

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Challenges and Opportunities for Emerging Groundwater Markets

Nick Brozović

Department of Agricultural and Consumer Economics University of Illinois at Urbana-Champaign

USDA Economists Group Seminar / 28 January 2014

Groundwater plays a critical role in

- Mitigating drought and climate change risk
- Maintaining agricultural productivity, food security, and rural economies
- Sustaining freshwater ecosystem services

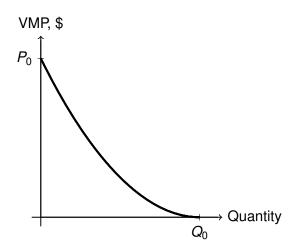
Today's seminar

Water stories

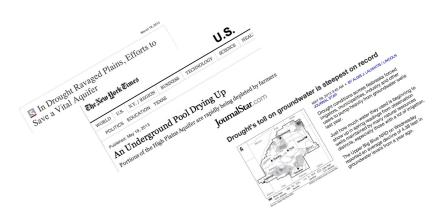
- 1. Groundwater is a common property resource
- Declining groundwater levels are the primary driver of change in groundwater management
- It's not feasible to monitor and enforce groundwater pumping restrictions
- We have measured the surface of Mars at higher resolution and accuracy than we have measured agricultural groundwater use on Earth

Water story #1

Groundwater as common property



Common property resources

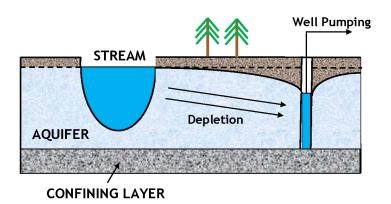

Economic value of groundwater

Value of the Marginal Product

Water story #2

Declining groundwater levels are the primary driver of change in groundwater management

Groundwater depletion in research

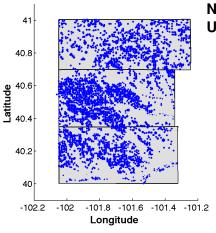

What drives binding change to groundwater policy?

What drives binding change to groundwater policy?

Surface water – groundwater interaction

Water story #3

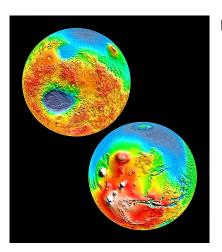
It's not feasible to monitor and enforce groundwater pumping restrictions



State of agricultural groundwater monitoring

- The Upper Republican NRD in Nebraska started metering in 1978 and was fully metered by 1982
- Metered agricultural groundwater use is also found elsewhere (Nebraska, Kansas, Australia, New Zealand, China)
- Meters can be controversial
- Monitoring of pumping restrictions is possible without meters through certification of irrigated acreage

Water story #4


We have measured the surface of Mars at higher resolution and accuracy than we have measured agricultural groundwater use on Earth

NE DNR Wells database, URNRD

- Density: 3,200 data points in 7000 km²,
 1.48 km data spacing
- Accuracy: ± 2% for propeller flow meter

Martian topography

Mars Global Surveyor MOLA

 Resolution: 512-128 pixels per degree, 119-476 m data spacing

Accuracy: ± 0.05%

Accuracy of water use data

				Year		
		2005	2000	1995	1990	1985
	Chase	-0.12	5.38	7.65	-4.50	-0.82
County	Dundy	5.11	-21.69	-15.59	-5.96	5.82
	Perkins	13.54	31.34	39.17	21.29	0.02

Notes: Numbers are percentage differences between USGS Water Use data and URNRD pumping records. A positive number means that the USGS data exceed the URNRD data for that county and year.

Acknowledgments

Groundwater management research

- Students
- Collaborators
- Funders
 - NSF EAR-0709735 (Coupled Natural Human Systems)
 - USDA AG-2012-67003-19981 (Water Sustainability and Climate)
 - NSF IIP-1313526 (I-Corps)

State of groundwater management

Groundwater is generally managed locally, or not at all. There are two policy drivers:

1. Long-term aquifer depletion

- In general, has not produced binding policy change
- A few voluntary policies are in place

2. Surface-water groundwater interaction

- Impacts on freshwater ecosystems
- Transboundary surface water allocation
- Ongoing litigation, with precompliance and regulated systems in place

Design of groundwater trading systems

- Need for a meaningful limit on aggregate pumping
- Monitoring and enforcement
- Transaction costs
- Consideration of spatial externalities
- Conveyance issues
- Consumptive water use
- Other considerations

Design of groundwater trading systems

- Need for a meaningful limit on aggregate pumping Heterogeneity under pumping constraints drives gains from trading
- Monitoring and enforcement
 - Must be present, even if imperfect
 - In 2010, the Upper Republican NRD revoked groundwater pumping rights with value >\$3 million
 - · Verifiability of decertification is also critical
- Transaction costs
 Existence of 'coffee shop' markets suggests gains exceed transaction costs

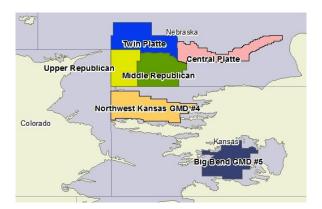
Design of groundwater trading systems

Consideration of spatial externalities

- Often a primary driver of regulation
- Lead to complex rules and regulations e.g. zoning, offsets
- Conveyance issues
 Unlike surface water markets, conveyance is not an issue
- Consumptive water use
 - Existing markets transfer either applied water or irrigated acreage
 - Reasons are likely pragmatic
- Other considerations

 Paper water, carryover provisions...

State of agricultural groundwater trading


There are growing number of regions with frameworks for trading, and a few emergent informal and formal groundwater markets:

- · US High Plains region
- Australia
- Other regions

State of agricultural groundwater trading

US High Plains region

- Nebraska (e.g. Republican and Platte River Basins)
- Kansas (e.g. Sheridan-6 LEMA)

State of agricultural groundwater trading

- Australia
 (National Water Initiative e.g. Murray-Darling Basin)
- Other regions
 (Texas, Arizona, California, New Zealand, China, South Asia)

Example: Groundwater markets in the High Plains Aquifer

- Basic issue: Pumping needs to be reduced from historic levels
- Goals of management:
 - 1. Compact compliance for stream depletion (Republican)
 - 2. Endangered species protection (Platte)
 - 3. Desire for long-term aquifer preservation

Example: Groundwater markets in the High Plains Aquifer

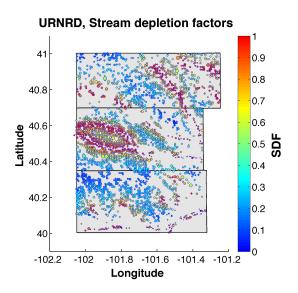
Approaches:

- Certification of irrigated acreage
- Moratoria on new wells
- Metering of wells (mandatory in RRB)
- Quantified and allocated irrigation rights (quotas)
- Strong local enforcement
- Active land retirement/stream augmentation projects (>\$100 million in 2011 and 2012)
- Limited transferable permit systems

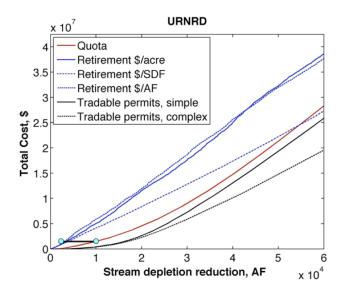
Policy questions

Motivation

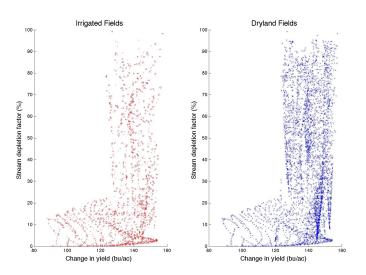
- Have a spatial, dynamic hydrologic system with many heterogeneous decision makers
- Each management choice
 - Provides different incentives to each farmer
 - Leads to different hydrologic impacts
 - Produces a different tradeoff between lost agricultural production and instream benefit
- Multiple types of policies are currently in use
- It is important to understand which policies are effective, and why


Policy Analysis

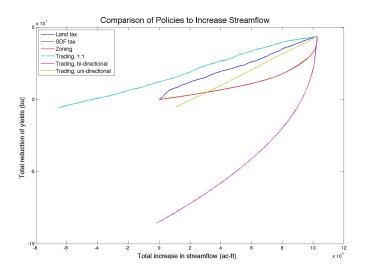
Policies may be targeted in many different ways:


- 1. Land retirement (\$/acre, \$/AF, \$/SDF)
- 2. Quotas (with or without zoning)
- 3. Tradable permits (simple, complex)

Analysis at Natural Resources District level, as this is the management unit


URNRD, Republican River Basin, NE

Comparison of Water Management Policies



TPNRD, Platte River Basin, NE

Comparison of Water Management Policies

TPNRD, Platte River Basin, NE

Experiences with setting up online groundwater markets

- Many environmental markets are 'coffee shop' markets or bulletin boards
- We're working with producers and water districts in Nebraska to build custom online trading systems
- Permanent transfers and leases of groundwater (URNRD); permanent transfers (TPNRD)
- Online systems offer:
 - Anonymous, confidential bidding
 - Automated clearing for regulatory compliance and checks on verifiability
 - Expedited permitting

Trading groundwater rights – lessons learned

- In the US, local water districts manage transfers
- Regulations are complex and dynamic
- How transfers are permitted is often quite different to how regulations are written
- Verifiability is the most important issue for water managers
- Value proposition is the most important issue for producers

Summary

- Stream depletion is the primary driver of changes in groundwater management
- Binding pumping constraints with monitoring and enforcement are feasible
- Nascent groundwater trading systems exist worldwide
- Trading systems offer increased profits to producers and resource conservation benefits
- There is mismatch between current economic research on groundwater management and applied needs

Thank you!

Nick Brozović, nbroz@illinois.edu