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Prediction of Weather Event Associated Crop Yield Losses in Kansas  

Erda Wang, Jimmy R. Williams, and Bertis B. Little 

Abstract 

The Environmental Policy Integrated Climate (EPIC) model was modified to include hail 

weather events, completing modification needed to simulate the four most frequent causes of 

crop yield loss (hail, too wet, too cold, too dry) in the Kansas crop insurance program.  Yields 

were simulated for corn, wheat, soybeans, and sorghum.  

Key Words: crop insurance, computer simulation, EPIC, hail damage, risk, yield loss.  

JEL Classifications: G08-02 

Reliable long term crop yield data are valuable information for crop insurance policy-

formulation and individual farm management. In the crop insurance program, determination of a 

predetermined crop yield quantity, i.e., unit guarantee, is a key information to establish levels of 

crop insurance policy guarantee. In practice, production data are obtained by calculating a 

producer’s mean self reported actual production history (APH) with four or more years of self-

certified APH as the basis for coverage. If four or more years of certified records are not 

available, transitional yields (County T-yields) are substituted for years missing production data.  

In some instances, use of T-yields instead of APH data reduces yield guarantees over time for 

insurance purposes by as much as 50 percent.  

Yield risk varies regionally, and depends on soil type, climate, use of irrigation, and other 

variables. Weather factors (e.g., hail, drought, flooding, and cold temperature) are poorly 

predicted because they are stochastic by nature. Importantly, weather factors detrimentally 

influence annual crop yield variation. For example, in Kansas the annual indemnity payment 

made by insurance companies for weather-related yield loss reached more than 1.18 billion 
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dollars over fourteen years (1991 – 2004).  The distribution of damage payments demonstrates 

the importance of weather in crop loss: (1) 67% attributed to drought, (2) 14% to too cold, (3) 

11% to hail, and (4) 8% to flooding (table 1).  It is important to note that indemnity payments 

varied considerably by crop, cause of loss, and geographical regions in the state. Therefore, it is 

important to predict how the weather factors affect crop yield.   

Regression analyses have been done, and deterministic “simulations” conducted.  However, 

computer simulation has not been applied to the research objective of providing data that are 

actuarially useful when only 4 or 5 years of history are available. 

Computer simulation models, ranging from statistical to deterministic, are used in common 

practice in various disciplines such as scheduling in manufacturing (Koh, Souza, and Ho; Dogan, 

McClain, and Wicklund), statistical parameter estimation (Takahashi, Hiraki, and Soshiroda), 

and medicine and biology (Azgomi and Movaghar).  Computer simulation is also used in 

forestry, and to predict crop production associated with climate variation and some specific 

weather factors (Gassman et al.). Choice of the appropriate simulation model is critical to the 

success of modeling any phenomenon. Numerous environmental models exist, and some have 

integrated NASA satellite data to estimate the cost of crop damage from hail and wind storms 

(Bentley, Mote, and Thebpanya). Even satellite-imagery estimates of crop damage caused by the 

extreme weather have its own limitations because it cannot assess damage severity.  Damage 

severity analysis is very important from the viewpoint of economics. Research indicates that 

crops have a recovery ability, dependent upon the crop’s stage of development, and weather 

during the remainder of the growing season.  For example, in corn production seedlings remain 

below ground two to three weeks after the plant germinates (5-leaf). If the pre-emergent seedling 

is not damaged, corn will recover and perform better than replanted corn. In contrast, corn in the 
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silking and tasseling stage can result in severe yield losses when damaged by hail (Cogdill and 

Kringler).   

Crop models are generally designed to operate at the field level, and they rely on detailed 

field-scale inputs, such as the soil type/series, plant genotype and weather, to predict yield and 

other crop variables at that scale. Climate prediction models have a much coarser resolution, 

typically from tens (in regional models) to hundreds of square kilometers (Priya and Shibasaki).  

For agricultural computer simulation analysis, EPIC is a continuous, field scale agricultural 

management/water quality model (Michels, Potter, and Williams; Gassman et al.; Williams et 

al.). The EPIC model is broad-based and can be used to model major biophysical processes, 

including weather, hydrology, erosion, nutrient (nitrogen and phosphorus) cycling, pesticide fate, 

soil temperature, crop growth, tillage, plant environmental influences and economic inputs and 

outputs. EPIC input data are generally available (i.e., crops, soil types/series, tillage, fertilizer, 

pesticides, weather). Daily weather may be input or simulated by EPIC using its built-in 

stochastic weather generator. EPIC is capable of simulating the long-term effects of cropping 

systems on soil erosion and productivity in specific environments. EPIC simulated yields of 

maize, wheat, rice, sunflower, barley and soybeans were compared to 227 measured yields 

reported by independent research groups around the world. Mean simulated yields were within 

7% of mean measured yields for these crops.  Measured and simulated means were not 

significantly different (P > 0.05), and EPIC accurately simulated maize responses to irrigation at 

locations in the western U.S. and to nitrogen fertilizer in Hawaii (Williams).  

The EPIC crop growth component is capable of forecasting yield reduction because of 

environmental stresses caused by water (too wet or too dry) and temperature (too hot or too 

cold).  However, the EPIC model previously had no hail damage function integrated.  Hail 
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damage is, nonetheless, an important source of crop damage in crop insurance and agricultural 

practice and policy-formulation.  Hence, a hail damage component was developed, added to the 

EPIC simulation, and reported here.   

The present investigation was aimed to: (1) develop and integrate a hail damage function 

into EPIC, and (2) test the EPIC model’s accuracy to simulate weather-related crop yield losses 

for each of nine districts in Kansas with hail damage included, in addition to hydrologic and 

temperature damage functions.  

METHODS AND MATERIALS 

The present investigation describes data sources, model development, calibration, and 

validation for the integration of hail into the EPIC simulation model.  The model forecasts were 

tested against insured, observed yields in Kansas for 1998 to 2004. 

Data Sources 

Data inputs to the EPIC simulation model include soil, weather, hail probability, hail-

caused yield loss (damage function), location of crop production, and crop yield. These data 

were assembled from various sources.  

Soil.  Data on soil types were obtained from the Kansas Agricultural Experiment Station, Kansas 

State University, and were used to identify dominant soil types in each county. Soil type data 

originated from the county soil survey, and the type that accounted for the highest percentage 

was considered the dominant soil type in the county. Direct data matching between crop type and 

soil type was not available.  Therefore it was assumed that the dominant soil type was used to 

grow the dominant crop in a county. For example, if the soil survey data indicates that 80% soil 

in Graham County is kuma silt loam and if corn is the dominant crop in the county, then the 

kuma silt loam soil will automatically be recognized as the dominant soil for corn production in 
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this county. The county level soil type data was further aggregated into district level soil data for 

crop yield simulation. Actual soil data were synthesized from the STATSGO soil database as 

compiled by the United States Department of Agriculture Natural Resource Conservation 

Service (NRCS) (USDA). All variables used to describe a soil’s physical and chemical properties 

were included in each soil file except for the hydrologic soil group number.   The hydrologic soil 

group number was extracted from the USDA Soil Conservation Service National Engineering 

Handbook, Hydrology, Section 4, Chapter 7 (USDA).  

Crop Type. Crop type data was obtained published from Kansas agricultural statistics (Kansas 

Agricultural Statistics, Staff Paper no. 95-10).  Data provided the annual county crop production 

information during 1995-2002 by crop, identifying the dominant crops in each county. Combined 

with dominant soil type data for each county, dominant soil type was matched with dominant 

crop data, as previously described. This provided realistic model inputs for the simulations.  

Weather Data. The weather data was gathered from Earthinfo’s weather database 

(EARTHINFO, Inc., NCDC).  Daily weather variables (1960 to 2003) included:  precipitation, 

maximum and minimum temperature, relative humidity, solar radiation, and wind speed were 

obtained for each weather station in Kansas.  Missing daily weather records were simulated by 

the EPIC weather generator through interpolation.  

Crop Yield Data.  Yield data were extracted from the USDA Risk Management Agency (RMA) 

database for 1984 to 2003. Average annual corn, soybean, sorghum, and wheat yields were 

calculated for the period 1984-2003 for each county and aggregated to the district level. Years 

with zero acreage of a particular crop were excluded from the mean yield calculation. 

Hail Data. Daily hail data from January 1, 1955 to June 20, 2004 were assembled from the 

National Climatic Data Center, NOAA Satellites and Information, National Environmental 
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Satellites, Data, and Information Service (NCDC). County based daily hail events were recorded 

by the local weather stations and some field observers. County level daily hail data were 

aggregated to district level for probability distribution analysis.  Observed data showed that hail 

only occurred from day 45 to day 340 and peaked during the period day 140 to 160, i.e., in the 

late April and early June each year (figure 1).  

Hail Damage.  Crop yield hail damage data were synthesized from the USDA RMA database for 

the period 1991-2004. The raw data included hail insurance policy level information such as 

policy number, planting dates, cropping practices (irrigated and dryland), insured acres, claimed 

acres, etc., in each county. District hail damaged acres were aggregated up to the District level 

from the county data. Hail-caused crop yield damage was defined as a percentage term: (claimed 

hail damage acres/insured acres of each crop/year) in a district. Hail-caused crop yield loss 

ranges from 0.5% to 21% with the majority of hail damage comprising less than 5% of the total 

for a District. On average, hail caused about 5 percent yield loss in Kansas, but the severity of 

hail damage varied from crop to crop, and from district to district (table 2).  

The EPIC Hail Model 

Correct estimation of crop yield damage caused by hail is very complex because of 

variation in hailstone size, number of hailstones per unit area, and associated winds. Hail risk is a 

combination of these factors plus the frequency of hail at a point or over an area (Bentley, 

Thomas, and Thebpanya). Hail can result in no damage or a total loss, or any proportion in 

between. Statistics on hailstorms that are relevant to agricultural production are difficult to 

obtain, primarily because of shortcomings in observational systems. As a result, the historical 

hail damage assessment was primarily based on crop hail insurance records. An additional 

confounder is that not all farmers have crop insurance coverage.  Hail insurance is estimated to 
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cover 25 to 30 percent of all crop losses caused by hail (Changnon).  Records of hail as a cause 

of loss are limited to crops that are growing and susceptible to loss.  As noted earlier, 

vulnerability to hail damage changes during the growing cycle and varies between crops (Cogdill 

and Kringler).  In addition, crop-hail losses for a state or the nation change with time because of 

coverage (liability) differences and crop value.  Cyclical temporal variation in hail occurrence is 

pronounced (figure 1). 

The EPIC hail model simulates hailstorm occurrence and hail damage to crops. The model 

is stochastic and independent of the EPIC weather simulation model. Hail storm occurrence is 

simulated using daily probability distributions derived from various observers within a District 

((NCDC), NOAA Satellites and Information, National Environmental Satellites, Data, and 

Information Service).  Kansas Districts are large, generally comprised of several counties.  In 

contrast, hailstorms tend to be isolated, normally covering a small fraction of the District.  Thus, 

the probability of hail occurrence on a particular field within a district is usually much less than 

the probability of hail occurrence within the district.  We developed a stochastic approach for 

adjusting the district probabilities to probabilities for a particular field within the district using 

the equation: 

     HPCA = HDPB * (-ln(FX))                                                                        (1)  

where HPCA is the hail probability conversion factor for adjusting district probabilities to field 

site probabilities, HDPB is the mean fraction of the district area covered by an individual hail 

storm, and FX is a uniform random number.  Hailstorm occurrence is simulated when 

     RN < HPCA*HLPBj                                                                                                                           (2) 

where RN is a uniformly distributed random number, and HLPBj is the district hail probability 

for day j.  When a simulated hailstorm occurs crop damage is simulated using hail damage 
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functions for irrigated and dry land winter wheat, corn, grain sorghum, and soybeans by District.  

Damage statistics include the mean and standard deviation.  The damage function was assumed 

to be normally distributed and hail damage was simulated with the equation: 

     CHDM = HLDMk + SND * HLDSk                                                                                             (3) 

where CHDM is the proportion of crop damage caused by the hail storm, HLDM and HLDS are 

the mean and standard deviation of the hail damage distribution for crop k, and SND is the 

standard normal deviate drawn randomly from a normal distribution.  Crop yield is adjusted with 

the hail damage fraction using the equation: 

     YLD = YLDo * (1.0 - CHDM)                                                                       (4) 

where YLD is the crop yield as affected by hail damage and YLDo is the crop yield with no hail 

damage. 

Model Calibration 

The EPIC model was calibrated on three parameters: (1) crop yield, (2) hail damage 

severity, and (3) the damage distribution associated with different factors including hail, too wet, 

too cold, and too dry.  Calibration of yield and hail damage was evaluated using a goodness of fit 

and two-sample mean tests (assuming equal sample sizes) were performed to evaluate whether 

there was statistically significant difference between observed and simulated results. For 

instance, if both R2 and two sample mean tests revealed there was no statistically significant 

difference between observed and simulated outcomes, we would conclude that the EPIC-hail 

model was validated and is calibrated for use in long run crop productivity and hail damage 

forecasts for each investigated crop. In addition, prior to the two-sample mean test, a two-sample 

equal-variance test (F-test) was performed to determine an appropriate two-sample t test 

procedure to be used in each test.  EPIC was calibrated using exactly same length of period (20 
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years) because only 20 years (1984-2003) of crop yield data were available from the USDA 

RMA database. Non-hail yield damage was validated by checking the simulated damage ratio 

against observed damage ratio of each investigated weather factor.  The damage ratio associated 

with each weather factor was defined as percent of yield loss attributed to each factor with 

respect to the total yield loss of each crop. 

To simplify the analysis, four simulations (one for each crop) were performed in each 

District using one soil and one weather station (located nearest the center of the district).  The 

choice of weather station is not particularly important because precipitation and temperature are 

very similar for all stations within a district.   However, there is substantial variation in rainfall 

among Districts as one proceeds from east to west. 

Crop management files (operation schedules) were generalized to formulate District level 

simulations. These operation schedules were developed to represent normal farming practices for 

each of the four crops within each District.  They include planting and harvest dates, tillage type, 

planting depth, and dates of cultivation.  Of course these operation schedules vary among 

farmers and across individual years, but data are not available for these parameters. In addition, it 

is likely that they would have little effect on long term crop yields if they were quantified. 

Separate operation schedules were developed for irrigated and dryland crops.  Irrigation and 

fertilizer were applied automatically by the model’s algorithms to meet crop needs.  These were 

“fixed” parameters.  Specific model parameter validation procedures for those variables allowed 

to vary were done for crop yield, hail damage, and non-hail weather damage. 

Crop Yields.  Simulated and observed crop yields were compared.  The EPIC parameters are 

well established for the crops in the simulation because they are the four crops most commonly 

simulated with this model.  Thus, the initial yield estimates compared fairly well with observed 
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yields.  The initial estimates were refined primarily by adjusting plant populations and potential 

heat units to maturity.  Other less important adjustments were made in winter wheat dormancy, 

potential evapotrans-piration, and amounts of fertilizer and irrigation applied. 

 Hail Damage. The stochastic hail model is based on the probability of hail occurrence and 

associated damage functions (normal distribution assumed).  Thus, there is very little to adjust 

except for HDPB (the mean fraction of the district area covered by an individual hail storm). 

Little variation among Districts in the value of HDPB was obtained during the calibration 

process.  The direct relation between hail damage and crop yield complicated the validation of 

these variables. Also, the stochastic nature of the hail model prevents annual damage 

comparisons to observed data; only long-term means are comparable.   Further complications 

were encountered in the statistical analyses.  A small error in magnitude can translate to a large 

percent difference in simulated and observed yields because most hail-induced yield loss was 

less than 5%.  Appropriately, the two-sample equal mean tests were omitted in this instance in 

favor of goodness of fit tests.  In general, if R2 attained 0.50 or above, the validation result with 

respect to the hail damage would be considered acceptable. 

Non-hail Weather Damage. The EPIC crop model constrains daily potential growth using the 

minimum of water, nutrients, temperature, aeration, and salinity stress factors.  The factors range 

from 0-1 (0 means no growth and 1 means no constraint).  The stress factors considered in the 

present analysis are water, temperature, and aeration.  The water stress factor translates to the too 

dry condition and aeration to the too wet condition.  Temperature had to be separated to obtain 

the necessary too cold and too hot conditions because the temperature stress factor is a composite 

of cold and heat stresses.  The too hot condition was combined with the too dry condition for 

comparison to the too hot observed data. 
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 Results 

Crop Yields.  Comparisons of observed and simulated yields for each of the four crops produced 

high R2 values (0.995 for corn; 0.989, soybeans; 0.975, grain sorghum; 0.931, wheat. 

Furthermore, the two-sample mean tests indicated no statistically significant difference between 

observed and simulated yields for each crop simulated in each District (table 3).  The test could 

not be performed for dryland wheat in Districts 20 and 30, and irrigated and dryland wheat in 

Districts 70, 80, and 90 because there was no observed data. Where observed data were 

available, both R2 and t-tests showed that EPIC was validated with respect to crop yields.  

Hail Damage. Hail damage was measured as a percentage of yield loss for each simulated crop. 

Comparison of average annual observed and simulated hail damage yield losses for all four crops 

and all nine Districts produced an R2 of 0.652.  The same comparisons for individual crops 

resulted in R2 values of 0.497 for wheat, 0.704 for soybeans, 0.603 for corn, and 0.308 for grain 

sorghum. The main reason that the R2 values are low relative to those of crop yield is that the hail 

damage model is stochastic.  Only long-term observed and simulated means can be compared 

because the model is stochastic.  It is not logical to compare annual values from a stochastic 

model to observed values.  Also, the longer the term (i.e., number of years) analyzed, the closer 

simulated and observed mean values agreement.  The relatively short term (20 years) data 

available for this study is not ideal for these comparisons, especially considering the infrequent 

nature of hail events.  Within these constraints, the model performed well especially considering 

the relatively small magnitude of the differences in observed and simulated means of hail 

damage.  

Non-hail Damage. Non-hail damage includes yield losses attributed to too hot and dry (or 

drought), too wet (flooding), and too cold (frost). The fraction of the total damage attributed to 
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each component is shown in table 4.  Observed and simulated damage distributions are similar.  

Hot/dry weather (or drought) caused the greatest damage loss for each crop (more than 90% in 

corn, soybeans, and grain sorghum). The remaining 10% damage loss was attributed to the 

combination of hail, too wet and too cold.  One noticeable difference between observed and 

simulated result was for too wet damage; simulated results consistently under-estimate observed 

damage due to “too wet” conditions. This was probably because the dominant soils used in this 

study are located on upland areas rather than floodplains where wet conditions are more 

prevalent.  

Discussion and Summary 

A hail damage model was developed as an integrated component of EPIC.  The model was 

used to estimate weather-caused crop yield losses for four crops growing in nine Districts for the 

state of Kansas.  Multiple data elements were synthesized, including weather (hot, dry cold), hail 

event distribution, soil, crop management, and historical crop yields. The most important data 

element was the district hail event distribution. Other weather-factor related yield damage 

assessments were based on the pre-existing EPIC components (water, temperature, and aeration 

stresses), in addition to hail. The EPIC-hail model simulates (1) hail storm occurrence and then 

(2) hail damage to crops. The model is stochastic and independent of the EPIC weather 

simulation model. Hailstorm occurrence was simulated using daily probability distributions 

derived from various data sources within a district. Hailstorm events tend to be isolated, and 

normally cover a small fraction of the district.  Thus, the probability of hail occurrence on a 

particular field within a District is usually much less than the probability of hail occurrence 

within the District because they are additive probabilities.  In the present investigation, a 

stochastic approach for adjusting the District probabilities to probabilities for a particular field 
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within the District using a series of mathematical and statistical distribution formulas was 

developed. When a hail storm occurs, crop damage is simulated using hail damage functions for 

irrigated and dry land winter wheat, corn, grain sorghum, and soybeans by district.  The damage 

statistics include the mean and standard deviation, assuming that the damage function was 

normally distributed.  

EPIC was able to simulate crop yields that compare closely with observed yields (R2 > 0.95 

and no statistically significant difference between observed and simulated crop yields across the 

districts (p<0.05) by correlation and two-sample equal mean test analyses.  The hail damage 

model test indicated that EPIC was able to predict hail-induced yield losses reasonably well (R2 > 

0.60). The main reason that the R2 values are low relative to those of crop yield is that the hail 

damage model is stochastic and totally independent of the daily weather input. Also, the 

relatively short term (20 years) data available for this study is much less than ideal for these 

comparisons, especially considering the rarity of hail occurrence.  Given these constraints, the 

model performed reasonably well especially considering the relatively small magnitude of the 

differences in observed and simulated means.  In addition, observed and simulated damage (too 

hot or dry, too cold, too wet) distributions are similar. Importantly, too hot or too dry conditions 

are the dominant crop damage factors in all nine Districts in Kansas.  Hail accounts for less than 

8% of the total yield damage in Kansas.  

Therefore, simulation results on hail and other weather factor damage functions could be 

improved by: (1) using more accurate hail data collection (area covered by the hail storm and the 

crop damage within that area), and (2) focusing the simulation scale to a county or sub-county 

level would provide more specific weather, soil, and management data.  
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Table 1   Observed crop yield losses attributed to  

               different weather factors 

Crop Hail Too Hot Too Wet Too Cold Sum 

  Percent  

Corn 10 81 6 3 100 

Soybeans 4 85 10 1 100 

Sorghum 2 87 8 3 100 

Wheat 18 45 9 28 100 

  1,000 Dollars  

Corn 2,388 19,343 1,433 716 23,881 

Soybeans 674 14,313 1,684 168 16,839 

Sorghum 490 21,328 1,961 735 24,515 

Wheat 9,503 23,757 4,751 14,782 52,793 

Sum 13,055 78,741 9,829 16,402 118,027

Percent 11 67 8 14 100 
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Table 2.    District based % hail damages (claimed acres/total planted acres  

                  in each district*100) 

 Wheat Corn Sorgum Soybean 

District # Irrigated non-irri. Irrigated Non-irri Irrigated Non-irri. Irrigated Non-irri. 

10 5.56 5 3.73 1.81 4.81 1.18 7.88 5.05 

20 5.8 6 3.41 2.36 3 1.08 6.1 4.85 

30 3.39 3 1.6 2.04 2.39 0.82 4.48 7.97 

40 9.18 4 1.08 1.06 0.94 0.37 1.26 0.86 

50 3.16 6 2.95 1.22 0.53 0.37 2.5 1.03 

60 2.54 4 1.54 2.17 1.29 0.53 2.73 1.87 

70 2.5 1 3.27 0.28 -- 0.45 0.78 0.63 

80 20.89 2 0.36 0.21 -- 0.12 2.47 0.32 

90 20.85 1 1.5 0.44 -- 0.11 6.13 0.26 
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Table 3   Comparison between observed and simulated annual average   
               crop yields (1984 - 2003) 

District 
Observed 

Mean 
Simulated 

Mean 
Significant 
difference

Observed 
Mean 

Simulated 
Mean 

Significant 
Difference 

 Irrigated Dryland 
  Corn   
District 10 8.68 8.56 no * 3.92 3.75 No * 
District 20 8.3 8.46 no * 3.09 3.8 No * 
District 30 9.11 8.86 no * 2.25 3.32 No * 
District 40 7.92 7.98 no * 4.51 4.39 No * 
District 50 7.85 8.5 no * 3.8 3.92 No * 
District 60 9.13 8.88 no * 3.37 3.51 No * 
District 70 7.66 7.75 no * 5.75 5.62 No * 
District 80 7.96 8.1 no * 5.12 4.93 No * 
District 90 5.73 6.52 no * 5.4 5.4 No * 
 Soybeans   
District 10 2.95 2.85 no * 1.24 1.47 No * 
District 20 2.45 2.4 no * n.a. n.a. No * 
District 30 2.97 2.91 no * n.a. n.a. No * 
District 40 2.77 2.7 no * 1.74 1.59 No * 
District 50 2.92 2.86 no * 1.6 1.6 No * 
District 60 3.11 3 no * 1.69 1.77 No * 
District 70 2.89 2.79 no * 2.03 1.87 No * 
District 80 2.99 2.91 no * 1.73 1.67 No * 
District 90 2.01 2.23 no * 1.62 1.64 No * 
  Sorghum   
District 10 5.11 5.44 no * 3.37 3.65 No * 
District 20 5.34 5.33 no * 3.25 2.96 No * 
District 30 5.27 5.66 no * 2.83 2.96 No * 
District 40 5.52 5.54 no * 3.9 3.98 No * 
District 50 5.33 5.35 no * 3.4 3.43 No * 
District 60 5.28 5.3 no * 3.2 3.18 No * 
District 70 5.1 5.41 no * 4.5 4.4 No * 
District 80 5.1 5.51 no * 4.11 3.94 No * 
District 90 4.59 4.72 no * 4.26 4.17 No * 
  Wheat   
District 10 2.87 2.93 no * n.a. n.a. No * 
District 20 2.83 2.9 no * n.a. n.a. No * 
District 30 30.2 2.9 no * 2.38 2.11 No * 
District 40 2.48 2.56 no * 2.38 2.38 No * 
District 50 2.51 2.56 no * 2.25 2.34 No * 
District 60 2.72 2.87 no * 2.08 2.31 No * 
District 70 n.a. n.a.  --- 2.39 2.22  --- 
District 80 n.a. n.a.  --- 2.28 2.44  --- 
District 90 n.a. n.a.  --- 2.13 2.22  --- 
Significance of t-test where *p<0.05; n.a. not applicable due to missing observed historical data.
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Table 4.   Comparison between observed and simulated yield damages  

               attributed to different weather factors 

 

Damage 

Types 

Corn Soybeans Sorghum Wheat 

Observed (%) 

Hail 10 4 2 18 

Too Hot 81 85 87 45 

Too Wet 6 10 8 9 

Too Cold 3 1 3 28 

Simulated (%) 

Hail 7 4 8 22 

Too Hot 90 94 92 70 

Too Wet 0 1 0 1 

Too Cold 3 0 0 7 
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Figure 1.  Hail event distribution in Kansas State, 1955 - 2004 
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