price movements, Et[|Pt+1−Pt|].
This result is the main motivation behind our empirical analysis.

This relationship should also hold in commodity futures markets, which reveal the
market’s expectation of future spot price changes. Further, the price response of a
futures contract to a shock should be smaller when its delivery time is farther away due
to greater elasticity of supply and demand curves over longer runs. These hypotheses
can be tested in the following linear model of volatility:

| ln Ft − ln Ft−1| = a + f(St) + g(TTDt) + εt, (17)

where ln Ft is the natural logarithm of the price of a futures contract on day t,1 St is
the physical inventory level on day t, f(St) is a function of inventories, TTDt is time
to delivery, the number of days remaining to contract expiration on day t, between

1We take the natural logarithm of futures prices in order to eliminate the effects of inflation.
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zero and 169, and g(TTDt) is a function of time to delivery. As an implication of the
theory of storage and larger elasticities over longer runs, one should expect to see:

∂(| ln Ft − ln Ft−1|)/∂St = ∂f(St)/∂St < 0

∂(| ln Ft − ln Ft−1|)/∂TTDt = ∂g(TTDt)/∂TTDt < 0.

Measuring Inventory and Time-to-Delivery Effects on Volatility

We use daily settlement prices of lumber futures from the Chicago Mercantile Exchange
(CME), from 77 contracts between July 14, 1992 and November 15, 2005. Lumber
futures contracts expire every two months and the delivery months are January, March,
May, July, September, and November. On the CME, a new contract is listed on the
day after the front month expires. At any point in time, a total of seven contracts are
listed, each with a different delivery date up to 14 months into the future. However,
we trim the data set purchased from the Commodity Research Bureau to include
170 observations—the number of trading days of the shortest-lived contract—for all
contracts, resulting in at most five contracts on a given day.

We use the Lumber & Other Construction Materials inventory series (NAICS 4233)
from Monthly Wholesale Trade reports published by the U.S. Census Bureau from
January 1992 to December 2005. We convert the inventory series, released in current
dollars, into constant 1982 dollar values using the Lumber Producer Price Index pub-
lished by the Bureau of Labor Statistics. We interpolate the resulting monthly series
by a cubic spline method to obtain daily inventories.2 The daily inventory data are
shown in figure 2.

To combine simultaneously traded contracts, we write the empirical version of equation
(17) as:3

|%∆Fit| ≡ |100× (ln Fit − ln Fi,t−1)| = α + βSt + γ1TTDit + γ2TTD2
it + εit,

i = 1, 2, · · · , kt, t = 1, 2, · · · , T, (18)

where |%∆Fit| is the approximate percentage change in the volatility of daily return
on lumber futures, kt is the number of contracts traded on day t, between one and
five, and T=3,365, the number of trading days in our sample. The total number of
observations is

∑T
t=1 kt = 13, 090. Descriptive statistics of the variables are presented

in table 1.

If we just estimate equation (18) via Ordinary Least Squares (OLS), we would be ignor-
ing the large correlation among the price observations on a given day. To account for

2We also tried linear and step function interpolation methods and found little substantive change
in the results.

3Because Karali and Thurman (2008) find evidence of a nonlinear time-to-delivery effect on lumber
futures price response to housing starts announcement shocks, we choose a quadratic function of time
to delivery.
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this contemporaneous correlation, we define the following structure for the disturbance:

εt =




ε1t

ε2t
...

εktt


 , E(εt) = 0, E(εtε

′
t−1) = 0, V (εt) =




σ2
1 σ12 · · · σ1kt

σ12 σ2
2 · · · σ2kt

...
...

...
σ1kt σ2kt · · · σ2

kt


 .

Because the number of contracts varies across trading days it is difficult to implement a
GLS method that integrates this structure for the disturbance. For detailed computa-
tions, see Karali (2007) and Karali and Thurman (2008). Here, we define V (εt) in such
a way that it assumes both covariance stationarity over time and identical covariances
between contracts that have the same discrepancy in delivery month. That is, the co-
variance between the first and second nearby contracts (σ12) is assumed to be the same
as that between the second and third nearby contracts (σ23) as there are two-month
delivery discrepancy between these contracts. The estimates V̂ (εt) and ˆCorr(εt) from
equation (18), which give an idea of the importance of the GLS method, are:

V̂ (εt) =




0.97 0.73 0.61 0.50 0.25
0.73 0.97 0.73 0.61 0.50
0.61 0.73 0.97 0.73 0.61
0.50 0.61 0.73 0.97 0.73
0.25 0.50 0.61 0.73 0.97




, ˆCorr(εt) =




1 0.75 0.63 0.51 0.26
0.75 1 0.75 0.63 0.51
0.63 0.75 1 0.75 0.63
0.51 0.63 0.75 1 0.75
0.26 0.51 0.63 0.75 1




.

Results from equation (18) are presented in table 2. As seen in the table, the inventory
coefficient is negative. This is the sign the theory of storage predicts for inventories.
The smaller the inventories, the higher the volatility and vice versa. When inventories
are large enough they prevent large fluctuations in price that would be caused by
demand and supply shocks. When inventories are small, demand and supply shocks
cause larger fluctuations in price.4 The coefficient on the linear TTD term is negative
and the one on the quadratic term is positive. The overall time-to-delivery effect on
volatility with the GLS estimates over the range of the TTD variable is shown in figure
3(a). As the figure shows, holding everything else constant, the time-to-delivery effect
is negative and increases from 0.002 to 0.008 in magnitude over the life of a contract.
Figure 3(b) shows that when evaluated at the mean value of inventories, volatility of a
futures contract increases from 0.9 percentage points to 1.7 percentage point from the
first to the last trading day. This indicates that as a contract approaches delivery its

4One might be concerned that slowly evolving inventories are proxying for an exogenous nonlinear
trend. To investigate this possibility, we added a quadratic function of time trend to our model and
found it to be statistically significant. However, inventory effects become even larger and stronger in
this model. Thus, deviations of inventories from their trend also affect volatility inversely, indicating
that the significant inventory effect in table 2 is not simply an exogenous time trend.
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volatility rises. When a contract is far from its delivery date its volatility is lower.5

In terms of economic significance, a change in inventories from their minimum value
of $3.1 billion to their maximum value of $7.5 billion causes a 0.5 percentage point
decrease in volatility with the OLS estimates and a 0.4 percentage point decrease
in volatility with the GLS estimates. As to time-to-delivery effects, OLS and GLS
estimates imply 0.9 and 0.8 percentage point increases in volatility over the life of the
contract. Compared to a typical day’s absolute log price change, 1.2 percentage points,
we consider these changes to be significant.

Volatility Persistence

In empirical studies of financial assets, volatility persistence is a common concern.
Most financial asset returns exhibit volatility persistence. Days with high volatility are
followed by high volatility, and days with low volatility are followed by low volatility.
To investigate this phenomenon in the lumber futures contracts, and to compare across
other financial assets, table 3 presents AR(1) regression results for volatility on selected
financial assets. Specifically, the regression equation is

|%∆Pt| ≡ |100× (ln Pt − ln Pt−1)| = a + b|%∆Pt−1|+ εt (19)

where ln Pt is the natural logarithm of the price of a financial asset on day t. As
a sample of financial assets, we choose the S&P 500 index, the Dow Jones Industrial
Average index, the Nasdaq Composite index, the Canadian Dollar/US Dollar exchange
rate, the Japanese Yen/US Dollar exchange rate, and the returns to holding 3-month,
6-month, and 1-year treasury bills (secondary market). For lumber futures, we use
data on all contracts in our sample.

Results given in table 3 show that there is statistical evidence for volatility persistence
in the lumber futures market similar to, albeit at the low end of, that seen in other
markets. The OLS estimates imply that a 1.5 percentage point increase in today’s
volatility results from a 7.7 percentage point increase—the largest movement in the
sample—in yesterday’s price movement. The GLS estimates imply a 1.2 percentage
point increase today for a 7.7 percentage point increase yesterday.

5The relationship between trading volume and volatility has been an issue in the literature. To
investigate whether our time-to-delivery effect is proxying for a volume effect, we added volume into
our model for the sample period during which we had volume data (January 11, 2001-November
11, 2005). We found a positive and statistically significant volume effect. Holding everything else
constant, a 100 unit increase in volume causes a 0.04 percentage point increase in volatility. The
inventory effect does not change much with the addition of volume while the time-to-delivery effect
decreases in magnitude from -0.91 to -0.65 over the life of a contract. Even though time to delivery
and volume are correlated, the time-to-delivery effect remains significant even with volume. While the
volume effect itself is statistically significant, we choose to exclude it in our model because while time
to delivery is exogenous, volume is endogenous—volatility and volume are jointly determined and we
wish to measure the total effect on volatility from a change in time to delivery.
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To incorporate volatility persistence into our previous model with covariates, we add
the lagged value of the dependent variable in equation (18) to the right-hand side of
(18):

|%∆Fit| ≡ |100× (lnFit − ln Fi,t−1)| = α + βSt + γ1TTDit + γ2TTD2
it + ψ|%∆Fi,t−1|+ εit,

i = 1, 2, · · · , kt, t = 1, 2, · · · , T. (20)

Results are presented in table 4. As before, we find negative and statistically signifi-
cant coefficient estimates for the inventory and linear TTD variables. The quadratic
TTD term is positive and statistically significant. Figure 4 shows the marginal time-
to-delivery effect and predicted volatility evaluated at the mean values of inventories
and lagged absolute price changes. We obtain a positive and statistically significant
estimate for ψ with both OLS and GLS. However, when we use the GLS transforma-
tion to eliminate contemporaneous correlation among contracts, the estimates of the
volatility persistence parameter become smaller. Also, note that the magnitude and
significance of ψ decline dramatically compared to the case when we only include in-
tercept and lagged volatility (table 3). The OLS estimate falls from 0.19 to 0.13, and
the GLS estimate falls in half, from 0.15 to 0.07—a nine standard deviation decrease
in volatility persistence. The GLS estimates imply that a 7.7 percentage point increase
in yesterday’s price movement will cause only a 0.5 percentage point increase in to-
day’s volatility—instead of the 1.2 percentage point increase reported before—when
we correct for correlation among contracts and account for inventories and time to
delivery.

Another important result is seen by a comparison between tables 2 and 4. Including the
lagged dependent variable in the volatility model does not much affect the parameter
estimates for inventories and time to delivery. When evaluated at the sample range
of inventories, both OLS and GLS estimates in table 4 imply a 0.4 percentage point
change in volatility. While the OLS estimates imply a 0.7 percentage point increase
in volatility over the life of the contract, the GLS estimates imply a 0.8 percentage
point increase. These results are very similar to what are found without the lagged
dependent variable.

Conclusions

In lumber futures markets, volatility is inversely related to inventories. When invento-
ries are low, futures contracts are relatively volatile. When inventories are large, their
role in absorbing supply and demand shocks makes futures contracts less volatile. This
confirms empirically a central prediction from the theory of storage.

We also find an inverse relationship between price volatility and time to delivery. As
futures contracts approach delivery, their price fluctuations become larger. When con-
tracts are far away from their delivery date, they are less volatile. We interpret this
result as an implication of lumber supply and demand curves becoming more inelastic
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as time to delivery approaches. Thus, supply and demand shocks have a larger price
impact on near-term contracts than on those farther out.

As with other financial assets, there is strong statistical evidence of volatility persis-
tence in the lumber futures market. However, much of the persistence in lumber futures
can be explained by the dependence of volatility on inventories and time to delivery.
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at Different Levels of Inventories
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Figure 2: Lumber Inventories (billions of dollars)
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Figure 3: Time-to-Delivery Effect on Volatility
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Figure 4: Time-to-Delivery Effect on Volatility with Persistence
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Table 1: Summary Statistics of Daily Variables

N=13,090 %∆Fit |%∆Fit| Inventories TTD

Mean -0.0105 1.2433 4.6154 84.50

Median 0 0.9739 4.3835 84.50

Min -7.8560 0 3.1054 0

Max 14.1945 14.1945 7.5337 169

Std. Deviation 1.6097 1.0225 0.9541 49.08

Notes: %∆Fit = 100 × (ln Fit − ln Fi,t−1) and |%∆Fit| = |100 × (ln Fit − ln Fi,t−1)|, i = 1, 2, · · · , kt, t = 1, 2, · · · , T ,

where kt is the number of contracts traded on day t, T = 3, 365, the number of days in the sample, and ln Fit is the

natural logarithm of futures price on day t, during which a total of kt contracts were traded. Inventories are measured

in billions of 1982 dollars.
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Table 2: Inventory and Time-to-Delivery Effects on Volatility

Least Squares
Estimates

Generalized Least
Squares Estimates

α 2.281 2.195
[0.050] [0.071]

(45.977) (30.806)

β -0.114 -0.094
[0.009] [0.015]

(-12.583) (-6.448)

γ1 -0.008 -0.008
[0.001] [0.000]

(-11.474) (-21.536)

γ2 0.00002 0.00002
[0.000] [0.000]
(4.335) (9.024)

Notes: Regression results from |%∆Fit| ≡ |100× (ln Fit− ln Fi,t−1)| = α+βSt +γ1TTDit +γ2TTD2
it + εit. |%∆Fit| is

the approximate percentage change in the volatility of daily return on lumber futures, lnFit is the natural logarithm of

futures price on day t, during which a total of kt contracts were traded, St is the lumber inventory level on day t, and

TTDit is time to delivery, the number of days remaining to contract expiration on day t. Standard errors and t-values

of estimates are given in the brackets and parentheses, respectively.
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Table 3: Volatility Persistence in Financial Assets Returns

S&P
500

Dow
Jones

Nasdaq
CAD-
USD

YEN-
USD

3-m
T-Bill

6-m
T-Bill

1-yr
T-Bill

Lumber Futures
OLS GLS

a 0.48 0.52 0.50 0.16 0.34 0.67 0.60 0.57 1.01 1.14
[0.01] [0.01] [0.01] [0.00] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02]

(65.98) (67.99) (42.29) (50.33) (51.49) (47.81) (50.98) (50.96) (72.47) (56.67)

b 0.22 0.28 0.36 0.26 0.20 0.32 0.26 0.20 0.19 0.15
[0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01]

(27.01) (39.74) (36.60) (25.47) (19.23) (37.00) (28.41) (19.44) (21.91) (15.44)

Notes: Regression results from |%∆Pt| ≡ |100× (ln Pt − ln Pt−1)| = a + b|%∆Pt−1|+ εt, where |%∆Pt| is the approx-

imate percentage change in the volatility of daily return on the financial asset on day t. Standard errors and t-values

of estimates are given in the brackets and parentheses, respectively. Data periods for selected financial series are

as follows: S&P 500, 01/03/1950-06/12/2006; Dow Jones, 01/02/1930-06/12/2006; Nasdaq, 02/05/1971-06/12/2006;

CAD-USD exchange rate, 01/04/1971-06/12/2006; Yen-USD exchange rate, 01/04/1971-06/12/2006; 3-month T-bill,

01/04/1954-06/09/2006; 6-month T-bill, 12/09/1958-06/09/2006; 1-year T-bill, 02/01/1962-08/24/2001; lumber fu-

tures, 07/14/1992-11/15/2005.
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Table 4: Volatility Persistence in Lumber Futures

Least Squares
Estimates

Generalized Least
Squares Estimates

α 1.986 2.066
[0.053] [0.074]

(37.397) (28.007)

β -0.098 -0.089
[0.009] [0.015]

(-10.861) (-6.105)

γ1 -0.007 -0.008
[0.001] [0.000]

(-10.207) (-20.622)

γ2 0.00002 0.00002
[0.000] [0.000]
(4.023) (9.378)

ψ 0.132 0.068
[0.001] [0.009]

(14.962) (7.404)

Notes: Regression results from |%∆Fit| ≡ |100×(ln Fit−ln Fi,t−1)| = α+βSt+γ1TTDit+γ2TTD2
it+ψ|%∆Fi,t−1|+εit.

|%∆Fit| is the approximate percentage change in the volatility of daily return on lumber futures, lnFit is the natural

logarithm of futures price on day t, during which a total of kt contracts were traded, St is the lumber inventory level

on day t, and TTDit is time to delivery, the number of days remaining to contract expiration on day t. Standard errors

and t-values of estimates are given in the brackets and parentheses, respectively.
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