
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Journal of Agricultural and Resource Economics: Preprint  ISSN: 1068-5502 (Print); 2327-8285 (Online) 

Copyright 2022 the authors  doi: 10.22004/ag.econ.338998 

Empirical Challenges for Estimating Moral Hazard 

Effects of Crop Insurance on Pesticide Use 

Hunter D. Biram, Jesse Tack, Richard Nehring, and Jisang Yu *

An unforeseen outcome in achieving the dual agricultural policy goals of income 

stabilization with limited environmental impact is the potential for moral hazard. 

Here, we provide an overview of key issues for identifying moral hazard effects of 

crop insurance on pesticide-use and include an empirical application that addresses 

both insurance endogeneity and quality-adjustment of pesticides over time. Our 

results provide no consistent linkage between insurance and pesticide use across 

four major crops. We discuss the differences of these effects across different 

specifications and crops and conclude by stressing that caution be used when 

looking to the academic literature for guidance on this key policy question. 

Key words: agricultural policy, producer behavior, causal inference 

Introduction 

Two major goals of U.S. agricultural policy include smoothing farm income fluctuations through 

risk management programs and reducing the environmental impact of chemical inputs (USDA-

RMA, 2022; P.L. 104-170, 1996). Crop insurance provides risk protection from adverse weather, 

volatile price movements, and risks associated with expected yield loss, while pesticides offer 

protection against yield loss more specifically associated with pests. The potential usefulness of 

both tools in mitigating risk is well established, but their interaction is less clear and has been a 

topic of debate for decades both in the academic literature and public policy arenas. 

An important dimension driving the debate is the potential for moral hazard in which 

producers alter applications of chemical inputs, such as pesticides, upon obtaining crop insurance 

coverage in order to increase the probability of receiving an indemnity (Horowitz and 

Lichtenberg, 1993; Smith and Goodwin, 1996; Coble, et al., 1997). However, it is difficult to 

identify this effect because both crop insurance participation and pesticide demand have been 

influenced by significant changes driven by government policies and production efficiencies. 

While crop insurance enrollment has almost surely been impacted by changes in its program 

provisions regarding eligible crops and premium subsidies, pesticide applications have been 

impacted by changes in key quality characteristics such as potency and toxicity (Fernandez-

Cornejo and Jans, 1995; Fernandez-Cornejo, et al., 2014). At the farm-level, these decisions are 

further impacted by crop choice since certain crops and regions face different risks leading to 

differences in insurance premium rates faced by the producer and differences in pesticide active 

ingredients needed to mitigate various pest pressures. 
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This raises the question of whether crop insurance participation affects pesticide use, and if 

so, is the effect heterogeneous across crops? Previous work on this question can be classified into 

theoretical and empirical findings. The theoretical literature is well-developed with findings 

explained by risk aversion under Expected Utility Theory and by the nature of pesticides 

themselves, so we make no effort to develop a framework here. The empirical literature is 

beginning to become more developed with the introduction of novel econometric methods and 

forms of measurement for both pesticide use and crop insurance participation. Findings are largely 

mixed with both the theoretical and empirical literature showing positive (Horowitz and 

Lichtenberg, 1993; Mohring, et al., 2020a; Regmi, Briggeman, and Featherstone, 2022), negative 

(Smith and Goodwin, 1996; Babcock and Hennessy, 1996; Mohring, et al. 2020b) and null or 

mixed (Horowitz and Lichtenberg, 1994; Weber, Key, and O’Donoghue, 2016) effects of crop 

insurance participation on pesticide use.  

The concerns which have emerged in the empirical literature primarily deal with the 

endogeneity of the crop insurance decision and measurement of both pesticide use and crop 

insurance participation with most works focusing on a single crop. The timing of the crop 

insurance and pesticide use decisions has been noted as a factor driving the endogeneity of the 

crop insurance decision with some papers modeling the insurance decision as being made prior to 

the pesticide decision (Horowitz and Lichtenberg, 1993; Mohring et al., 2020a) and others 

modeling the decision as simultaneous and/or allowing for pesticide application choices to be 

made after the insurance decision (Smith and Goodwin, 1996; Weber, Key, and O’Donoghue, 

2016).   

In the context of crop insurance, measurement of pesticide use has generally been limited to 

expenditures per acre, but some in the literature have constructed alternative measures to account 

for changes in pesticide qualities (Fernandez-Cornejo and Jans, 1995; Fernandez-Cornejo, et al, 

2014; Mohring et al., 2020b). In the crop insurance literature, participation has been measured in 

different ways with some studies utilizing a participation rate variable at the extensive margin 

(Smith and Goodwin, 1996; Connor and Katchova, 2020; Feng, Han, and Qiu, 2021), while others 

incorporate the intensive margin as well (Goodwin, Vandeveer, and Deal, 2004; Weber, Key, and 

O’Donoghue, 2016; Connor and Katchova, 2020). It is also common for studies to focus on a 

single crop with only a few considering the moral hazard effect more generally across multiple 

crops (Roberts, Key, and O’Donoghue, 2009; Weber, Key, and O’Donoghue, 2016). The 

endogeneity of the insurance decision also provides empirical difficulties with some studies 

tackling it directly (Smith and Goodwin, 1996; Wu, 1999; Roberts, Key, and O'Donoghue, 2006; 

Cornaggia, 2013; Weber, Key, and O'Donoghue, 2016; Yu, Smith, and Sumner, 2017; DeLay, 

2019; Connor and Katchova, 2020; Mohring et al., 2020a; Regmi, Briggeman, and Featherstone, 

2022). Overall, any one study has failed to address all of these empirical challenges 

comprehensively, leading to a fractured academic literature that has failed to deliver a consensus 

recommendation on this key policy question.    

In this paper, we provide a topical overview of the inherent challenges for identifying the 

moral hazard effect of crop insurance on pesticide-use, focusing on the aspects of econometric 

modeling and measurement of key variables. To mitigate the bias from a possible correlation 

between the crop insurance participation and unobservables, we first consider conventional two-

way fixed effects approaches. A key concern for these estimators is the presence of any state-

specific and time-varying unobservable factors that affect both pesticide use and crop insurance 

decisions; therefore, we also consider an alternative instrumental variable approach. Specifically, 

we construct a novel shift-share instrumental variable based on changes in insurance subsidy-rates 

and exploit quasi-random variations in crop insurance participation. We also explore a difference-

in-differences design combined with the shift-share IV based around two specific changes in 

subsidies, one in 1994 and the other in 2000. Regarding measurement of key variables, we 

consider (i) insurance participation based on both the extensive (whether to insure) and intensive 

(how much to insure) margins; and (ii) pesticide-use based on the quality-adjustment of active 
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ingredients over time to account for changes in both potency and toxicity among other quality 

variables we discuss later.  

Our sample dataset is a state-level panel spanning 45 U.S. states from 1965-2019. Our three 

identification strategies never provided a robust estimate, bringing into focus the feasibility of 

adequately addressing endogeneity in reduced form settings linking pesticides to insurance 

participation. We show the way in which endogeneity of the crop insurance decision is approached 

may induce a sign-flip for most major crops. We also show that, while the instruments we 

constructed have solid theoretical support to meet the exclusion restriction, how valid the 

exclusion restriction and the relevance assumptions may vary across the specifications regarding 

the set of controls. We consider other controls which may influence pesticide use, such as GMO 

seed adoption, rainfall, and temperature, and find the same pattern of inconsistent estimates across 

measurement and identification approaches. Overall, these findings indicate that measuring the 

effect of crop insurance participation on pesticide use should be done with caution, and policies 

formed from empirical findings should consider the many nuances uncovered here before enacting 

them into public law. 

The remainder of the paper is organized as follows. The next section describes the various 

sources of data used to construct key pesticide and crop insurance measures and the variation 

exploited to identify the treatment effect of interest. A shift-share instrumental variables 

identification strategy is also discussed. The following section highlights the main findings from 

regressions of pesticide use on crop insurance participation. The last section concludes and 

provides implications for the main findings. 

Data and Variable Construction 

For this analysis, we utilize measures for pesticide usage and crop insurance participation for four 

crops: corn, soybeans, wheat, and cotton. Data on pesticide usage comes from USDA Economic 

Research Service (ERS), while crop insurance participation variables draw on data from the 

USDA National Agricultural Statistics Service (NASS) and USDA Risk Management Agency 

(RMA), as well as futures prices from Bloomberg. 

Pesticide Use Measures 

The pesticide use data consists of a state-year panel of annual pesticide expenditures and 

application rates (in pounds per acre) by active ingredient spanning 45 contiguous U.S. states from 

1965-2019. See Table 1 for a breakdown of the number of state-year observations by crop. These 

data were used to construct quality-adjusted and quality-unadjusted (i.e., raw) measures of 

pesticide application rates by leveraging the hedonic pricing methods1 outlined in Fernandez-

Cornejo and Jans (1995). Crop-specific per acre expenditures were calculated by summing total 

expenditures across all active ingredients and dividing them by the number of planted acres for a 

given state-year combination. The different sources of variation among these three measures can 

be seen in Figure 1. 

 
1 The way in which we construct quality-adjusted pesticide use measure is by following Fernandez-Cornejo 

and Jans (1995) and Fernandez-Cornejo, et al. (2014). First, hedonic pricing models for pesticides are run 

regressing the logarithm of pesticide prices across many different pesticides on quality variables and year 

dummy variables using 1965 as the reference year. The quality variables used in these hedonic estimations 

are soil toxicity, potency, soil half-life, solubility, and if the pesticide active ingredient is a carcinogenic, 

mutagenic, or teratogenic (Kellogg, et al., 2002). All quality measures are provided by proprietary sources. 

Code for replicating the quality-adjustment may be provided upon request. Next, parameter estimates from 

all control variables in the hedonic estimation are used to calculate the quality-adjusted pesticide price. 

Finally, the quality-adjusted quantity for each state-year-crop is found by dividing the total pounds of 

pesticide active ingredient per acre by the quality-adjusted price. 
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Figure 1. Spatial and Temporal Variation in Pesticide Variables (1965-2019)  
The figure above plots expenditures per acre, raw pesticide quantity applied per acre, and quality-adjusted 

pesticide quantity per acre for corn. All three variables are constructed at the state-level. Expenditures per 

acre are found by deflating total expenditures using CPI reported by the Bureau of Labor Statistics and 

dividing this measure by planted acreage. The raw quantity is found by taking the total expenditures and 

dividing it by the average price received across active ingredients. The quality-adjusted quantity is found 

by dividing the total expenditures by active ingredient and dividing it by the quality-adjusted price received 

across active ingredients. 

The quality-adjusted quantity is a measure of pesticide use which accounts for changes in 

pesticide potency and other quality variables over time and represents pesticide usage in the case 

where potency and other quality variables remain constant (Fernandez-Cornejo and Jans, 1995). 

Therefore, we should see higher pesticide usage for the quality-adjusted quantity relative to the 

raw (i.e., quality-unadjusted) quantity using the base period of 1965.  In other words, the quality-

adjusted measure provides insight into producer behavior assuming pesticide quality remained 

constant over time relative to the year 1965.  For example, if pesticide potency increases over 

time, we would expect farmers to use less pesticides, all other things held constant. This difference 

in the pesticide use measures is highlighted by the second and third panels in Figure 1 with the 

quality-adjusted quantity in the third panel showing relatively more pesticide usage over time 

relative to panel 2 which shows raw, quality-unadjusted quantity. 

Insurance Participation 

We use data on insured acres and purchased liabilities from RMA State/County/Crop Summary 

of Business2 (SOB) data files, NASS yields, Marketing Year Average cash prices received, and 

planted acres to construct crop insurance participation variables. Daily harvest-month futures 

prices during planting months on all four crops were retrieved using a Bloomberg terminal, and a 

breakdown by crop of the years for which there is price data can be found in Table 1. Annual 

measures for futures prices, excluding wheat, were calculated by taking the average of the daily 

closing price for January and the months leading up to the sign-up deadline as in Yu, Smith, and 

Sumner (2017). Since winter wheat is typically planted in the fall and thus has a different sign-up 

deadline, we take the average of the daily prices for July through September.  

We utilize two measures for crop insurance participation for individual plans of insurance: 

enrollment-based participation (EBP) and liability-based participation (LBP). EBP is simply the  

 
2 While most studies use the State/County/Crop/Coverage Level Summary of Business data files which span 

1989-2023 from USDA-RMA, we also use the State/County/Crop Level Summary of Business data files 

which span 1948-1989 since we are only concerned with historical purchased liability and not county-level 

coverage level choices. Here is a link to the State/County/Crop Summary of Business Data Files. 

https://www.rma.usda.gov/Information-Tools/Summary-of-Business/State-County-Crop-Summary-of-Business
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Table 1. Summary Statistics for Pesticide Use and Crop Insurance Variables 

 Corn Soybeans Wheat Cotton All Crops 

 Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

Pesticide Use Variables                

                

Expenditures ($/ac) 0.13 0.00 0.66 0.10 0.01 0.34 0.04 0.00 0.32 0.60 0.02 27.09 0.14 0.00 1.61 

 (0.06)   (0.05)   (0.04)   (1.64)   (0.13)   

Raw Quantity (lbs./ac) 2.57 0.00 7.87 1.34 0.05 3.93 0.41 0.00 3.91 9.39 0.33 383.94 2.30 0.00 13.56 

 (1.24)   (0.65)   (0.52)   (24.14)   (2.11)   

Adjusted Quantity (lbs./ac) 3.94 0.00 13.83 3.42 0.07 16.71 2.42 0.00 15.95 16.00 0.76 658.96 4.65 0.00 32.23 

 (2.54)   (2.93)   (2.89)   (38.49)   (4.66)   

Crop Insurance Participation Variables              

                

EBP 0.34 0.00 1.00 0.41 0.00 1.00 0.45 0.00 1.00 0.45 0.00 1.00 0.41 0.00 1.00 

 (0.34)   (0.35)   (0.31)   (0.40)   (0.35)   

LBP 0.24 0.00 1.00 0.29 0.00 1.00 0.34 0.00 1.00 0.32 0.00 1.00 0.24 0.00 1.00 

 (0.27)   (0.28)   (0.28)   (0.30)   (0.31)   

                

OBS  1,988   1,408   1,045   771   5,212  

States  38   29   28   16   45  

Years   1965-2019     

 

1965-2019   1970-2019     1965-2019     1965-2019   

Note: Standard deviations are in parentheses. 

Source: ERS (2022), NASS (2022), RMA (2022), Bloomberg (2022)



6 Preprint Journal of Agricultural and Resource Economics 

 

Figure 2. Spatial and Temporal Variation in Crop Insurance Participation Variables 

(1965-2019)  
The figure above plots EBP and LBP for corn across time for all states in our sample. EBP is the ratio of 

insured acres to planted acres while LBP is the ratio of purchased liability to the maximum amount of 

liability which can be purchased. 

ratio of insured acres to planted acres for a given state-year-crop combination and is an extensive 

margin measure of participation. LBP is the ratio of purchased liability to the maximum available 

liability and better represents the extensive and intensive margin decision-making components of 

the crop insurance participation decision as highlighted by Goodwin, Vandeveer, and Deal (2004) 

and Connor and Katchova (2020). EBP can easily be constructed using the raw data described 

above, but LBP must be constructed by using raw data combined with a calculation of the 

maximum available liability. Purchased liability is given by the SOB data, and the maximum 

available liability is calculated by taking the product of an expected price, yield, planted acreage, 

and the highest coverage level available. The differences in variation between these two measures 

can be seen in Figure 2. 

Model Specification and Endogeneity of Insurance Participation 

We specify the dependent variable as either pesticide expenditures per acre or quantity applied 

per acre for a producer in state i and year t, 𝑌𝑖𝑡, while the explanatory variable of interest is crop 

insurance participation, 𝐼𝑖𝑡, given either by EBP or LBP. Considering heterogeneity across crops, 

we estimate crop-specific regressions. Our main specification is: 

(1) 𝑙𝑛⁡(𝑌𝑖𝑡) = 𝛼0 + 𝜏𝐼𝑖𝑡 + 𝜀𝑖𝑡 

where 𝜀𝑖𝑡 denotes random errors.  

The identification issue in estimating equation (1) arises from the possible correlation 

between crop insurance participation, 𝐼𝑖𝑡, and the error term, 𝜀𝑖𝑡. That is, any unobservable factors 

that affect the production decisions including input usage and the crop insurance decisions are a 

threat to the identification of the effect of the crop insurance participation on pesticide usage.    

Several works have discussed the issue of endogeneity in estimating the effects of crop 

insurance participation measures on production decisions (e.g., Smith and Goodwin, 1996; 

Goodwin, Vandeveer, and Deal, 2004; O’Donoghue, Roberts, and Key, 2009; Yu, Smith, and 

Sumner, 2017).  While recent studies (e.g., Weber, Key, and O’Donoghue, 2016; Yu, Smith, and 
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Sumner, 2017; Ghosh, Miao, and Malikov 2021; Connor, Roderick, and Mahmut, 2022) attempt 

to tackle the endogeneity of insurance participation via different identification strategies, it 

remains as a challenge in studying the role of crop insurance in input usage.  

Horowitz and Lichtenberg (1993) assume the crop insurance decision to be exogenous by not 

accounting for any of the possible sources of endogeneity. Several works have argued the crop 

insurance and pesticide use decision are simultaneous, or even overlap where pesticide 

applications are made after the insurance decision within the growing season and should be 

accounted for via instrumental variables and systems of equations estimation (e.g., Smith and 

Goodwin, 1996; Weber, Key, and O’Donoghue, 2016; and Mohring, et al., 2020a). Furthermore, 

Lichtenberg and Zilberman (1986) model pesticides as risk-reducing inputs, which suggests that 

pesticide usage to be greater for those who do not enroll in crop insurance since pesticides have 

been argued to be a form of insurance.  

In the general crop insurance literature, a few recent works have argued the endogeneity of 

the crop insurance decision should be accounted for via instrumental variables where the 

instrument is the exogenous changes in national-level subsidy rates across time (e.g., Yu, Smith, 

and Sumner, 2017; Delay, 2019; Connor and Katchova, 2020). Additionally, Roberts, Key, and 

O’Donoghue (2006) account for the endogeneity of the crop insurance decision using a general 

fixed effects approach. 

Identification Strategies 

To mitigate the bias from a possible correlation between the crop insurance participation 𝐼𝑖𝑡, and 

the error term, 𝜀𝑖𝑡, we first consider the so-called Two-Way Fixed Effects Estimator (TWFE). In 

other words, we include state fixed effects, 𝑢𝑖, to capture the effects of time-invariant unobserved 

heterogeneity across states such as soil characteristics and climate, and year fixed effects, 𝑣𝑡, to 

control for time-varying shocks common to all states such as pesticide policies, pesticide 

technologies, and price levels. Hence, we can rewrite the error term, 𝜀𝑖𝑡 , as 𝜀𝑖𝑡 = 𝑢𝑖 + 𝑣𝑡 +
𝜂𝑖𝑡 ⁡where 𝜂𝑖𝑡 is an error term. Equation (1) becomes 

(1’) 𝑙𝑛⁡(𝑌𝑖𝑡) = 𝛼0 + 𝜏𝐼𝑖𝑡 + 𝑢𝑖 + 𝑣𝑡 + 𝜂𝑖𝑡. 

However, the identification fails if the crop insurance participation is correlated with the new error 

term, 𝜂𝑖𝑡. That is, if there are any state-specific and time-varying unobservable factors that affect 

both pesticide use and crop insurance decisions, TWFE no longer provides the identification of 

the effect, 𝜏. 

Therefore, we also consider an alternative identification strategy that uses an instrumental 

variable1. We construct a shift-share instrumental variable (SSIV) and exploit quasi-random 

variations in crop insurance participation to tackle possible endogeneity of the crop insurance 

participation variable. We build on the instrument introduced by Yu, Smith, and Sumner (2017) 

by taking a weighted sum of the time-varying exogenous changes to the national premium subsidy 

rate (i.e., shifts) where the weight is the percentage of acres enrolled in crop insurance devoted to 

the most popular coverage levels across the pre-subsidy period of our sample (i.e., shares). This 

gives us exogenous variation in both the time-series and cross-section components of our 

instrument, which is necessary in our panel setting to properly instrument an endogenous variable 

 
1 We recognize an instrumental variable approach that leverages heteroskedastic errors to construct an 

instrument for the endogenous variable of interest (Lewbel, 2012) and an application of this instrument in 

the crop insurance context (Won, et al, 2023).  We acknowledge that this approach could be useful when 

there is no external instrument, yet the concern exists on whether it can satisfy the exclusion restriction in 

practice. While our shift-share design-based instrument still may face a similar exclusion restriction issue, 

we have more theoretical ground on why this instrument can meet the exclusion restriction as we explore the 

economic mechanism of government policy to explain crop insurance participation. Therefore, we do not 

consider the heteroskedasticity-based instrument. 
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which varies across space and time. This so-called shift-share design goes back to Bartik (1991), 

where he defines a less-aggregated local employment rate as the product of the more-aggregated 

national-level employment growth rate with the local industry employment shares, and recent 

studies such as Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jaravel 

(2022) have formalized the shift-share design and provide conditions under which the design can 

provide well-identified estimates. 

We construct the SSIV for our crop insurance participation measures as: 

(2) 𝑍𝑖𝑡 = 𝑺𝒊𝟎𝑹𝒕 = 𝑠𝑖,0.65,0𝑟𝑡,0.65 + 𝑠𝑖,0.75,0𝑟𝑡,0.75 

where 𝑍𝑖𝑡 is the SSIV, 𝑺𝒊𝟎 is the vector of average shares planted to the 65% and 75% coverage 

levels for state i in a base period, and 𝑹𝒕 is the vector of premium subsidy rates2 for the 65% and 

75% coverage levels. We choose the 65% and 75% coverage levels because they have been 

offered since the inception of the crop insurance program in 1938 (P.L. 74-430), and they are the 

most popular coverage levels across the time series in our sample. We use the period 1989 – 1994 

as a base period as the year 1994 is when the first large change in subsidy rates occurred. In other 

words, we take the average state-specific shares of acreage enrolled in the 65% and 75% coverage 

levels over the years 1989-1994. We do not do this for years prior to the first premium subsidy 

rate introduction in 1980 because the RMA Summary of Business data do not have participation 

specific to coverage levels until 1989. 

We use the instrument, 𝑍𝑖𝑡, for the crop insurance variable, 𝐼𝑖𝑡, to estimate equation (1). The 

identification relies on the assumptions that i) the instrument, 𝑍𝑖𝑡, is strongly correlated with the 

crop insurance variable, 𝐼𝑖𝑡  (relevance of the instrument), and ii) the instrument, 𝑍𝑖𝑡 , is 

uncorrelated with the error term (exclusion restriction). With the inclusion of fixed effects or other 

covariates, the assumptions need to be satisfied conditional on the fixed effects or the other 

covariates. We first consider TWFE (TWFE-SSIV) and also explore a fixed-effects estimator 

without time fixed effects (FE-SSIV). 

We multiway cluster standard errors by state and year. We cluster at the state level in order 

to allow for the most flexible form of autocorrelation in the errors and cluster at the year level in 

order to allow for unmeasured shocks common to all states in a given year such as price shocks 

and numerous agricultural policies which impact pesticide use (Fernandez-Cornejo, et al, 2014). 

Additionally, we only cluster if the number of clusters in a specific dimension are greater than 20, 

following Bertrand, Duflo, and Mullainathan (2004). We report first-stage F-statistics3 using the 

Kleibergen-Paap test statistic (Baum, Schaffer, and Stillman, 2010) which accounts for the 

adjustment in calculating standard errors. 

We also explore a difference-in-differences design combined with SSIV (DID-SSIV). As 

there have been essentially two significant policy changes that affected subsidy rates, the Federal 

Crop Insurance Reform Act (FCIRA) of 1994 (P.L. 103-354) and the Agriculture Risk Protection 

Act (ARPA) of 2000 (P.L. 106-224), we further investigate these policy changes separately to 

explore possible heterogeneous responses across the policy regimes. Consider the following 

estimation equation: 

(3) ∆𝑙𝑛⁡(𝑌𝑖𝑝) = 𝛾 + 𝜏∆𝐼𝑖𝑝 + ∆𝜀𝑖p 

where subscript 𝑝 denotes a three-year period and the difference operator ∆ denotes the difference 

between two three-year periods before and after the policy changes. For the 1994 FCIRA, we take 

 
2 We used the stated subsidy rates given by Glauber (2004), the FCIA of 1980 (P.L. 96-365), the Federal 

Crop Insurance Reform Act of 1994 (P.L. 103-354), the Agriculture Risk Protection Act of 2000 (P.L. 106-

224), the Food, Conservation, and Energy Act of 2008 (P.L. 110-246), and the Agricultural Act of 2014 (P.L. 

113-79). 
3 We use ivreg2 in Stata to implement all IV estimations. 
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the difference between period 1, 1992-1994, and period 2, 1995-1997, and for the 2000 ARPA, 

we define period 1 as 1995-1997 and period 2 as 2001-2003.4 

As the observed difference in the crop insurance participation variable can be correlated with 

the unobserved changes, ∆𝜀𝑖p, we construct an SSIV. Under the difference-in-difference design, 

the SSIV is 

(4) ∆𝑍𝑖𝑝 = ∆𝑺𝒊𝟏𝑹𝒑 = 𝑠𝑖,0.65,1∆𝑟𝑝,0.65 + 𝑠𝑖,0.75,1∆𝑟𝑝,0.75 

where subscript 1 denotes period 1, which is defined above. Note that the base period now 

becomes the period before the policy, i.e., period 1, for each policy change. Note that the 

identification assumptions are parallel to those of Panel SSIV approaches.  

Results 

Tables 2-5 present alternative estimated results for equation (1) by crop. Column (1) reports 

estimation results with naïve OLS without controlling for any sources of endogeneity. Column 

(2) provides results using a two-way fixed effects (TWFE) estimator using state and year fixed 

effects to control for unobserved confounders. Columns (3) – (5) report estimation results using 

the SSIV approach but with different ways to control for unobserved heterogeneity across time, 

where column (3) gives results using a TWFE and SSIV approach (TWFE-SSIV) and columns 

(4) – (5) give results using an SSIV approach with state fixed-effects (FE-SSIV) and different 

time trend specifications. 

We begin by first discussing results for corn and soybeans (Tables 2-3). Both crops show 

similar patterns. In general, OLS gives positive estimates of the crop insurance participation 

variables, while using a TWFE estimator yields relatively smaller estimates in magnitude. Under 

TWFE-SSIV, the estimated effect is found to be positive and greater in magnitude relative to that 

of OLS. Using linear and quadratic time trends instead of year fixed effects leads to negative 

estimates of the effect of the crop insurance participation variables. 

Columns (3) – (5) provide estimates that generate an interesting discussion. The first stage F-

statistics vary across the columns, which indicate that the strength of the instrument changes 

depending on how we specify the role of the time-specific effects. Year fixed effects seem to 

capture most of the variations in the instrument as we see small F-statistics in column (3). The 

inclusion of linear or quadratic time trends, instead of year fixed effects, leads to larger first stage 

F-statistics. In column (5), we observe that the F-statistics are larger than the rule-of-thumb 

threshold of 10 (Stock and Yogo, 2002).5 

The specification on how to capture time-specific unobservable factors leads to mixed results. 

In the context of the two identification assumptions, the use of year fixed effects violates the 

relevance assumption. That is, the instrument no longer explains crop insurance participation. 

Using linear or quadratic time trends seems to provide statistical power to the instrument. Yet, 

one needs to be careful with the exclusion restriction when using these specifications. The 

assumption now becomes that the instrument is uncorrelated with the error term conditional on  

 

 
4 Because there have been ad-hoc subsidies in 1998 and 1999 and the 2000 ARPA codified these ad-hoc 

subsidies, we exclude the period 1998-2000 to have a clear assessment of the policy change. 
5 Recently, a growing literature on the inference with potentially weak instruments (e.g., Andrews, Stock, 

and Sun (2019), Lee et al. (2022) and Keane and Neal (2023)) indicate the possibility of incorrect inference 

even when the first-stage F statistics exceed the rule-of-thumb threshold of 10. This growing literature 

provides more robust ways to conduct statistical inferences, e.g., Anderson-Rubin p-value (Anderson and 

Rubin, 1949), and we recommend conducting robustness tests when one is exploring the proposed 

instruments in different contexts. In our context, however, as we do not find stable estimates that indicate a 

clear causal direction and we do not claim to find causal effects, we refrain ourselves from providing 

alternative inferences. 
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Table 2. The Effect of Crop Insurance Participation on Pesticide Usage (Corn) 

 (1) (2) (3) (4) (5) 

 (OLS) (TWFE) (TWFE-SSIV) (FE-SSIV) (FE-SSIV) 

Dependent Variable: Ln of Expenditures per acre 

Enrollment-Based 

Participation 

0.16 0.18 2.00* -1.18 -1.88*** 

(0.15) (0.51) (1.11) (0.80) (0.61) 

      

Liability-Based 

Participation 

0.21 0.35 4.19* -7.18 -3.98*** 

(0.17) (0.49) (2.44) (7.55) (1.45) 
      

Dependent Variable: Ln of Quality-Unadjusted (Raw) Quantity per acre 

Enrollment-Based 

Participation 

0.33* 0.07 1.89* -1.78** -2.70*** 

(0.20) (0.46) (1.02) (0.91) (0.67) 

      

Liability-Based 

Participation 

0.42* -0.04 3.95 -10.80 -5.69*** 

(0.23) (0.43) (2.45) (10.97) (1.72) 
      

Dependent Variable: Ln of Quality-Adjusted Quantity per acre 

Enrollment-Based 

Participation 

1.20*** -0.08 1.61 -2.26*** -2.51*** 

(0.23) (0.48) (1.08) (0.76) (0.66) 

      

Liability-Based 

Participation 

1.53*** -0.18 3.37 -13.68 -5.29*** 

(0.27) (0.47) (2.39) (15.70) (1.69) 
      

State Fixed Effects NO YES YES YES YES 

      

Year Fixed Effects NO YES YES NO NO 

      

Crop-Specific Linear 

Trend 

NO NO NO YES YES 

Crop-Specific Quadratic 

Trend 

NO NO NO NO YES 

First-Stage F-Statistic 

(EBP) 

NA NA 4.16 10.20 22.21 

First-Stage F-Statistic 

(LBP) 

NA NA 2.99 0.53 24.17 

      

Observations 1,988 1,988 1,988 1,988 1,988 

States 38 38 38 38 38 

Years 55 55 55 55 55 

Multiway-clustered (by state and year) standard errors are reported in parentheses. *,**,*** indicate 

statistical significance at the 10%, 5%, and 1% levels, respectively. Kleibergen-Paap F-statistics, which 

account for adjustments in standard error calculations, are reported. 
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Table 3. The Effect of Crop Insurance Participation on Pesticide Usage 

(Soybeans) 

 (1) (2) (3) (4) (5) 

 (OLS) (TWFE) (TWFE-SSIV) (FE-SSIV) (FE-SSIV) 

Dependent Variable: Ln of Expenditures per acre 

Enrollment-Based 

Participation 

0.15 -0.24 0.95 -2.01*** -2.61*** 

(0.15) (0.32) (4.06) (0.49) (0.40) 

      

Liability-Based 

Participation 

0.11 -0.27 1.17 -6.57** -4.54*** 

(0.16) (0.31) (4.77) (2.69) (0.77) 
      
Dependent Variable: Ln of Quality-Unadjusted (Raw) Quantity per acre 

Enrollment-Based 

Participation 

0.77*** 0.01 -0.46 -2.21*** -2.42*** 

(0.19) (0.33) (3.49) (0.57) (0.55) 

      

Liability-Based 

Participation 

0.95*** -0.04 -0.56 -7.22** -4.20*** 

(0.21) (0.35) (4.39) (3.61) (1.15) 
      
Dependent Variable: Ln of Quality-Adjusted Quantity per acre 

Enrollment-Based 

Participation 

1.56*** -0.24 2.38 -1.93*** -2.24*** 

(0.23) (0.33) (6.06) (0.53) (0.47) 

      

Liability-Based 

Participation 

1.92*** -0.15 2.92 -6.32** -3.89*** 

(0.27) (0.30) (6.76) (3.09) (1.00) 
      
State Fixed Effects NO YES YES YES YES 
      
Year Fixed Effects NO YES YES NO NO 
      
Crop-Specific Linear 

Trend 

NO NO NO YES YES 

Crop-Specific 

Quadratic Trend 

NO NO NO NO YES 

First-Stage F-

Statistic (EBP) 

NA NA 1.17 16.21 27.22 

First-Stage F-

Statistic (LBP) 

NA NA 1.71 3.00 39.63 

      

Observations 1,408 1,408 1,408 1,408 1,408 

States 29 29 29 29 29 

Years 55 55 55 55 55 

Multiway-clustered (by state and year) standard errors are reported in parentheses. *,**,*** indicate 

statistical significance at the 10%, 5%, and 1% levels, respectively. Kleibergen-Paap F-statistics, which 

account for adjustments in standard error calculations, are reported.  
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Table 4. The Effect of Crop Insurance Participation on Pesticide Usage 

(Wheat)  
(1) (2) (3) (4) (5)  

(OLS) (TWFE) (TWFE-SSIV) (FE-SSIV) (FE-SSIV) 

Dependent Variable: Ln of Expenditures per acre 

Enrollment-Based 

Participation 

1.96*** 1.40* 3.92 -9.04 -4.90 

(0.37) (0.71) (4.28) (9.11) (4.39) 

      

Liability-Based 

Participation 

2.23*** 1.21 7.54 5.30* -12.65 

(0.38) (0.77) (8.64) (2.81) (16.40)       

Dependent Variable: Ln of Quality-Unadjusted (Raw) Quantity per acre 

Enrollment-Based 

Participation 

0.97** 1.60*** 2.35 -17.23 -6.72 

(0.38) (0.52) (1.94) (16.10) (5.44) 

      

Liability-Based 

Participation 

1.18*** 1.24** 4.52 10.09*** -17.32 

(0.40) (0.58) (3.93) (4.07) (22.92)       

Dependent Variable: Ln of Quality-Adjusted Quantity per acre 

Enrollment-Based 

Participation 

1.61*** 0.60 5.84 -15.18 0.66 

(0.38) (0.67) (3.90) (14.00) (4.55) 

     

Liability-Based 

Participation 

2.17*** 0.29 11.25 8.89** 1.70 

(0.39) (0.72) (8.81) (4.29) (11.53)       

State Fixed Effects NO YES YES YES YES      

Year Fixed Effects NO YES YES NO NO      

Crop-Specific 

Linear Trend 

NO NO NO YES YES      

Crop-Specific 

Quadratic Trend 

NO NO NO NO YES      

First-Stage F-

Statistic (EBP) 

NA NA 3.11 1.23 1.63      

First-Stage F-

Statistic (LBP) 

NA NA 1.49 4.07 0.74      

      

Observations 1,045 1,045 1,045 1,045 1,045 

States 28 28 28 28 28 

Years 50 50 50 50 50 

Multiway-clustered (by state and year) standard errors are reported in parentheses. *,**,*** indicate 

statistical significance at the 10%, 5%, and 1% levels, respectively. Kleibergen-Paap F-statistics, which 

account for adjustments in standard error calculations, are reported.  
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Table 5. The Effect of Crop Insurance Participation on Pesticide Usage 

(Cotton)  
(1) (2) (3) (4) (5)  

(OLS) (TWFE) (TWFE-SSIV) (FE-SSIV) (FE-SSIV) 

Dependent Variable: Ln of Expenditures per acre 

Enrollment-Based 

Participation 

0.00 -0.06 -5.32 0.94*** 0.68*** 

(0.06) (0.30) (12.37) (0.35) (0.27) 

      

Liability-Based 

Participation 

-0.15** -0.40** 22.57 9.62 1.45*** 

(0.07) (0.19) (120.03) (16.51) (0.57)       

Dependent Variable: Ln of Quality-Unadjusted (Raw) Quantity per acre 

Enrollment-Based 

Participation 

-0.00 -0.22 -21.04 -1.08** -0.31 

(0.06) (0.33) (37.31) (0.53) (0.33) 

      

Liability-Based 

Participation 

-0.00 0.08 89.29 -10.99 -0.66 

(0.08) (0.18) (435.96) (20.44) (0.71)       

Dependent Variable: Ln of Quality-Adjusted Quantity per acre 

Enrollment-Based 

Participation 

0.95*** -0.20 -8.98 0.82*** 0.68*** 

(0.07) (0.31) (16.47) (0.32) (0.25) 

      

Liability-Based 

Participation 

1.18*** -0.37** 38.14 8.32 1.46*** 

(0.08) (0.19) (193.29) (14.37) (0.49)       

State Fixed Effects NO YES YES YES YES       

Year Fixed Effects NO YES YES NO NO       

Crop-Specific Linear 

Trend 

NO NO NO YES YES      

Crop-Specific Quadratic 

Trend 

NO NO NO NO YES      

First-Stage F-Statistic 

(EBP) 

NA NA 0.26 11.38 15.25      

First-Stage F-Statistic 

(LBP) 

NA NA 0.04 0.34 15.33      

      

Observations 709 709 709 709 709 

States 16 16 16 16 16 

Years 55 55 55 55 55 
Multiway-clustered (by state and year) standard errors are reported in parentheses.. *,**,*** indicate 

statistical significance at the 10%, 5%, and 1% levels, respectively. Kleibergen-Paap F-statistics, which 

account for adjustments in standard error calculations, are reported.  
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Table 6. Treatment Effects Estimated Using Difference-in-Differences with 

Shift-Share Instrument  
Corn Soybeans Wheat Cotton  

FCIRA 

(1994) 

ARPA 

(2000) 

FCIRA 

(1994) 

ARPA 

(2000) 

FCIRA 

(1994) 

ARPA 

(2000) 

FCIRA 

(1994) 

ARPA 

(2000)  
(1) (2) (3) (4) (5) (6) (7) (8) 

Dependent Variable: Ln of Expenditures per acre    
Enrollment-

Based 

Participation 

2.61*** -9.35 2.26 -1.04 0.13 5.97 -559.17 6.16 

(1.02) (10.50) (3.21) (3.74) (4.30) (3.92) (106,592) (12.24) 

        

Liability-

Based  

Participation 

4.01** 5.51 13.25 -0.51 0.33 9.14 7.84 -32.54 

(1.81) (7.46) (39.63) (1.73) (10.47) (6.90) (9.99) (148.23)          
Dependent Variable: Ln of Quality-Unadjusted (Raw) Quantity per acre    
Enrollment-

Based 

Participation 

3.11** -10.23 1.35 -1.97 1.19 4.98** -262.02 14.60 

(1.41) (13.73) (2.26) (4.63) (1.50) (2.29) (49,808) (21.64) 

        

Liability-

Based  

Participation 

4.77* 6.03 7.92 -0.97 2.90 7.62** 3.68 -77.14 

(2.64) (6.35) (27.70) (1.47) (3.63) (3.86) (7.17) (373.91)          
Dependent Variable: Ln of Quality-Adjusted Quantity per acre    
Enrollment-

Based 

Participation 

2.48* -9.46 1.12 -4.26 0.76 5.59 -626.14 4.63 

(1.36) (11.91) (2.50) (11.30) (3.37) (3.88) (119,362) (8.87) 

        

Liability-

Based  

Participation 

3.81 5.57 6.54 -2.09 1.85 8.56 8.78 -24.46 

(2.44) (7.15) (25.18) (1.50) (8.33) (6.58) (10.95) (115.08)          
First-Stage 

F-Statistic 

(EBP) 

12.02 0.26 1.10 0.10 5.45 2.90 0.00 0.27 

        
         

First-Stage 

F-Statistic 

(LBP) 

14.43 0.39 0.12 2.08 7.71 2.53 0.70 0.04 

        
         

Observations 37 39 28 28 18 28 15 16 

States 37 39 28 28 18 28 15 16 

Years 6 6 6 6 6 6 6 6 

Multiway-clustered (by state and year) standard errors are reported in parentheses. *,**,*** 

indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Kleibergen-Paap F-statistics, 

which account for adjustments in standard error calculations, are reported.  

either linear or quadratic time trends. Assuming this exclusion restriction to be valid, one can 

conclude that crop insurance participation leads to a reduction in pesticide use in corn and 

soybeans (columns (4) – (5)). 

While none of SSIV specifications lead to large enough F-statistics for wheat (table 4), 

patterns similar to corn and soybeans occur where estimated effects tend to be positive then switch 

to negative. However, the first-stage F-statistics are low and indicate a weak first stage, and 

standard errors are too large to draw conclusive inference, so we draw no definitive conclusion 

from wheat. The first-stage F-statistic indicates a strong instrument for cotton in column 5 (table 

5), and we observe what appears to be the opposite pattern of results compared to the other crops 
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considered. Interestingly, for cotton, we find the estimated coefficients in column (5) are positive 

and statistically significant for the dependent variables that measure pesticide use in per-acre 

expenditure and in per-acre quality-adjusted quantity. The positive sign suggests cotton producers 

apply more pesticides when they insure more acreage or purchase  more crop insurance coverage. 

This could be because cotton incurs greater per acre expenses (see Table 1) by requiring more 

insecticides and less herbicides relative to corn and soybeans (Fernandez-Cornejo, et al., 2014). 

Again, this assumes that the instrument meets the exclusion restriction conditional on quadratic 

time trends. 

Finally, we assess the two policy changes, the 1994 FCIRA and the 2000 ARPA, separately. 

We estimate equation (3) using the instrument constructed by equation (4). The results are 

reported in table 6. A noticeable finding is the positive and significant effects of the crop insurance 

participation for corn using the 1994 FCIRA as an experiment (column (1)). This is the only crop-

by-policy pair that yields the first-stage F-statistics larger than 10. All other crops and the 2000 

ARPA do not have enough statistical powers in their first stage. 

While we note that the estimates in table 6 based on the difference-in-differences design 

suffer from small sample sizes, the estimates lead to an interesting discussion when we compare 

the results with those in tables 2 - 5. In table 6, assuming the exclusion restriction is valid, we find 

positive effects of crop insurance participation for corn. In table 2, we find positive effects in 

column (3), which controls for year fixed effects, but find negative effects in columns (4) and (5), 

which include linear or quadratic time trends. While the positive effects are based on the weak 

instrument, the comparison with table 6 may imply that the exclusion restriction assumption is 

more reasonable and reliable for column (3) than those of columns (4) and (5).  

We consider the potential influence of GMO seed adoption and weather on pesticide use to 

test the robustness of the inconsistency in parameter estimates for crop insurance participation 

(Chen and McCarl, 2001; Osteen and Fernandez-Cornejo, 2013; Fernandez-Cornejo et al., 2014; 

Perry et al., 2016). We find controlling for these possibly confounding factors continues to provide 

a similar pattern of non-robust estimates regarding the relationship between crop insurance 

participation and pesticide use for soybeans (tables S3-S4), and wheat (tables S5-S6). However, 

when we control for weather and GMO-adoption we find relatively consistent negative estimates 

in corn across all five specifications using the EBP measure of crop insurance participation (tables 

S1-S2). Additionally, we find mostly consistent positive estimates in cotton using FE-IV (tables 

S7-S8) and DID-IV (S9-S11). It should be noted that the first-stage F-statistics for the FE-SSIV 

(table S7-S8) and DID-IV (S9-S11) estimators in cotton vary from somewhat strong using FE-

SSIV (i.e., 16.45 to 127.90) to very weak using DID-IV (i.e., 4.22 to 4.33). Additionally, we find 

the effects of Bt-resistant and herbicide-tolerant seed adoption tend to be negative and positive, 

respectively, for corn and cotton which falls in line with previous studies (Qaim et al., 2006; Perry 

et al., 2016). For a full set of results accounting for GMO seed adoption and weather see tables 

S1-S11 in the online supplement. 

Conclusion 

Here we have addressed the empirical challenges of estimating moral hazard effects of crop 

insurance participation by providing a comprehensive empirical analysis using methods and 

measures of key variables that are on the frontiers of the literature. Hedonic pricing methods are 

used to adjust measures of pesticide application rates to account for quality differences across 

time, and two measures of insurance participation are considered that differ by their inclusion of 

the intensity of coverage. We also consider three distinct identification approaches: conventional 

Two-Way Fixed Effects Estimators, a shift-share instrumental variable, and difference-in-

differences design combined with SSIV.   

Measuring the effect of crop insurance participation on pesticide use should be done with 

caution, and policies formed from empirical findings should consider the many nuances 

uncovered here before enacting them into public law. We show the way in which endogeneity of 
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the crop insurance decision is approached may affect the findings on the effect of crop insurance 

on pesticide use. Our three identification strategies never provided a robust estimate, bringing into 

focus the feasibility of adequately addressing endogeneity in reduced form settings linking 

pesticides to insurance participation. A key challenge of identification is shown to be the 

specification of temporal trends and how they interact with policy changes, i.e. more rigid 

assumptions using continuous trend variables enhance instrument strength in the first stage but 

are prone to specification errors compared to the more general year-fixed-effects approach. We 

also show that findings are sensitive to the measure of the pesticide use variable, but the sensitivity 

is not as pronounced with alternative measures of crop insurance participation. This implies the 

importance of the underlying quality characteristics of pesticides not just raw quantities 

themselves in the context of policy discussion. 

Our work faces important limitations which primarily revolve around the pesticide and 

insurance data used. Although our work uses state-level data with the longest span of time 

considered for any work in this vein of literature, highly aggregated data in the spatial dimension 

can eliminate important variation across counties and farms that could provide more external 

validity to the analysis. This data aggregation issue makes it difficult to control for unobserved 

heterogeneity across time in an instrumental variables framework and restricts the flexibility of 

the model by the inability to use fixed effects to achieve a strong first-stage. Lastly, the SOB data 

do not have data by coverage levels prior to 1989 which limits the number of years we can fix the 

shares used to construct the SSIV and prevents us from constructing the shares in a true pre-policy 

period (i.e., 1965-1980). 

We note the best empirical approach to identify causal effects in this context to be any 

approach which accounts for endogeneity of crop insurance participation given the major 

consensus of confounding factors which impact both the decision to enroll in any level of crop 

insurance and the decision to apply pesticides. Given the panel nature of the data, accounting for 

endogeneity via the so-called TWFE or through the SSIV approach would be appropriate since 

TWFE accounts for confounding factors across states and years and using the SSIV uses 

exogenous variation in subsidy rates across states and years. However, the highly aggregated data 

in the spatial dimension in this context limits the use of year fixed effects to account for 

unobserved heterogeneity across time which limits the so-called TWFE approach. Thus, we 

propose the best estimation approach in this context to be to use a SSIV to account for endogeneity 

of crop insurance participation and account for unobserved heterogeneity across time with a 

quadratic trend. 

Previous studies give mixed findings for the estimated treatment effect, which can likely be 

attributed to various estimation approaches, measurements of key policy variables, and 

differences in management practices across crops. We also find treatment effects to be 

heterogeneous across multiple dimensions of empirical work which underscores the fact that 

moral hazard effects are exceptionally difficult to untangle. Future work should explore the 

impacts of crop insurance participation on less-aggregated measures of pesticide use such as a 

measure based on the type of pesticide used (e.g., herbicides and fungicides) or on measures that 

are quality characteristic-specific, such as toxicity. Additionally, the validity of the crop insurance 

SSIV constructed here should further be examined using county or farm-level data and applied to 

other data on pesticides or other inputs utilized in the production process. 

[First submitted June 2023; accepted for publication October 2023.] 
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