

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

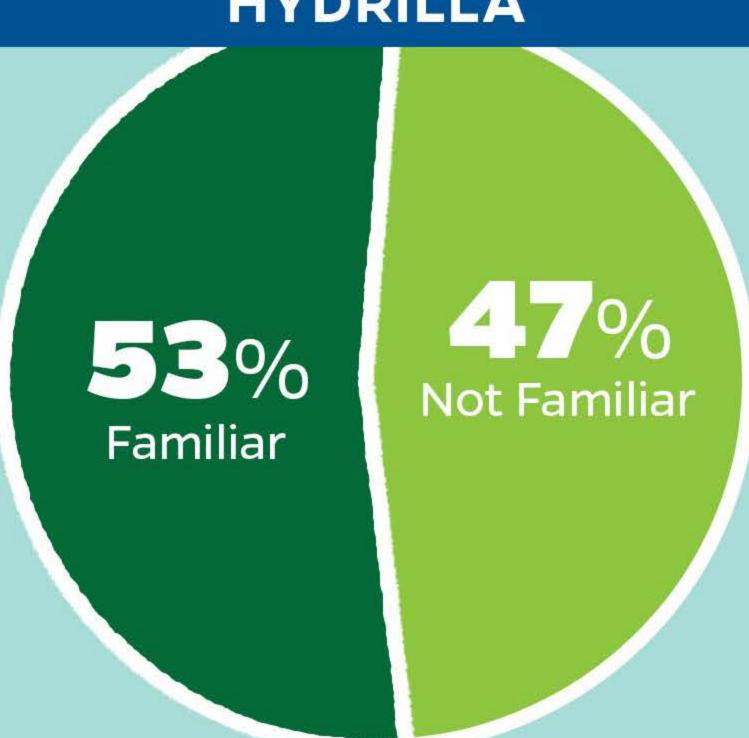
AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

UNIVERSITY of FLORIDA

Unveiling Public Perspectives on Taming Invasive Aquatic Plants

Amanda B. Heinzmann, Olesya M. Savchenko, Candice Prince, James K. Leary


Background

Hydrilla (Hydrilla verticillata) is an invasive aquatic plant that displaces native species, alters water quality, and impedes recreational activities across the United States¹. It is extremely difficult to manage, costing millions of dollars for state and federal governments. Florida is a national leader in aquatic invasive plant management but has faced public concerns about the environmental impacts of herbicides, similar to other states trying to manage hydrilla. To inform aquatic invasive plant management policy, we surveyed 3,000 Florida residents about their preferences for the use of aquatic herbicides and mechanical harvesting to control hydrilla.

AOUATIC PLANT AND FEDERAL AGENCIES IN FLORIDA FROM 2008 - 2015²

IN FLORIDA

Concern Over Aquatic Herbicide Use

NOT CONCERNED

(S) 13%

77%

PRIMARY CONCERNS

APPLYING HERBICIDE

PROS

Undergo 8-10 years of testing

for EPA approval

Water is safe for recreational

use after most treatments

Prevents plant regrowth for

up to 300 days

Cost effective

No impacts on non-target species

94%

Use of water for recreation

Impact on plants and animals

96%

Accumulation in lakes

CONS

Decaying plants cause muck buildup

Waiting periods may be required before using water for irrigation, drinking, and livestock water use

PRIMARY CONCERNS

93%

Pollution risk from harvester

94%

Cost

95%

Impact on plants and animals

PROS

Removes plants from water

Reduces muck build up

No water use restrictions

after application

Prevents plant regrowth for up to 100 days

MECHANICAL

HARVESTING

GONS

2-3x as expensive compared to aquatic herbicides

Often kills non-target plants and animals also present in the water

Potential for pollution from diesel powered harvesters

WHAT ARE THE PUBLIC PREFERENCES FOR HYDRILLA MANAGEMENT?

USE BOTH AQUATIC HERBICIDE AND MECHANICAL HARVESTING

CONTINUE USING AQUATIC HERBICIDE

SWITCH TO MECHANICAL HARVESTING

OTHER

1. USGS. (2020, February 3). Hydrilla (hydrilla verticillata) - species profile. Nonindigenous Aquatic Species Database. Retrieved January 30, 2023, from https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=6

2. Gettys, L. A., & Enloe, S. F. (2019, April 28). Hydrilla: Florida's worst Submersed Weed. askIFAS. Retrieved January 30, 2023, from https://edis.ifas.ufl.edu/publication/AG404?downloadOpen=true.

3. Matthew A. Weber, Lisa A. Wainger, Nathan E. Harms & Geneviève M. Nesslage (2021) The economic value of research in managing invasive hydrilla in Florida public lakes, Lake and Reservoir Management, 37:1, 63-76, DOI: 10.1080/10402381.2020.1824047

Author Information: Amanda B. Heinzmann (amandaheinzmann@ufl.edu) is a Research Assistant and PhD Student with the Food and Resource Economics Department at the University of Florida. Olesya M. Savchenko* (olesya.savchenko@ufl.edu) is an Assistant Professor with the Food and Resource Economics Department at the University of Florida. Candice Prince (cprince14@ufl.edu) is an Assistant Professor with the Agronomy Department at the University of Florida, Gainesville. James K. Leary (learyj@ufl.edu) is an Assistant Professor at the Center of Aquatic and Invasive Plants with the Institute of Food and Agricultural Sciences at the University of Florida. *Corresponding Author: Olesya M. Savchenko, email address: olesya.savchenko@ufl.edu; postal address: 1183 McCarty Hall A, Gainesville, FL, 32611. Acknowledgement: This study was funded by the Florida Fish and Wildlife Conservation Commission's Invasive Plant Management Section and the USDA National Institute of Food and Agriculture, Hatch project FLA – FRE - 006434

CHOICES Data Visualization Series Quarter 1 2024 CHOICES