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A critical assessment of neural networks as meta-

model of a farm optimization model 

 

Claudia Seidel, Linmei Shang, Wolfgang Britz 

Abstract 

Mixed Integer programming (MIP) is frequently used in agricultural economics to 

solve farm-level optimization problems, but it can be computationally intensive 

especially when the number of binary or integer variables becomes large. In order 

to speed up simulations, for instance for large-scale sensitivity analysis or 

application to larger farm populations, meta-models can be derived from the 

original MIP and applied as an approximator instead. To test and assess this 

approach, we train Artificial Neural Networks (ANNs) as a meta-model of a farm-

scale MIP model. This study compares different ANNs from various perspectives 

to assess to what extent they are able to replace the original MIP model. Results 

show that ANNs are promising for meta-modeling as they are computationally 

efficient and can handle non-linear relationships, corner solutions, and jumpy 

behavior of the underlying farm optimization model.  

 

Keywords: artificial neural network, meta-model, mixed integer programming, farm 

optimization model 

JEL classification: C45, C63, Q12 
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1 Introduction and problem background 

Many decisions in real-life are optimization problems. For instance, farmers seek to maximize profits 

taking into account resource and policy constraints, potentially including leisure time considerations. 

Modern algorithms for Linear Programming (LP) allow to solve such farm-scale optimization problems 

quite fast subject to a large number of constraints and variables. They can depict in detail different farm 

branches and related machinery and building requirements. However, in order to accurately represent 

real-world farm management, indivisibilities in production and investment need to be taken into account, 

such as the construction of new stables, taking up off-farm work, full-time or part-time, or opting into 

specific policy programs. Simulation of such discrete choices require Mixed Integer Programming 

(MIP) (Britz et al., 2016), which is far more computing intensive and results often in a solution space 

containing more zero observations, jumps and indivisibilities compared to LP. 

Observed (optimizing) real-world behavior of single agents is often characterized by discrete 

choices, which can be depicted by integer variables in MIP but not by differentiable functions. This is 

why MIP problems are used to depict decisions of farmers in Agent-based Models (ABMs) (Gilbert, 

2007). Linking agent-specific MIP models into an ABM enables to simulate spatially explicit 

interactions of agents characterized by complex decision-making over distinct timesteps (Huber et al., 

2018; Kremmydas et al. 2018). Applying this approach to spatially explicit land markets, such as in 

AgriPoliS (Happe et al., 2006), allows simulating emergent phenomena like structural change or 

technology adoption (Appel and Balmann, 2019; Huber et al., 2018; Shang et al., 2021; Shang et al. 

2023). 

The usual approach directly integrates a MIP model in the ABM (Britz, 2013; Happe et al., 2006; 

Schreinemachers and Berger, 2011; Troost and Berger, 2016). The MIP is then solved for each agent 

and time step (Troost and Berger, 2016; Britz, 2013). The optimal solution of a MIP problem depends 

on the interaction of its discrete variables. While finding a single MIP solution is typically relatively 

easy, proofing that such a solution is the best one is far harder. In extremum, it can require to assess all 

combinations of values that the set of discrete variables can take. This explains why MIP problems are 

NP-hard (nondeterministic polynomial time), meaning the solution time increases exponentially in 

model size. As a result, the direct integration of MIP into an ABM is highly computing time intensive 

(Troost and Berger, 2016; Schreinemachers and Berger, 2011; Happe et al., 2006). Consequently, ABMs 

can either only cover a small number of agents, or require reducing the complexity of the farm model 

compared to evolved stand-alone farm-scale models which can comprise several ten thousand equations 

and variables, of which several hundredths are binary or integer variables, as for instance in Britz et al. 

(2016).  



Agricultural and Resource Economics, Discussion Paper 2023:1 

2 

 

Both options limit the explanatory power of the ABM. Meta-models (also called surrogate models) 

may be a way out of this problem. Meta-models are constructed to represent the simulation behavior of 

a complex simulation model through simpler mathematical functions and can be applied without 

optimization (Hussain et al. 2002; Reis dos Santos and Reis dos Santos, 2008). They can be used to 

verify, validate, optimize the parameterization or predict simulation models (Reis dos Santos and Reis 

dos Santos, 2008). The important characteristic of meta-models is their simplicity and speed (Kleijnen 

and Sargent, 2000). 

In agricultural economics, large, often spatially explicit datasets, for instance depicting the land use 

history of individual plots, become increasingly available and allow for more evolved modeling 

approaches simulating agricultural structures and processes at larger scale. However, despite increasing 

computational power and improved algorithms, depicting decisions of each single farmer in a large 

farmer population in detail and linking them in a spatially explicit manner space remains challenging. 

Meta-modeling allows here to speed up ABMs to a point where they can be applied to large farming 

populations while maintaining the complexity of the underlying farm optimization model (Seidel and 

Britz, 2019; Storm et al. 2020; Troost et al. 2022). This makes it possible to depict both the highly 

detailed individual responses and interactions of many farmers, for instance, to simulate structural 

change dynamics in response to changes in technologies, markets or policies. 

Duality-based econometric meta-models are a potentially inviting avenue. As an example, a dual 

profit function can be estimated. The resulting simulation equations are the first-order conditions of the 

underlying optimization problem and guarantee internally consistent responses in the quantity and value 

space. Duality estimation models have a long history of being applied to micro-observations, such that 

well-tested estimation approaches are available. Seidel and Britz (2019) explore this approach to 

develop a surrogate model of the bio-economic farm-scale model FarmDyn, developed at the University 

of Bonn, Germany (Britz et al., 2016). FarmDyn is MIP based and quite evolved. Specifically, the 

authors estimate a duality-based Symmetric Normalized Quadratic (SNQ) value function. The resulting 

estimated equations allow to simulate profits, related optimal input and output quantities as well as 

shadow prices of resources at given prices and resources. They form the meta-model which delivers the 

key results otherwise retrieved from solving a MIP in an ABM. While the authors achieved an overall 

satisfying fit for the key outputs, the meta-model failed to depict the jumpy behavior of the MIP in 

certain parts of the decision space. Such jumps cannot be captured by the smooth response of the 

relatively simple functional form of the SNQ value function. Furthermore, to be able to build a duality-

based value function, they had to exclude corner solutions where input and output (in the following 

summarized as netput) quantities become zero or where resources are non-binding, for instance, when 

shadow prices of land are zero. 
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These two related aspects motivate the search for alternatives to duality-based approaches. In recent 

years, Artificial Neural Networks (ANNs) have been increasingly explored for meta-modeling as they 

are highly effective in approximating complex, non-linear relationships (Goodfellow et al., 2016; Gorr, 

1994; Günther and Fritsch, 2010; Nezhad and Mahlooji, 2014; Razavi 2021; Storm et al. 2020). An 

ANN trained on a set of inputs and simulation results of a farm optimization model might overcome the 

restrictions when using simpler functional forms. Although studies exist in which ANNs are trained as 

meta-models of simulation models in agriculture or bioeconomy (e.g. Carnevale et al., 2012; Liong et 

al. 2001; Nguyen et al., 2019), the application of ANNs to imitate complex agricultural farm-level 

models in agricultural economics is a relatively new field of research (e.g. Shang et al., 2023; Troost et 

al. 2022). We want to extend this field of research by constructing and comparing different ANNs to 

represent the full response space of an evolved MIP model. 

The objectives of this paper are a) to present the development of an ANN as a meta-model of an 

evolved MIP model, and b) to investigate how well ANNs can represent a MIP model with special 

regard to the solution behavior of MIP models. The structure of the paper is as follows. First, we present 

the general methodological approach of an ANN as a meta-model of a MIP model. In order to underline 

the necessity of an evolved meta-model, some details on the farm optimization model FarmDyn and its 

simulation behavior are presented. We then introduce the approach to train, tune and test different ANNs 

as meta-models of FarmDyn. In the fifth chapter, we present the results. We search for the best-fitted 

ANN first manually and then using a hyperparameter optimization algorithm. Afterwards, we 

investigate the suitability of an ANN as a meta-model of FarmDyn regarding its fit and run time, before 

we briefly conclude. 

2 ANN as meta-model of MIP models 

MIP based models do not only process but also produce potentially large amounts of data as outputs. 

The interpretation or further use of this data in other models can become an extensive task. In order to 

be able to run many simulations, for instance for large sensitivity analyses or, as in the discussed use 

case, in an ABM, a surrogate model can depict the most important input-output relationships of the MIP 

using mathematical functions. This has the advantage of requiring far less computational power. If the 

meta-model is able to imitate its underlying simulation model to a sufficient extent, the meta-model can 

replace the original model in simulations (Hussain et al. 2002; Reis dos Santos and Reis dos Santos, 

2008). 

The idea of machine learning is that the algorithm itself learns from data a suitable model set-up to 

statistically estimate complicated non-linear functions (Goodfellow et al., 2016; Hastie et al., 2009). 

Within the large class of machine learning techniques, ANNs are very promising to act as meta-models 

of complex MIP models as they can handle non-linear structures and multiple outputs, and they are 
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much more computationally efficient than MIP models (Gorr, 1994; Storm et al. 2020). Given an 

appropriate learning algorithm, they can be highly accurate. Van der Hoog (2019) therefore suggests 

that an ANN can be trained to predict the behavior of agents in an ABM. He calls this the “micro-

emulation” of agents’ actions in ABMs by an ANN (van der Hoog, 2019, p. 1253).  

An ANN is a machine learning algorithm, inspired by the function of a brain. The classical type of 

ANN is the multilayer perceptron which consists of several layers, each consisting of multiple units 

(neurons). The first layer of the neural network is the input layer, and the final layer is the output layer. 

The intermediate layers are called hidden layers because their output is not visible (Figure 1). An ANN 

with more than one hidden layer is also called a Deep Neural Network (DNN) because the magnitude 

of layers allows deep learning of the computer. The computer learns by building complex concepts 

expressed in terms of simple concepts represented by every single layer (Goodfellow et al., 2016).  

An ANN works as follows. In a dense (or fully-connected) layer, each unit in the layer is linked to 

each unit in the previous one. In feedforward networks, which are widely applied ANN, information 

flows from neurons in the input layer, through intermediate computations in one or several hidden layers 

to the output layer. Weights and biases represent the parameters of an ANN. In each layer and for each 

neuron, the outputs of the previous layer are linearly combined based on their neuron specific weights. 

This weighted sum plus bias is then transformed by a non-linear activation function to define the 

neuron’s output (figure 2) (Goodfellow et al., 2016; Günther and Fritsch, 2010; Hastie et al., 2009). The 

functions of the layers are connected, mostly in a chained structure, to create the final outputs 

(Goodfellow et al., 2016).  
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Figure 1: Structure of a simple fully-connected feedforward neural network 

 

Source: own figure based on Goodfellow et al. (2016) 

Note: nI,i are the i neurons of the input layer, wI,i,j are the weights of the i neurons of the input layer that are feed into the j 

neurons of the hidden layer nH,j, wH,j,k are the weights of the i neurons of the hidden layer that are feed into the k neurons of the 

output layer nO,k and bl are the biases that are feed into the neurons of the hidden layers and the output layers. 

 

An ANN can hence be understood as a special case of a statistical estimation. It maps an input vector x 

to an output vector y, dependent on unknown parameters. However, in contrast to most econometric 

approaches, an ANN comprises typically far more estimated parameters as a weight is attached to each 

neuron, and an ANN imitating complex relationships may consist out of several hundreds of neurons. 

No particular assumptions, e.g. the distribution of error terms, need to be made. Furthermore, it is 

possible to include both qualitative and quantitative variables. As a consequence, ANNs allow for 

capturing multiple interactions of variables, non-linear relationships between variables and 

heterogeneous data (Pierreval, 1996; Storm et al., 2020). 
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According to the universal approximation theorem (Hornik et al., 1989), a feedforward network with a 

linear output layer and one hidden layer provided with enough hidden units and with any “squashing” 

activation function is able to approximate any measurable function from one finite-dimensional space 

to another with any desired non-zero error. However, these one-layer ANNs need potentially a large 

number of neurons for a satisfactory fit, i.e. a number exponential to the input dimension. Due to the 

large width of such networks, they may fail to learn. ANNs with more than one hidden layer are universal 

approximators as well, even with a limited number of neurons (depth-bounded). Thus, an ANN’s depth 

is said to be more efficient than its width (Cybenko, 1989; Goodfellow et al., 2016; Hornik, 1991).Figure 

2: Exemplary process flow of the first neuron in the input layer in a feedforward ANN 

 

Source: own figure based on Goodfellow et al. (2016) 

 

Considering these properties, we consider an ANN a promising choice to mimic the solution behavior 

of the MIP model. The exogenous drivers of the MIP model FarmDyn (resources, input and output 

prices, farm-specific technology parameters etc.) form the input features of the ANN and while its 

optimized key results, such as selected input and output quantities, profit and shadow prices, act as the 

target values. The ANN then aims to approximate the behavior of the MIP model by learning to map 

the input features, i.e. the exogenous parameters of a specific run of the MIP model, to the resulting 

optimized target values. Once the ANN is trained, it only needs a set of run specific inputs to predict 
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outputs by applying the learnt relationship. Therefore, the ANN can replace the MIP model in the ABM, 

as the inputs characterize a farm under specific market, policy and technology conditions.  

3 The MIP model FarmDyn 

FarmDyn (Britz et al., 2016) is a farm-scale bio-economic MIP model developed at the University of 

Bonn, Germany. It simulates economic optimal production and investment decisions in specific farm 

settings, typically the given resource endowment and considered activities, subject to given prices, 

technologies and policy instruments. The optimization targets farm-household income stemming for 

farm profits, including agricultural subsidies, and earnings from off-farm work, subject to a detailed 

representation of the production feasibility set, the maximum willingness to work on the farm or off-

farm, liquidity restrictions and constraints given by policy regulations (Britz et al., 2016). Different farm 

branches and modules (dairy, mother cows, beef fattening, pig fattening, piglet production, arable 

farming, biogas plants) as well as policy restrictions (i.e. Greening, agri-environmental schemes, 

fertilization ordinance) can be added in a modular form to the optimization (Britz et al., 2016; Britz et 

al. 2021).  

FarmDyn captures field operations, manure application, machinery etc. in high detail based on 

detailed engineering data for Germany which increases the plausibility of its simulation results for the 

different farm branches (Britz et al., 2021). The farm branches for dairy and cattle farming include 

different raising and fattening processes depending on the month, grazing share, weight gains, and 

calving and lactation period (Pahmeyer and Britz, 2020). Different farming activities and branches 

interact with each other. For instance, dairy and cattle farming options are interlinked with grassland 

management and arable farming including the consideration of different crop shares and rotations, 

production systems and intensity levels, manure disposal, storage capacity, biogas plants etc. (Kuhn et 

al., 2020; Schäfer et al., 2017). Investments in machinery, stables, silos, as well as off-farm work 

possibilities are depicted by integer variables (MIP model) to consider increasing returns-to-scale in 

branch sizes (Britz et al., 2021). 

FarmDyn can be set up in a modular fashion. For our study, we choose the deterministic variant of 

FarmDyn which assumes a fully informed agent without consideration of risk. The model is run as a 

comparative static problem such that the model maximizes the farm household income of one year while 

herd dynamics are replaced by a steady-state model. Investment costs are annualized while the binary 

character of investments is maintained (Britz et al., 2016). Under these conditions, FarmDyn is solved 

for an existing sample of dairy farms used in Seidel and Britz, 2019. 

The sampling of the model instance for FarmDyn is based on Latin Hypercube Sampling (LHS) 

(Britz et al., 2016; Iman and Conover, 1980; McKay et al., 1979). This efficient quasi-random sampling 
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procedure allows the whole range of factor level combinations to be represented in the sample. We 

assume a uniform distribution over each considered factor. Sampling is conducted in R, using the 

package of Carnell (2016). By varying the input values over a large range of different values, we obtain 

a dataset which represents the MIP’s behavior on a larger set of different input values. The MIP model 

delivers optimal farm household income, netput quantities and marginal returns to land (shadow prices 

of land) (Britz et al., 2016). Marginal returns to arable and grassland (shadow prices of land) are not 

taken as reported by the solver as they are derived given the active set of integer variables. Instead, two 

follow up optimization runs are conducted where the land endowment for arable and grassland is 

exogenously increased by one ha. The resulting changes in profits compared to the given endowments 

define the marginal values (Seidel and Britz, 2019).  

The industry MIP solver CPLEX 12.6 is used on a 44 core computing server under efficient solution 

strategies, such as parallel computing on multiple cores and reducing the solution space by removing 

non-active decision variables under a relaxed MIP (RMIP) solution. A detailed description of the 

structure and solution procedure of FarmDyn is documented in the model description (Britz et al., 2016). 

4 Building an ANN as a meta-model 

This section details the development of an ANN as a meta-model of a MIP model, here FarmDyn. The 

meta-modeling process consists of three basic steps. First, farm experiments are simulated using 

FarmDyn; second, the ANN is trained to imitate FarmDyn and its parameters are tuned to optimally fit 

it to our FarmDyn settings; third, ANN is used to simulate surrogate results for FarmDyn using a test 

dataset. 

4.1 Generating MIP experiments 

The first step in the meta-modeling approach generates a sufficiently large set of outcomes from the 

MIP model FarmDyn. We embed the study in an agricultural intensive area in North-Rhine Westphalia 

(NRW) in Germany where dairy farming plays a dominant role. These farms are highly specialized and 

can be assumed to be rationally managed. The profitability of dairy farming is mainly determined by 

feeding costs and milk prices, but also rental prices of farmland play a crucial role in a potential farm 

size expansion of dairy farms (Bradfield et al. 2023; Frick and Sauer, 2021; Margarian, 2010; 

Zimmermann and Heckelei, 2012). That is why we use the dairy and arable farming modules of 

FarmDyn and choose levels for prices and endowments that correspond to intensive dairy farms.  

Based on the price and structural statistics of NRW (IT.NRW, 2022; KTBL, 2016), factor ranges 

of explanatory variables such as farm sizes, number of animals etc. are defined. A dairy farming 
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population is defined with Design of Experiments (DOE). For each observation of this farming 

population, a MIP model is solved (Britz et al., 2016).  

A large dataset is needed for the development of an ANN as a meta-model of FarmDyn. By varying 

the input values over a large range of different values, a dataset is obtained which represents the MIP 

model’s behavior on a large variety of different input sets. Specifically, we let FarmDyn solve three 

million times.  

We delete observations with negative values of shadow prices of arable land and shadow prices of 

grassland. This can happen if all farm labor is used in the optimal solution and an additional hectare is 

forced to be managed, as also idling land requires some inputs. Furthermore, we exclude the 1% and 

99% quantile of profits, shadow prices of arable land and shadow prices of grassland in order to exclude 

unrealistic observations from analyses (since FarmDyn is used to represent data close to real-world 

data), while maintaining a large variety of different farm endowments. The reduced dataset contains 

1049710 observations. Our study will contain an analysis of how the dataset size influences the 

capability of our ANN to represent FarmDyn in our setting and investigate whether one million 

observations are sufficient to represent a complex MIP model.  

A challenge that all meta-models face is the choice of variables extracted from the original 

simulation model (Pierreval, 1996). The ANN must be provided with enough inputs and outputs of the 

MIP model to be able to learn the behavior of the MIPs. In order to catch all information necessary to 

represent FarmDyn by a meta-model, we select the most important in- and outputs of the FarmDyn 

dataset, based on literature (Bradfield et al. 2023; Frick and Sauer, 2021; Margarian, 2010; Zimmermann 

and Heckelei, 2012) and own sensitivity analyses of FarmDyn. As inputs, we choose the prices of milk, 

manure export, cattle feed, feeding crops, off-farm labor, and investments, as well as the (quasi-)fixed 

factors cows per farm working unit, farm working units, arable land, grassland and milk yield. As 

outputs, we select the amount of milk produced, manure exported, cattle feed and feed crops bought, 

off-farm labor supplied, and investments, as well as the profit, shadow price of arable land and shadow 

price of grassland. In total, we have eleven inputs and nine outputs (Table 1). 

Prior to training, the dataset needs to be normalized in order to stabilize and speed up the training 

process (Goodfellow et al., 2016). We apply min-max normalization in Python. 

The dataset is divided into training and test data. The training dataset is used for the identification 

and training of the ANN while the test dataset is used for ANN prediction and serves us for the 

investigation of the performance of the ANN as meta-model of FarmDyn in Chapter 6. The test dataset 

consists of 20% of the observations or 209942 observations, which leaves a training dataset of 839768 

observations. 
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Table 1: Inputs and outputs of FarmDyn used for ANN meta-modeling 

Inputs Outputs 

Netput prices (Quasi-)fixed factors, 

technology 

Manure export price  Cows per farm working unit  Profit 

Cattle feed price  Farm working units Marginal return to arable land 

Price for feeding crops Hectares of arable land Marginal return to grassland 

Investment price  Hectares of grassland Quantity of manure exported  

Milk price Milk yield Quantity of cattle feed bought 

Wage of off-farm work  Quantity of feeding crops bought 

  Quantity of investments made 

  Quantity of raw milk produced 

  Amount of off-farm work 

Sources: own table 

4.2 Building and training of the ANN 

Next, we build the model and train it to approximate the behavior of the MIP model. Similar to other 

statistical models, the aim is to minimize the difference between the output predictions of the ANN and 

the given outputs from the MIP.  

The number of neurons in the input and output layer is equal to the number of exogenous inputs 

and output variables chosen from the FarmDyn dataset. Consequently, we have eleven inputs, resp. 

neurons in the input layer and nine outputs, resp. neurons in the output layer. The number of neurons in 

the hidden layers as well as the number of layers itself is not pre-defined and part of the ANN tuning 

procedure as presented in the subchapter 4.2.1. We build the ANN in Python using the neural network 

library Keras (Gulli and Pal, 2017). 

We train the ANN in a supervised way. Based on the comparison of the FarmDyn output y with the 

ANN output ŷ given in the training dataset, a cost function (or loss function, error function) is calculated. 

This cost function is iteratively minimized by adjusting the weights of the neurons. During training the 

ANN learns the relationship between inputs and outputs by trying to match the predicted output of the 

ANN to the output given in the training dataset (Goodfellow et al., 2016; Hastie et al., 2009). In analogy 

to the minimum least squares optimization in linear regression, a common way is to compute the cost as 

the Mean Squared Error (MSE) of the normalized 𝑦,  
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( 1), 

where 𝑁 is the number of observations, 𝐶 is the number of outputs of the model, �̂�𝑖𝑗 is the predicted 

outcome returned by the model and 𝑦𝑖𝑗 is the observed outcome for the 𝑖th training case and the 𝑗th 

output (Goodfellow et al., 2016).  

Feedforward ANNs are trained using back-propagation. The back-propagation algorithm calculates 

first partial derivatives of the cost function with respect to each weight in the ANN. The first partial 

derivatives indicate how quickly the error changes if weights and biases change. The minimization of 

the cost function is done by gradient descent. The partial derivatives calculated by the back-propagation 

algorithm represent the slope of the cost function. The idea of gradient-descent is to move in the direction 

of the steepest descent of the cost function. In iterative steps, weights are adjusted in a way to move 

down the cost function in the direction with the steepest descent (Goodfellow et al., 2016; Hastie et al., 

2009).  

Depending on the particular research question, other fit measures exit or adjustments of the MSE 

measure are possible. For example, the mean absolute error can be used to give lower weights to extreme 

outliers. Another possibility is to introduce output specific weights if one particular output is especially 

important (Goodfellow et al., 2016; Hastie et al., 2009). 

4.2.1 ANN tuning 

According to the literature, a simple one-layer one-neuron ANN is able to learn complex behavior. 

Adding layers to the ANN improves the in-depth learning of the ANN and leads to efficiency gains 

(Goodfellow et al., 2016). Besides the number of hidden layers, the performance of an ANN depends 

on other hyperparameters. These are inter alia the number of neurons in the hidden layer, the so-called 

dropout rate, weight initialization, optimizer, activation function, learning rate, momentum, number of 

epochs, minibatch size, and weight decay coefficient (Goodfellow et al., 2016). Their theoretical 

influence on the performance of an ANN is presented in Table 2.  

Hyperparameters are not adapted by the learning algorithm during training but are pre-determined 

by the modeler in order to adapt the algorithm to the specific problem (Goodfellow et al., 2016). Failures 

in the application of ANNs can be avoided by reasonable choices of the hyperparameters (Hornik et al., 

1989). Hyperparameters need to be chosen to render the ANN precise enough to capture the complex 
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relationship between inputs and outputs, but at the same time general enough to be able to generalize to 

other input datasets, i.e. avoid overfitting (Goodfellow et al., 2016).  

Table 2: Hyperparameters tested and their typical influence on the performance of ANN 

Hyperparameters Typical impact on ANN performance 

Number of hidden layers Number of layers increases the capacity of ANN in capturing complex underlying 

relationships between inputs and outputs, thus increasing the accuracy of an ANN. 

Number of hidden units 

(neurons) 

Similar to the number of hidden layers, the number of hidden units also increases 

accuracy. A small number of units per layer causes underfitting. 

Dropout rate Dropout is a technique to reduce overfitting. At each training iteration, a fraction of input 

units is randomly set to 0 implying that some information learned is randomly removed. 

Small dropout rates show often limited effects; while high values can result in under-

learning. Usually, a value between 20% and 50% is chosen.  

Weight initialization Weights are initialized before training starts and optimized from there. Typically, weights 

are randomly initialized. If weights are initialized with very high or very low values, 

training might be not efficient (vanishing/exploding gradient problem). The choice 

interacts with the chosen activation function. Some weight initialization techniques have 

been developed (He optimization, Xavier optimization). Some activation functions like 

ReLU and leaky ReLU solve the problem of vanishing gradient. 

Optimizer The optimization algorithm finds the weights and biases that minimize the loss function 

during training. Stochastic Gradient Descent (SGD) and its variants are frequently used 

optimizers for deep learning.  

Activation function The activation function is used to introduce non-linearity in the estimation. The rectified 

linear activation function (ReLU) and sigmoid function are recommended default 

functions for feedforward ANNs. 

Learning rate The learning rate determines the size of the step along the cost curve during gradient 

descent training. A low learning rate lets the training converge smoothly, but drives up 

the required time. A high learning rate might speed up the process, but convergence might 

fail. 

Momentum The momentum term introduces a dependency between weight update and last weight 

update, thereby preventing oscillations in the learning process and preventing getting 

stuck in a local minimum. Momentum is usually between 0.5 and 0.9. 

Number of epochs One epoch means that the whole dataset is passed forward and backward through the 

ANN once, i.e. the number of epochs is the number of times the entire training dataset 

runs through the network during training. A low number of epochs leads to underfitting; 
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Hyperparameters Typical impact on ANN performance 

a high number of epochs to overfitting. As a rule of thumb, the number of epochs should 

be increased until the validation accuracy starts decreasing. 

Minibatch size Dividing the sample into subsamples and training ANN iteratively on each of the batch 

makes the model more resistant to outliers and variance on the training set. The typical 

default batch size is 32. Typically, batch sizes are chosen in exponential steps, i.e. 32, 64, 

128, 256 and so forth. 

Weight decay coefficient An additional term in the weight update rule that causes the weights to exponentially 

decay to zero, if no other update is scheduled. It is a regularization mechanism used to 

avoid overfitting. 

Sources: based on Goodfellow et al. (2016) 

To find the best combination of hyperparameters is an extensive task for modelers. To speed-up the 

research, hyperparameter tuning procedures have been developed. They test pre-defined ranges of 

different hyperparameter levels and look for the best combinations based on a specific error rate 

(Bergstra and Bengio, 2012; Probst et al. 2019). As hyperparameter optimization algorithms are highly 

computationally intensive, manual tuning is often the first step to limit the possible combinations of 

hyperparameter settings in a follow-up automatized hyperparameter optimization procedure. 

In order to investigate the influence of various hyperparameters on our ANN, we first test different 

hyperparameter settings step-by-step. In a large sensitivity test framework, we vary ceteris paribus (c.p.) 

the number of neurons, minibatch size, learning rate, choice of the optimizer, activation function and 

the number of epochs. Furthermore, we c.p. add layers to the ANN to improve the in-depth learning of 

the ANN. Thus, we transform the ANN into a DNN. The influence of the dataset size on the accuracy 

of the ANN is also investigated.  

Hyperparameters are selected using a validation dataset which we generate by randomly splitting 

10% of the training dataset. The model will not be trained on his data. The validation dataset is used to 

test the model performance during training by calculating the MSE and R². Based on these two metrices, 

the best combination of hyperparameters tested is identified. The basic setting of hyperparameters used 

in the c.p. sensitivity analyses as well as the various tested settings are presented in Table 3.  
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Table 3: Model specification for sensitivity analysis 

Hyperparameters Basic setting Tested settings 

Number of hidden layers 1 1-10 

Number of neurons 64 8-1024 in exponential steps 

Minibatch size 32 8-512 in exponential steps 

Learning rate 0.001 0.0001, 0.0005, 0.001, 0.005, 0.01 

Optimizer Adam Adam, Adagrad, Adamax, SGD, RMSprop 

Activation function ReLU Sigmoid, tanh, LeakyReLU, ReLU 

Number of epochs 100 50, 100, 150, 200 

Sources: own table  

4.3 ANN prediction 

The test dataset can be used to make predictions in order to investigate the ANN performance. If the 

ANN is not able to make accurate predictions for the test dataset, even though the fit of the train dataset 

was high, the model is overfitted. If the predictions of the test dataset are as accurate as of the test dataset, 

the ANN is ready for use. 

The trained ANN can be applied in the ABM for each agent, depicted by its endowment, technology 

and its market environment according to the eleven inputs, to predict production and investment 

decisions and profits in each time step. While training the ANN can be computationally intensive, once 

the network is trained, it allows very fast prediction (van der Hoog, 2019). The short inference time 

speeds up the computation of the agents’ decision-making in the ABM compared to solving a farm 

model in each time step. If external prices or endowments change, only the inputs to the ANN change. 

The learned relationship between inputs and outputs remains the same.  

Farmers’ behavior in the ABM, including production decisions, investment decisions, technology 

adoption, expanding or quitting agricultural production stems from the ANN. This behavior reflects 

profit maximization at given prices, farm endowments and policy regulations, and generates 

corresponding shadow prices of land.  

5 Results 

We look for the optimal set of hyperparameters for our application in two ways: first, manually by 

running a sensitivity analysis of the model with various model settings (section 5.1) and second, 

applying a hyperparameter optimization algorithm (section 5.2) using the optimal hyperparameter 

settings found in the manual tuning.  
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5.1 Results of manual tuning  

Manual tuning allows a precise analysis of the effects of different hyperparameter settings. We can 

investigate whether the theoretical impacts of hyperparameters on the performance of ANN can also be 

detected in our application.  

Figure 3 presents the results of the sensitivity analyses displaying the MSE of the test dataset for 

each hyperparameter tested. In the following, we present the results considering the MSE and R² of the 

test dataset as indicators of model fit.   
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Figure 3: Test loss of different hyperparameter settings in manual tuning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sources: own results 
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• Learning rate 

In our experiments, the running time did not change depending on the learning rate. The 

accuracy of ANN, however, changes. We get the lowest MSE and highest R² on our test dataset 

with a learning rate of 0.001.  

• Units in the hidden layer 

In order to test the universal approximation theorem for our ANN, we increase the number of 

neurons starting from eight neurons in exponential steps up to 1024 neurons in the hidden layer. 

The fit of the ANN increases as the number of neurons goes up. The best result is as expected 

achieved at the considered maximum of 1024 hidden units. As can be seen in figure 3, the 

performance gain is relatively strong when the number of neurons increases from 8 to 64. From 

there, the accuracy increases only very slightly. With a total R² of 0.9770, the fit of the ANN 

with 64 neurons to the MIP model is very high. With only ten neurons, R² of the test set is 

0.8534. With a higher number of neurons, it slightly increases up to 0.9795. Especially, the 

variable off-farm work which is an integer variable in FarmDyn cannot accurately be depicted 

by an ANN with ten neurons. The R² lies at 0.2694. With 64 and more neurons, the ANN is able 

to accurately represent the integer character of the variable (R² > 0.99).  

• Hidden layers 

We increase the number of layers iteratively from one up to ten. The R² of the test set is lowest 

for a one-layer ANN but still on a very high level (0.9770 for one layer compared to 0.9868 for 

four layers). The ANN with four layers achieves the lowest MSE. More complex ANNs perform 

slightly worse or almost equally. This might reflect other limits in the training process. An 

explanation might be the number of epochs chosen for manual tuning. 100 epochs might be too 

small to allow accurate training for an ANN with five and more hidden layers. This 

consideration displays the interlinkage of hyperparameters and its influence on training 

performance.  

• Optimizer 

All tested optimizers are extensions of SGD. The choice of the optimizer has a strong influence 

on the performance of the ANN (Goodfellow et al., 2016). Adam, Adamax and RMSprop 

achieve significantly better results than SGD and Adagrad. With a test loss of 0.000752 and R² 

of 0.977, Adam is the best choice for our application.  
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• Minibatch size 

In our experiments, a batch size of 32 leads to the lowest MSE which is the typical default batch 

size of ANN. The running time is 23 seconds per epoch. R² is not affected by the batch size. In 

all settings, we attain a total test R² of around 0.97-0.98.  

• Epochs 

The smallest tested number of epochs achieves the best result. 100 epochs seem to be the best 

choice in our experiment. Test total R² is 0.977. With another number of epochs, this does not 

change significantly. 

• Activation function 

Out of the four tested activation functions (sigmoid, tanh, leakyReLU and ReLU), ReLU leads 

to the best result. The test total R² of leakyReLU and ReLU is almost at the same level, i.e. 

0.9773 and 0.9770. The best candidate, ReLU, is defined by the function 𝑔(𝑧) = 𝑚𝑎𝑥{0, 𝑧} , 

where 𝑧 = 𝑊𝑇𝑥 + 𝑏 (Goodfellow et al., 2016).  

• Sample size 

Figure 3 also shows the influence of the training dataset size on the performance of the ANN. 

The ANN was trained with dataset sizes of 1000, 5000, 10000, 50000, 100000, 200000, 400000 

and 839768. As expected, the loss MSE decreases with increasing dataset size from 0.0028 to 

0.0007. However, the fit improves very slightly for sizes between 100000 and 839768 

observations. If the data generating process is time and resource intensive, it may hence be 

sufficient to use a smaller training dataset from a MIP model. We gather that at least 100000 

observations are necessary to represent the dairy farming branch of FarmDyn by an ANN. 

Adding additional branches will probably ask for a larger dataset. 

R² improves from 0.8980 in case of 1000 observations to 0.9770 in case of 839768 observations. 

The improvements especially relate to the shadow prices of land, export quantity of manure and 

amount of off-farm labor. For instance, the R² of the shadow price of arable land increases from 

0.7478 with 1000 observations to 0.9119 with 839768 observations.  

To sum up, our findings confirm the influence of hyperparameters found in the literature. Since we 

tested changes in one hyperparameter at given default choices for all others, we might miss the best 

combination of hyperparameters. The results from manual tuning are delegated to an automatized tuning 

algorithm in the next chapter. 
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5.2 Results of the hyperparameter optimization algorithm 

The manual hyperparameter tuning shows the influence of each single hyperparameter on the goodness 

of fit, at unchanged values of all others. To advance here, we apply Hyperopt (Bergstra, et al. 2013), a 

Bayesian optimization algorithm in Python which searches for an optimal choice of hyperparameters 

for a machine learning model by an automatic tuning procedure. 

In order to speed up Hyperopt, we restrict the optimization to the number of neurons in each layer 

and use otherwise the best hyperparameters from the manual tuning. We take a learning rate of 0.001, 

sample size of 839768, mini-batch size of 32, Adam as optimizer, and ReLU as activation function in 

each hidden layer and in the output layer. Due to computational constraints, Hyperopt searches for 

optimal network structures with up to five hidden layers. Table 4 shows the structures of the optimal 

ANN (i.e. the number of neurons in each hidden layer) and their performances depending on the number 

of hidden layers. 

Table 4: Structures and performances of different ANNs found by Hyperopt 

 1 hidden 

layer 

2 hidden 

layers 

3 hidden 

layers 

4 hidden 

layers 

5 hidden 

layers 

Optimal number of 

neurons in each hidden 

layer 

H1: 1750 H1: 

H2: 

602 

383 

H1: 

H2: 

H3: 

1011 

940 

1431 

H1: 

H2: 

H3: 

H4: 

1111 

658 

1249 

711 

H1: 

H2: 

H3: 

H4: 

H5: 

1724 

829 

1804 

754 

1334 

Train loss 0.00068 0.00051 0.00044 0.00039 0.00038 

Test loss 0.00068 0.00052 0.00044 0.00040 0.00038 

Train R2 0.9794 0.9835 0.9854 0.9789 0.9791 

Test R2 0.9794 0.9835 0.9854 0.9791 0.9792 

Time needed to predict 

1 million data points 

15.64 s 98.81 s 131.73 s 95.32 s 291.67 s 

Sources: own results  

The number of neurons in each layer could range from 8 to 2048. Table 4 shows that the model with 

three hidden layers and 1011 neurons in the first, 940 neurons in the second and 1431 neurons in the 

third hidden layer has the highest R² on the training and test data set. The train and test loss metrics are 

quite low, but somewhat below the ones of ANNs with four or five hidden layers. The time needed to 

predict one million data points is considerably higher for the ANN with three layers compared to ANNs 

with one, two or four hidden layers. The latter comes as a surprise as the total number of neurons in the 

version with four layer exceeds the one with three.  
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6 Investigation of the ANN as meta-model of FarmDyn 

The in Table 4 presented values of MSE and R² indicate that the ANN with three hidden layers fits best 

to the FarmDyn settings used in the study. Table 5 summarizes the optimal hyperparameter settings as 

identified by manual and automatized tuning.  

Table 5: Best ANN found by manual tuning and hyperparameter optimization 

Hyperparameters Best ANN 

Number of hidden layes 3 

Number of neurons 1011, 

 94 

1431 

Minibatch size 32 

Learning rate 0.001 

Optimizer Adam 

Activation function ReLU 

Number of epochs 100 

Source: own results 

While a high fit is required to make an ANN a promising candidate to replace the MIP in model linkage, 

Shang et al. (2023) propose three other metrics to consider: first, whether fundamental relationships 

between an input and an output or between two outputs what they term consistency of bivariate 

relationships, second, accuracy in capturing corner solutions and third, accuracy in holding constraints, 

such as ensuring that simulated crop acreages exhaust total land. Moreover, the authors stress that ANNs 

are suitable candidates for meta-modeling only if not an excessive number of observations is needed to 

train them.  

We investigate the applicability of our ANN based on the goodness of fit, the capability of 

replicating individual farm decisions and running time considerations. 

6.1 Considering the model fit 

As suggested by the high average MSE, the scatterplots in figure 4 show that the ANN is able to 

represent outputs of a complex MIP model with a high degree of accuracy, with a R² between 0.953 and 

0.999 for the outputs using the test material consisting of 209942 observations.  
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Figure 4: Scatterplots of predicted outputs 
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Source: own results 

A specific challenge in meta-modeling of MIPs is an appropriate representation of outputs (strongly) 

linked to integer variables. As we can see from the scatterplots, this is the case especially for investments 

and off-farm work where the spikes indicating integer solutions are well recognizable. Similar patterns 

can be observed for milk output and the use of cattle feed. This reflects that the quantity of milk 

produced, and linked to this the amount of feed needed, are determined by the herd size at given milk 

yield. The herd size in turn depends on the chosen stable size to a large degree, as farmers tend to fully 

use the available stable places in order to maximize profits. In the version of FarmDyn used for this 

study, stables are available in predetermined sizes, provoking jump discontinuities. Despite their non-

differentiable nature, the capacity of the ANN to represent integers and related netputs is high with an 

R² between 0.993 and 0.999. 
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If an agricultural ABM integrates a MIP, the bidding behavior of farmers in land markets is 

typically informed by simulated land shadow prices. The achieved R² of 0.952 for the marginal of arable 

land and of 0.978 for grassland are quite high, but lower than for the considered netputs.  

6.2 Representing decision-making of an individual farm 

The R² indicate that the overall fit of the ANN is clearly satisfactory, but there might still be cases where 

predictions by the ANN and the true simulated results might considerably deviate. We therefore test the 

ANN in sensitivity analysis for a single farm, under changing costs of manure exports and changing 

endowments with grass land (see Table 6, also for value of other inputs). The results of ANN prediction 

are compared to the output of FarmDyn in figure 5 and figure 6. 

Table 6: Experiment settings 

 Experiment grassland Experiment manure 

export price 

Manure export price (€/m³) 5.0 1.0 – 13.0 

Cattle feed price (€/t) 280.0 280.0 

Price for investment 1.0 1.0 

Milk price (cent/liter) 33.5 33.5 

Off-farm wage (€/hour) 8.0 8.0 

Price for feeding crops (€/t) 200.0 200.0 

Annual working units 2.6 2.6 

Ha of arable land (ha) 39.0 39.0 

Ha of grassland (ha) 30.0 – 35.0 30.0 

Number of cows 100.0 100.0 

Milk yield (100 kg/head) 84.0 84.0 

Note: Prices of cattle feed, resp. feeding crops are price averages of various feeding concentrates, resp. crops. 

The panes in figures 5 and 6 underline that the ANN predicts the FarmDyn netputs in both experiments 

quite accurately and also generates response curves of the dependent variables quite close to the MIP 

(profit, shadow prices of arable land, shadow price of grassland, as well as quantities of manure export, 

cattle feed, crops for feeding, milk, investments, and off-farm work). In both experiments, the farmer 

does not work off-farm which is also predicted by the ANN.  

In both experiments, the ANN tends to underestimate somewhat netput quantities and to 

overestimate profits. Results for shadow prices differ: in the manure export experiments, both land 

shadow prices are underestimated, while with increasing grassland endowments, shadow prices of arable 

land are overestimated and of grassland underestimated. Still, the curves of shadow prices of arable land 
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as well as the quantity of manure export show that the ANN is able to predict jumps in the solution space 

of FarmDyn. This also holds for corner solutions. First, the ANN correctly predicts that in both 

experiments the farmer does not work off-farm. Second, in the manure export price experiment, the 

ANN is able to predict the jump from 0 to a shadow price of land < 100 with a change in the manure 

export price from 1 to 3 € per m³.  Overall, these tests suggest that the ANN is a promising candidate to 

replace the MIP as a meta-model.  
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Figure 5: Results of grassland experiment 

 

Note:   FarmDyn output,        ANN output 

Sources: own results 
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Figure 6: Results of manure export price experiment 

 

Note:   FarmDyn output,         ANN output 

Sources: own results 
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6.3 Considering run time 

ANNs are characterized by very fast predictions (van der Hoog, 2019). As shown above, the selected 

three-layer ANN is able to predict one million scenarios in slightly more than two minutes. In 

comparison, the FarmDyn required several weeks to generate a data set with 1 million observations. 

Run time differences between the different ANN tested in there are considerable. A one-layer ANN with 

1750 neurons requires solely 16 seconds or around 15% for the same predictions, and still achieves a 

quite high fit (measured by R² and MSE on the test set). Depending on the targeted application of the 

ANN, a slight loss in accuracy might be accepted given this speed gain. 

ANNs require larger datasets for training and testing, and the one-time effort to produce the 

observations must be offset by gains in later application. Moreover, which fit can be achieved with a 

given training set size is not known beforehand. Equally, the training sets must be carefully constructed 

to cover the later input range. Designing the construction of the training sets and related computational 

burden might discourage modelers from using an ANN as a meta-model (Nguyen et al., 2019). 

For our study, as found during manual tuning, we gather that at least 100000 observations are 

needed to train an ANN with a satisfactory fit for our MIP model. While the fit still increases up to the 

maximum of more than 800000 observations considered in our tests, the improvements are quite muted. 

This implies that one should step-wise add new observations to the training set and repeatedly train the 

ANN to find a compromise between computational needs to generate observations and the achieved fit. 

In this process where only observations are added, the additional training time is far lower compared to 

a start from scratch. The same holds when the input range must be expanded at some later point, as it 

was in our case for herd sizes beyond 1000 cows.  

Not only the step to generate training data, but also the training process itself is time demanding. 

Training time can be decreased by adjusting hyperparameters such as optimizer, number of layers and 

neurons, and learning rate (Goodfellow et al., 2016).  

7 Conclusion 

In this study, we constructed ANNs as meta-models of the evolved MIP model FarmDyn, which is used 

to simulate production and investment decisions of intensively managed dairy farms. The main 

advantage of using the meta-model instead of the MIP model in simulations is the tremendous gain in 

speed. This opens up the door to extend the regional or temporal scale in modeling approaches. 

Moreover, software aspects might favor the relatively simple simulation approach based on the trained 

equations of the ANN over integrating a MIP model in the overall modeling framework. 

This study shows that meta-modeling based on ANNs is superior in terms of approximating 

accuracy, replicating corner solutions, and capturing jumps in the decision space, compared to standard 
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econometric meta-modeling approaches in case of MIP models. We reached a R² of more than 0.95 for 

profits, shadow prices of land and netput quantities, despite a quite jumpy behavior of the original MIP 

for many of these outputs. Test simulations with arbitrarily chosen starting endowments and netput 

prices showed that the ANN correctly depicts corner solutions and jumps. The latter will be usually not 

the case with duality based econometric approaches which are restricted by the nature of their functional 

forms. We therefore conclude that an ANN based meta-model could be used in ABMs to depict a large 

set of heterogeneous farms, replacing the evolved MIP from which is derived. The results of our study 

thus confirm existing literature. If it is pre-defined and trained in an appropriate way, an ANN can learn 

to mimic complex models. We achieved the best results with a three-layer DNN by manual tuning, this 

set-up was confirmed by subsequent hyperparameter optimization. 

The main disadvantage of using ANNs in meta-modeling of a MIP is the large amount of 

observations and the time needed for training. Generating training data can require weeks of computing 

time, even if modern industry MIP solvers and efficient solution techniques are applied, and requires a 

careful design of the observation space to properly capture the later ranges of inputs in simulations. 

These steps and the tuning of ANN demand for additional know-how by the modeler. Finding the right 

balance between over- and underfitting of the ANN and the choice of hyperparameters is to a limited 

degree possibly based on textbook knowledge and using hyperparameter tuning algorithms, but requires 

expertise. 

Once an ANN is trained to imitate the MIP model, its application in ABMs is very efficient as it 

makes fast and accurate predictions. This approach therefore has a high potential for agricultural 

research to be able to run large-scale and long-term simulations of agricultural policies and markets.  
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