
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 1 

 

 

 

 

 
Optimal Control of Infectious Disease Transmission Dynamics 

 

A PLAN B PAPER SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF 

MINNESOTA BY 

 

 

Ying Wang 

 

 

 

IN PARTIAL FULFULMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

 

 

 

 

 

 

 

Dr. Frances R. Homans, Advisor 

 

 

 

 

November 2022 



 2 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ã Ying Wang 2022 
 
 



 i 

 
Acknowledgements 

 

I would like to express my deep appreciation to my primary advisor, Dr. 

Frances Homans, who guided me throughout this project. Without her invaluable 

patience and guidance, I could not have undertaken this journey. Additionally, I 

am also grateful to my committee members Dr. Elizabeth Davis and Dr. Ford 

Runge for their support and feedback. Lastly, this endeavor would not have been 

possible without the generous support from my husband, who kept my spirits and 

motivation high during this process. 

 
  



 ii 

Abstract 

 

In this paper, we develop a deterministic model of an infectious disease that 

can be managed with vaccination. The goal of this paper is to find a vaccination 

strategy that maximizes net benefits of managing the disease over a finite time 

horizon. We use Pontryagin’s Maximum Principle to characterize the optimal level 

of vaccination analytically and then solve the resulting system numerically. 

Numerical results suggest that an early round of vaccination is a key part of 

disease management. A typical optimal vaccination schedule includes vaccinating 

at a maximum level in the early stages of the disease.  
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1 Introduction  

During the early stage of controlling a highly contagious infectious disease, 

policymakers rely on non-pharmaceutical interventions (e.g., restricting 

international travel, closing schools and restaurants, imposing curfews) to curtail 

disease spread. These strict non-pharmaceutical interventions come with serious 

concerns about their social and economic impacts. However, easing national 

lockdowns to alleviate those impacts can cause resurgence of confirmed cases 

and fatality rates. Therefore, achieving the right balance between controlling the 

spread of a disease and maintaining economic growth is a difficult yet urgent task 

for policy makers.  

In addition to any lockdown policies that policy makers impose at the early 

stages of a pandemic, the development and implementation of vaccines can also 

effectively mitigate the spread of disease. Implementation of vaccination programs 

can shorten the lockdown period and limit its negative impact on a nation’s 

wellbeing. However, the challenge is to propose a suitable intervention strategy 

while taking disease dynamics into account. Optimal control theory can be used to 

solve for an optimal mitigation strategy that efficiently balances the costs of 

vaccination with its benefits.  

Optimal control theory has become an important area of mathematics used 

extensively to model the management of infectious diseases. It is a powerful tool 

used to make decisions involving complex biological situations. Researchers have 

formulated deterministic models of epidemiological systems and have considered 

both pharmaceutical approaches (such as vaccination) and non-pharmaceutical 

interventions (such as quarantine) as control measures. One of the earliest 

contributions from Sethi [1] includes a deterministic SI (Susceptible-Infected) 

epidemiology model with a quarantine ratio (number of those in quarantine over 

the number of susceptible) as the control measure.  Sethi solves for the optimal 

quarantine ratio over time. Papers by Yusuf and Benyah [2]  and Yusurf and 
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Olayinka [3] study the transmission and progression of infectious diseases using 

both vaccination and recovery rates as control measures. Both papers use 

Pontryagin’s Maximum Principle to characterize the optimal levels of the two 

controls, albeit with different epidemiological models.  

When setting up optimal control problems, researchers need to consider the 

most appropriate model specification.  Solution types depend on whether the 

control variable enters linearly or nonlinearly.   A nonlinear specification for the 

control variable facilitates an interior solution, whereas the alternative (using a 

linear control term in objective function) involves either a bang-bang or a singular 

solution. An interior solution for the control variable tends to lead to a smooth path 

of the control over time.  However, a solution to a problem that is linear in the 

control may involve discontinuities in the optimal control. For example, Sethi [1]  

proposed an optimal control problem in which the quarantine ratio entered the 

objective function linearly. The analytical solution from Sethi is one in which the 

optimal policy is binary: to quarantine or not. A more recent contribution from 

Rowthorn and Toxvaerd [4] proposes an optimal control problem that considers 

both prevention and treatment, incorporated within a SIS (Susceptible-Infected-

Susceptible) epidemiology model. Both control variables enter the objective 

function linearly. The result is that there is a singular solution with control variables 

at their extremes until the solution is reached.  

In addition to considering the linearity of control variables, researchers also 

need to consider whether to solve their optimality system analytically or 

numerically. To construct a problem that can be solved analytically, researchers 

often need to impose strong assumptions on the model, necessitating a relatively 

simple model of infectious disease dynamics. Without restricting the number of 

state and control variables, detailed characterization of the disease dynamics may 

result in a complicated system of ordinary differential equations which is 

unsolvable with analytical methods. However, more complicated systems involving 

more realistic models of disease transmission dynamics can be solved using 

numerical methods such as in papers Yusurf and Olayinka [3] and Yusuf and 
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Benyah [2]. Their simulation results show that the optimal combination of 

vaccination and treatment required to achieve the set objective will depend on the 

relative costs of the two control measures.  

In this paper, we use optimal control theory where disease dynamics are 

governed by the Susceptible, Exposed, Infected, and Recovered (SEIR) model 

proposed by Lenhart [5] to solve for an optimal vaccination policy. After solving the 

model numerically, we explore the implications of changes in parameters to shed 

light on optimal policy under various conditions. 

 

The paper proceeds as follows. Section 2 introduces the infectious disease 

transmission dynamics. Section 3 formulates the optimal control problem subject 

to the SEIR model dynamics proposed by Lenhart [5] and derives the optimality 

system. Section 4 solves the optimal control problem numerically and presents 

simulation results. Section 5 illustrates some of the main points through simulation 

and concludes. 
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2 Model 
2.1 Proposed Model with Vaccination 

In this paper, we use a model that was proposed by Lenhart [5].  Susceptible 

individuals (S) become exposed (E) through contact with infected individuals (I) 

and some fraction of exposed individuals become infected. A proportion of infected 

individuals recover (R). The total number of individuals in the population (N) is the 

sum of individuals in all the categories.  The model includes a control policy for the 

fraction of the population being vaccinated, u. It also includes natural births and 

deaths as well as deaths caused by the disease. This model is represented below. 

 
Figure 2.1 SEIR Model with Vaccination 

 

From this flow chart we can notice that population inflow comes from natural 

births, denoted as "bN.” Outflow due to natural death occurs from each group, 

represented by “d.”  Vaccination reduces the Susceptible population and places 

them in the Recovered group. Population movements between groups depend on 

few key disease transmission parameters, such as contact rate β, progression rate 

𝜖 , and recovery rate g. As proposed by Lenhart [5] the above flow chart with 

vaccination can be described by the following system of ordinary differential 

equations (ODEs): 

 

�̇� = 𝑏𝑁 − 𝑑𝑆	 − 𝛽𝑆(1 − 𝑢)𝐼 − 𝑢𝑆  

( 2-1 ) 



 5 

�̇� = 𝛽(1 − 𝑢)𝑆𝐼 − (𝜖 + 𝑑)𝐸 
( 2-2 ) 

𝐼̇ = 𝜖𝐸 − (𝑑 + 𝛿 + 𝛾)𝐼 
( 2-3 ) 

�̇� = 𝛾𝐼 − 𝑑𝑅 + 𝑢𝑆 
( 2-4 ) 

�̇� = (𝑏 − 𝑑)𝑁 − 𝛿𝐼 
( 2-5 ) 

 

 

• S(t), Susceptible – healthy individuals who have not been exposed to the 

disease yet at time t 

• E(t), Exposed – people are exposed to the virus but not yet infectious at 

time t. The Exposed group allows for an incubation period for the disease 

inside its host, where an infected person remains latent without clinical 

symptoms or signs of infection before becoming infectious (Lenhart and 

Workman [2007]).  

• I(t), Infectious – the group infected with the disease after exposure, with 

symptoms.  

• R(t), Recovered– individuals recovered from the disease or immune due to 

immunization 

The parameter β measures the average number of contacts made by one 

person per unit of time and is assumed to be constant over time. So,  𝛽𝑆𝐼  is the 

total number of Susceptible individuals that become exposed (new cases). The 

progression rate 𝜖 is the rate at which exposed individuals become infectious. The 

recovery rate 𝛾 reflects the rate at which infected individuals recover. The death 

induced rate 𝛿 is the death rate caused by the disease. As mentioned by Lenhart 

[5], 1/ 𝛿 measures the average length of infection period before recovery and 1/𝜖	 

measures the incubation period: a higher recovery rate or progression rate means 

a shorter infection period or incubation period. Note that there are no reinfections.  

Once in the recovered group, there is no chance of becoming infected.   
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All parameters, as listed in Table 2.1 below, are assumed to be positive and to 

remain constant over time.  
  

Parameter Description 

b Natural birth rate 

d Natural death rate 

𝜷 Contact rate 

𝝐 Progression rate (exposed become infected) 

𝜹 Disease induced death rate 

𝜸 Recovery rate 

Table 2.1 Parameters used in SEIR model 

The vaccination rate u may be modeled as fixed or a variable function of 

time, t. The total population N(t) can be obtained from 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) +

𝑅(𝑡), resulting in �̇�(𝑡) = 	 �̇�(𝑡) + �̇�(𝑡) + 𝐼̇(𝑡) + �̇�(𝑡). 

 

 

2.2 Basic Reproduction Number 

Now we can use the proposed disease transmission dynamics to derive the 

basic reproduction number of the infectious disease. ℛ!  can be used as the 

threshold quantity that helps to determine whether an outbreak of infectious 

disease dies out or spreads in a community. In epidemiology, the basic 

reproduction number is the expected number of secondary infections produced in 

a population of susceptible individuals. In this section, we first explore basic 

reproduction numbers with and without vaccination intervention, noting that the 

vaccination rate u is fixed here. Then, sensitivity analysis is carried out in order to 

understand the relative importance of different factors responsible for disease 

transmission and prevalence.  

We obtain ℛ! by following the next-generation matrix approach proposed by 

Van den Driessche and Watmough [6].  Using their notation, we have 
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ℱ = I0
𝛽𝑏𝑁
𝑑 + 𝑢

0 0
J 

( 2-6 ) 

𝜐 = L(𝜖 + 𝑑) 0
−𝜖 𝑑 + 𝛿 + 𝛾M	 

( 2-7 ) 

where the matrix ℱ  represents transmission and the matrix 𝜐 represents 

transitions. Hence, all epidemiological events that lead to new infections are 

incorporated in the model via ℱ  and all other events via 𝜐 . The reproduction 

number is given by the dominance eigenvalue of a next-generation matrix 𝜌(ℱ𝜐)"#: 

ℛ$ =
𝑏𝛽𝜖𝑁	

(𝑑 + 𝑢)(𝑑 + 𝜖)(𝑑 + 𝛿 + 𝛾) 

( 2-8 ) 

The threshold quantity ℛ$  from this equation represents the average 

number of infected people produced by one infected individual when introduced 

into a host population in the presence of vaccination. Figure 2.2 shows the 

relationship between ℛ$ and the vaccination rate when the parameters take on 

various vaccination rates while keeping transmission parameter values (natural 

death rate d, disease progression rate 𝜖, contact rate 𝛽, recovery rate 𝛾, disease 

mortality rate 𝛿 ) constant. This figure shows that increases in vaccination reduce 

the value of ℛ$ .	The figure also indicates that, when vaccination rates are lower, 

secondary infections are higher. From a social planner’s perspective, the negative 

relationship between ℛ$ and the vaccination level suggests a trade-off between 

vaccination intensity and confirmed cases.  
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Figure 2.2 Vaccination-induced reproduction number (ℛ! ) versus the Vaccination Rate, u. 

Parameter values used to calculate ℛ$  are provided below. They are 

consistent with parameter values used in the baseline scenario in Section 4. Note 

that these parameter values are proposed by Lenhart and Workman as reflecting 

a micro-parasitic infectious disease. 

 
Natural 

birth 
rate 

Contact 
rate 

Progression 
rate 

Natural 
death 
rate 

Disease 
mortality 

rate 

Recovery 
rate 

Vaccination 
rate 

b 𝛽 𝜖 𝑑 𝛿 𝛾 𝑢 
0.525 0.001 0.5 0.5 0.2 0.1 0.1 - 1 

Table 2.2 Parameter values used to calculate ℛ! 

In the absence of vaccination (u = 0), the basic reproduction number is: 

ℛ! =
𝑏𝛽𝜖𝑁	

𝑑(𝑑 + 𝜖)(𝑑 + 𝛿 + 𝛾) 

( 2-9 ) 

Assuming constant levels of natural birth/death rate and unchanged total 

population (holding b, d, and N constant), we evaluate the sensitivity of the basic 

reproduction number to some key disease transmission parameters: contact rate 

𝛽, progression rate 𝜖, mortality rate 𝛿 , and recovery rate	𝛾. When ℛ!  < 1, the 

disease dies out without any medical intervention. But when ℛ!	> 1, the disease 
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becomes endemic, requiring certain pharmaceutical or non-pharmaceutical 

interventions to control the spread of the disease.  

In the figures below, ℛ!  increases when  𝛽  and 𝜖 increase, meaning 

secondary infections will be higher if contact rates and/or progression rates 

increase. This makes sense, as the contact rate measures the rate at which 

susceptible individuals have contact with other individuals, and the progression 

rate measures how many exposed individuals become infectious. If both contact 

and progression rates are high, then the basic reproduction number becomes 

higher. This means that when people have close contacts to virus hosts and 

quickly become infectious, the disease can spread at a faster rate. In addition, we 

can also observe that ℛ! is reduced when 𝛿 and 𝛾 increase, meaning secondary 

infections caused by a single infected individual become lower if disease mortality 

rates and/or recovery rates are high. This also makes sense, as more infected 

people are removed from transmission dynamics due to disease induced mortality 

or recovery, then the secondary infection likely to decline. Comparing sensitivity 

analysis results presented in both figures below, we can also see that ℛ!	is more 

sensitive to the incremental movements of values in contact rate and progression 

rate b and 𝜖 than to mortality and recovery rates 𝛿 and 𝛾.  

The indication from the sensitivity analysis is that controlling the contact rate 

b and progression rate 𝜖 has more direct impact on reducing the basic reproduction 

number. In other words, preventive measures are more effective than reactive 

measures to reduce secondary infections. For example, preventive measures such 

as practicing social distancing or wearing masks can effectively reduce or prevent 

the spread of disease in early stages. On the other hand, reactive measures such 

as developing medical treatments or drugs (affecting the death rate and recovery 

rate) require significant resources to develop and become effective.  Assume the 

costs of changing parameter values are equal, we would prefer changing the 

contact rate b and the progression rate 𝜖 as they have more direct impact on 

reducing the basic reproduction number than changing either the death rate or the 

recovery rate.  Therefore, from social planner’s perspective, it is important to 
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implement preventive measures during early stages of an epidemic to curtail the 

spread of disease. 

 

Figure 2.3 Effect of parameters in basic reproduction 
number for 𝛽 and 𝜖  with fixed natural birth and death 
rate: b = 0.525, d = 0.5; and fixed mortality and 
recovery rate: 𝛿 = 0.2, 𝛾 = 0.1 

 

Figure 2.4 Effects of parameters in basic 
reproduction number for 𝛿 and  𝛾 with fixed natural 
birth and death rate: b = 0.525, d = 0.5; and fixed 
contact rate and progression rate: 𝛽 = 0.01, 𝜖 = 0.5	  
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3 Optimal Control Problem  
3.1 Formulation of the problem 

Now, instead of using a fixed vaccination rate, we allow the vaccination rate 

to be determined by a social planner in a vaccination campaign and to vary over 

time. The goal of a vaccination campaign is to strategically reduce the Susceptible 

population through enhancing public immunity to the virus. In this case, 𝑢(𝑡),  

represents the proportion of susceptible people receiving vaccinations per unit of 

time at t. The goal then becomes to look for the optimal level of 𝑢(𝑡)∗ that would 

maximize net benefits over a finite time horizon. Although the exact end date for 

an epidemic is not likely to be known, a finite time horizon is chosen for the optimal 

control problem because it is reasonable for a social planner to implement the 

vaccination plan within a fixed period of time (e.g., by the end of a presidential 

administration). 

 

To model the dynamics of disease transmission in a population, we used the 

SEIR model with a vaccination policy proposed by Lenhart. The goal is to maximize 

the benefits of maintaining the size of the population minus the costs of 

implementing the vaccination program, subject to the disease transmission 

dynamics. Next, we specify the costs of vaccination as a quadratic function of u(t).  

This formulation reflects the idea that a stringent vaccination policy is much more 

expensive to be implemented than a relaxed policy: costs rise quickly when many 

vaccinations need to be administered at the same time. In summary, the problem 

is written: 

 

𝑀𝑎𝑥		𝐽(𝑢) = S 𝐴 ∗ 𝑁(𝑡) − 𝑐 ∗ 𝑢(𝑡)&	𝑑𝑡
'

!
 

( 3-1 ) 

Subject to 

�̇�(𝑡) = 𝑏𝑁(𝑡) − 𝑑𝑆(𝑡) 	− 𝛽𝑆(𝑡)𝐼(𝑡) − 𝑢(𝑡)𝑆(𝑡) 
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( 3-2 ) 

𝐸(𝑡)̇ = 𝛽𝑆(𝑡)𝐼(𝑡) − (𝜖 + 𝑑)𝐸(𝑡) 

( 3-3 ) 

𝐼(̇𝑡) = 𝜖𝐸(𝑡) − (𝑑 + 𝛿 + 𝛾)𝐼(𝑡) 

( 3-4 ) 

�̇�(𝑡) = (𝑏 − 𝑑)𝑁(𝑡) − 𝛿𝐼(𝑡) 

( 3-5 ) 

𝑆(0) = 𝑆!, 𝐸(0) = 𝐸!, 𝐼(0) = 𝐼!, 𝑁(0) = 𝑁! 

( 3-6 ) 

𝑢(𝑡) ∈ [0,0.9] 

𝑆(𝑇), 𝐸(𝑇), 𝐼(𝑇), 𝑁(𝑇)	𝑎𝑟𝑒	𝑓𝑟𝑒𝑒 

( 3-7 ) 

The differential equations governing the state variables, 

�̇�(𝑡), �̇�(𝑡), 𝐼(̇𝑡), �̇�(𝑡),	are represented in the form of SEIR framework introduced in 

previous section. Notice that R does not appear in the other differential equations 

of �̇�(𝑡), �̇�(𝑡), 𝐼̇(𝑡), �̇�(𝑡) . Therefore, R can be ignored while developing the 

necessary conditions. R can be solved separately using its own differential 

equation �̇�(𝑡 ). The optimal control problem aims to find the optimal path of 

vaccinations, 𝑢(𝑡)∗ , that maximizes the objective functional subject to the system 

of differential equations governing disease dynamics.  

 

3.2 Solution of the problem 
To determine the optimal level of the vaccination rate and associated state 

variables that would yield optimal value for the objective functional, I apply 

Pontryagin’s Maximum Principle. The necessary conditions on the optimal control 

problem are derived by first setting up the Hamiltonian: 
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H	(S(t), E(t), I(t), N(t), u(t), t)

= A𝑁− 𝑐𝑢2 + 𝜆!(𝑏𝑁− 𝑑𝑆	 − 𝛽𝑆𝐼 − 𝑢𝑆) + 𝜆"[𝛽𝑆𝐼 − (𝜖 + 𝑑)𝐸]
+ 𝜆#[𝜖𝐸 − (𝑑+ 𝛿+ 𝛾)𝐼] + 𝜆$[(𝑏 − 𝑑)𝑁− 𝛿𝐼] 

( 3-8 ) 

where 𝜆#, 𝜆&, 𝜆), 𝜆*	are time dependent costate variables that capture the marginal 

variation in the value function with respect to each state at each instant or period. 

The shadow price can be interpreted as the contribution to the value of the program 

from having marginal increase in the state variable at a particular date, t.  Costate 

variables satisfy the conditions below 

 

𝜆#̇ =	−
¶𝐻
¶𝑆 =

(𝑑 + 𝑢∗ + 𝛽𝐼)𝜆# − 𝛽𝐼𝜆& 

( 3-9 ) 

𝜆&̇ =	−
¶𝐻
¶𝐸 = (𝜖 + 𝑑)𝜆& − 𝜖𝜆) 

( 3-10 ) 

𝜆)̇ =	−
¶𝐻
¶𝐼 = 𝛽𝑆𝜆# − 𝛽𝑆𝜆& + (𝑑 + 𝛿 + 𝛾)𝜆) + 𝛿𝜆* 

( 3-11 ) 

𝜆*̇ =	−
¶𝐻
¶𝑁 = −1 − 𝑏𝜆# − (𝑏 − 𝑑)𝜆* 

( 3-12 ) 

 

In addition, we define transversality conditions as 𝜆#(𝑇) = 0  , 𝜆&(𝑇) =

0, 𝜆)(𝑇) = 0, 𝜆*(𝑇) = 0 . These transversality conditions arise because we are 

allowing the terminal states to be freely chosen. In other words,  𝑆(𝑇), 𝐸(𝑇), 𝐼(𝑇),

𝑁(𝑇) are not required to have fixed values at the terminal time. As t moves towards 

the terminal time T, the shadow value for each state variable must go to zero. Thus, 

the terminal value of costate variables 𝜆# , 𝜆&, 𝜆), 𝜆*  are zero at time T. These 

conditions can be interpreted as saying that none of the state variables have any 

inherent forward-looking marginal value or cost at the end of the planning horizon.   
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The optimal control 𝑢(𝑡)∗is obtained by invoking the optimality condition, 

which is achieved by differentiating the Hamiltonian with respect to the control 

variable: 

𝑙𝑒𝑡	
¶𝐻
¶𝑢 = 0 

( 3-13 ) 

𝑢(𝑡)∗ = −
𝜆#(𝑡)𝑆(𝑡)

2𝑐  

( 3-14 ) 

Taking the bounds into account, we have 

𝑢(𝑡)∗ = min	[0.9,max g0, −
𝜆#(𝑡)𝑆(𝑡)

2𝑐 h] 

( 3-15 ) 

In an interior solution, we observe the marginal cost of vaccination as  

−𝜆#(𝑡) = 	
2𝑐𝑢(𝑡)∗

𝑆(𝑡)  

( 3-16 ) 

This equation indicates that the optimal level of vaccination depends on the 

number of Susceptible individuals, 𝑆(𝑡), as well as the marginal value 𝜆#(𝑡)	at time 

t of any additions to S(t). The marginal cost of vaccination for an individual is &+,(.)
∗

0(.)
 .  

𝜆#(𝑡) is negative, indicating that a marginal increase in the Susceptible population 

at time t will reduce the forward-looking value of net benefits by 𝜆#(𝑡) at time t.  

Therefore, -𝜆#	is the marginal cost of increasing the susceptible population. When 

we have an interior solution, the marginal cost of vaccination −𝜆#(𝑡) is thus equal 

to the marginal cost of increasing the number of susceptible individuals (&+,(.)
∗

0(.)
). A 

higher marginal cost of increasing the number of susceptible individuals leads to a 

higher optimal vaccination rate 𝑢∗(𝑡). This makes sense:  the higher the damage 

caused by additional individuals being susceptible to the disease, the more effort 

should be put into prevention through vaccination.  
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To summarize, the differential equation system that characterizes the 

optimal paths of the variables of interest, along with constraints on the control and 

boundary conditions, is shown below: 

�̇� = 𝑏𝑁 − 𝑑𝑆	 −
𝛽𝑆𝐼
𝑁 − 𝑢𝑆 

 ( 3-17 ) 

�̇� =
𝛽𝑆𝐼
𝑁 − (𝜖 + 𝑑)𝐸 

( 3-18 ) 

𝐼̇ = 𝜖𝐸 − (𝑑 + 𝛿 + 𝛾)𝐼 

( 3-19 ) 

�̇� = (𝑏 − 𝑑)𝑁 − 𝛿𝐼 

( 3-20 ) 

𝑆(0) = 𝑆!, 𝐸(0) = 𝐸!, 𝐼(0) = 𝐼!, 𝑁(0) = 𝑁! 

( 3-21 ) 

𝜆#̇ =	−
¶𝐻
¶𝑆 = i𝑑 + 𝑢∗ +

𝛽𝐼
𝑁j 𝜆# −

𝛽𝐼
𝑁 𝜆& 

( 3-22 ) 

𝜆&̇ =	−
¶𝐻
¶𝐸 = (𝜖 + 𝑑)𝜆& − 𝜖𝜆) 

( 3-23 ) 

𝜆)̇ =	−
¶𝐻
¶𝐼 =

𝛽𝑆
𝑁 𝜆# −

𝛽𝑆
𝑁 𝜆& + (𝑑 + 𝛿 + 𝛾)𝜆) + 𝛿𝜆* 

( 3-24 ) 

𝜆*̇ =	−
¶𝐻
¶𝑁 = −1 − i

𝛽𝑆𝐼
𝑁& + 𝑏j 𝜆# +

𝛽𝑆𝐼
𝑁& 𝜆& − (𝑏 − 𝑑)𝜆* 

( 3-25 ) 

𝜆#(𝑇) = 0 , 𝜆&(𝑇) = 0, 𝜆)(𝑇) = 0, 𝜆*(𝑇) = 0 

( 3-26 ) 
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𝑢(𝑡)∗ = min	[0.9,max g0, −
𝜆#(𝑡)𝑆(𝑡)

2𝑐 h] 

( 3-27 ) 

In the appendix, we also discuss the optimal control problem that considers 

the impact of including discounting, i.e. 

𝐽(𝑢) = S [𝐴 ∗ 𝑁(𝑡) − 𝑐 ∗ 𝑢(𝑡)&]𝑒"1.𝑑𝑡
'

!
	 

( 3-28 ) 

 

Alternatively, instead of assuming free terminal conditions, which is suggested 

by Lenhart’s paper, we can define a terminal condition such as  𝐼(𝑇) = 0. In this 

case, all states are free at the terminal time, except for the Infected state, which is 

fixed at both starting and terminal times. Doing so enables us to explore the optimal 

control solution when no more infected individuals are left by the end of time T.  

Therefore, we can modify the terminal conditions for adjoint variables  𝜆#(𝑇) = 0 , 

𝜆&(𝑇) = 0, 𝜆*(𝑇) = 0, but 𝜆)(𝑇) is unknown and will be solved numerically in the 

next section. 
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4 Simulation of optimal solutions 
To find the numerical solution of optimal vaccination ratio, we use the fourth 

order Runge-Kutta method in MATLAB. First, all state variables are solved 

simultaneously forward in time, then all adjoint variables are simultaneously solved 

backward in time. Each control is updated according to its individual 

characterization.  This process is called forward-backward sweeping and is 

repeated until convergence occurs.  

 

Table 4.1 summarizes the initial values of all parameters, defined as Scenario 

1, as well as other scenarios with different parameter values. The source of 

parameter values is from Lenhart [5]. The choice of parameters was suggested by 

a micro-parasitic infectious disease, which includes any viruses, bacteria, or fungi. 

Such diseases can be characterized by their small size, ability to reproduce directly 

within an individual host, and relatively short duration of infection, see Neilan and 

Lenhart [6]. Note that vaccination rate is capped at 90% rather than 100% due to 

vaccine hesitancy. We assume a small proportion of the total population is not able 

to receive vaccines due to medical reasons. For example, vaccines can be harmful 

to receivers if they have already been receiving other medical treatments. Another 

reason is that children under a certain age are not allowed to receive vaccines.  

 

Using initial values as the baseline scenario, we explore other scenarios by 

varying parameter values one at a time. The goal is to understand how the optimal 

path of vaccination varies when parameters change. These parameter values were 

not chosen to represent a particular disease, but just to illustrate the control 

techniques, see discussions by Neilan and Lenhart [6] 
 

Paramet
er 

Scen.1 
Baseline 

Scen.2 
Low 
Contact 
rate 

Scen.3 
High 
Recovery 
rate 

Scen.4  
No 
Recovery 
rate 

Scen.5 
High 
Mortality 
rate 

Scen.6 
Short 
Latency 

Scen.7 
High 
Benefit 

Scen.
8 
Low 
cost 

Description 

b 0.525        
Natural birth 
rate 
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Paramet
er 

Scen.1 
Baseline 

Scen.2 
Low 
Contact 
rate 

Scen.3 
High 
Recovery 
rate 

Scen.4  
No 
Recovery 
rate 

Scen.5 
High 
Mortality 
rate 

Scen.6 
Short 
Latency 

Scen.7 
High 
Benefit 

Scen.
8 
Low 
cost 

Description 

d 0.5        
Natural 
death rate 

𝜷 0.001 0.0001       
Contact rate 

𝝐 0.5     0.1   
Latency 

𝜹 0.2    0.4    
Disease 
induced 
death rate 

𝜸 0.1  0.4 0     
Recovery 
rate 

A 1        
Weight 
parameter 

𝑺𝟎 1000        

Initial 
population 
size of group 
S 

𝑬𝟎 100        

Initial 
population 
size of group 
E 

𝑰𝟎 50        

Initial 
population 
size of group 
I 

𝑹𝟎 15        

Initial 
population 
size of group 
R 

A 0.1      2  

Weight 
parameter 
for Total 
Population 
N 

c 1       0.5 

Weight 
parameter 
for 
vaccination 
“u” 

Note that 𝑢(𝑡) ∈ [0, 0.9] condition is applied across all scenarios to eliminate the case where the entire 

susceptible population is vaccinated 

Table 4.1 Parameters used in each scenario 

 

4.1 Numerical Results for the Optimal Control Problem 
We now present the numerical solution of the formulated optimal control 

problems posed above. Figures display the optimal trajectory of the state variables, 

optimal control functions, the basic reproduction numbers, and co-state variables 

(shadow prices).  

 

Outcomes for the Baseline Scenario are shown in Figure 4.1 and Figure 4.2. 

We can see that vaccination rate is at its maximum level for the first three years. 

Figure 4.1 and Figure 4.2 also show that the recovered population increases 
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significantly and the susceptible population decreases during early stage of an 

epidemic when the vaccination is fully implemented at the highest percentage. As 

the vaccination rate drops after the initial period, the exposed population also drops. 

Meanwhile, the susceptible population starts to grow and quickly makes up most 

of the total population. 

 

Figure 4.1 Simulation results for Scenario 1, the 
baseline scenario 

 

Figure 4.2 Optimal vaccination rate for Scenario 
1 

 

Figure 4.3 and Figure 4.4 shows the outcome of the Low Contact Rate 

Scenario (Scenario 2) where the incidence level is low (𝛽  = 0.0001). Compared to 

outcomes in the Baseline Scenario (Figure 4.2) where a normal incidence level is 

assumed, the vaccination strategy in the Low Contact Rate Scenario (Figure 4.4) 

is significantly less aggressive when the disease incidence level is low.  As 

vaccination starts, the infected population drops significantly. By year 5, the 

vaccination rate remains at a low level as the spread of disease is under control. 

The recovered population grows rapidly during the first two years and then 

gradually decreases as vaccination ends. The susceptible population drops 

significantly for the first two years due to the vaccination implementation, and then 

starts to grow closer towards the total population, eventually making up the entire 

population towards the end of the horizon. 
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Figure 4.3 Simulation results for Scenario 2 with 
low disease incidence level 

 

Figure 4.4 Optimal vaccination rate for Scenario 2 

 

In the High Recovery Rate Scenario (Scenario 3), we investigate a scenario 

with a higher recovery rate, but with all other parameters unchanged from the 

Baseline Scenario. We can see from Figures 4.5 and 4.6 that, with a higher 

recovery rate (𝛾  = 0.4 vs  𝛾  = 0.1), we can shorten the period for maximum 

vaccination level from three years to less than two years. The Recovered 

population initially increases when vaccination is fully implemented and then 

decreases quickly as vaccination percentage drops after one year. We can 

observe similar patterns but opposite directions for the Susceptible: the population 

for susceptible group drops quickly during the initial year of epidemic, as most 

people are vaccinated and removed from the Susceptible category. However, the 

Susceptible size rebounds quickly as the vaccination rate drops. Infection rates 

are so low that the Susceptible population does not become exposed to infection. 
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Figure 4.5 Simulation results for Scenario 3 with high 
recovery rate 

 

Figure 4.6 Optimal vaccination rate for Scenario 
3 

 

In the No Recovery Rate Scenario (Scenario 4), we assume there’s zero 

recovery rate, which is the opposite extreme of the High Recovery Rate Scenario. 

In this case, the optimal level of vaccination is at the maximum rate for almost four 

years. In addition, after the initial four years of maximum vaccination, the 

vaccination rate drops much more slowly in this scenario than in the High Recovery 

Rate Scenario. As shown in Figure 4.8, the intensity of vaccination program is the 

strongest (i.e., longer implementation period at maximum level and slower 

declining rate) for the No Recovery Scenario where recovery rate is assumed to 

be zero, compared with all other scenarios. This makes sense as nobody recovers 

and the decline in infected group is due only to death.   

 

Figure 4.7 Simulation results for Scenario 4 with zero 
recovery rate 

 

Figure 4.8 Optimal vaccination rate for Scenario 
4 
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The contrasts among Scenarios 1 (Baseline), Scenario 3 (High Recovery 

Rate Scenario) and Scenario 4 (No Recovery Rate Scenario) demonstrate that, if 

it is possible to increase the recovery rate, the implications are dramatic.  If the 

recovery rate for the infectious disease is low, ceteris paribus, the optimal 

vaccination strategy becomes more aggressive with a prolonged implementation 

period at the maximum level and slowly declining vaccination rates afterwards. If 

the recovery rate for the infectious disease is high, then a less intense vaccination 

plan can be implemented. Thus, to understand the relative importance of the 

recovery rate to the vaccination strategy, additional sensitivity analysis is carried 

out.  

 

As shown in Figure 4.9 below, assuming other disease transmission 

parameters are held constant over time, a lower recovery rate requires a longer 

period of maximum level of vaccination, and vice versa. Also, as shown in Figure 

4.10, overall net benefits increase with higher recovery rates. The overall net 

benefit is calculated as the integral ∫ 𝐴𝑁(𝑡) − 𝑐𝑢(𝑡)&	𝑑𝑡'
! . From Figure 4.10 we can 

observe a non-linear relationship between overall net benefit and the recovery rate: 

when recovery rates are within a low range, i.e. less than 0.5, the increase of 

overall net benefits is more obvious with every unit increase of recovery rate. Thus, 

the level of the recovery rate parameter can have a direct impact on the intensity 

of the optimal vaccination plan. A high recovery rate can effectively reduce the 

optimal intensity of vaccination program, limiting the cost of vaccine 

implementation. Observations from the recovery rate assumption suggests that 

social planners can take the recovery rate of infectious disease into account when 

determining the optimal vaccination strategy.  
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Figure 4.9 Vaccination Strategy with different level 
of recovery rates 

 

 

Figure 4.10 Cumulative Net Benefits with different 
recovery rates 

 

In the High Mortality Rate Scenario (Scenario 5), we show simulation results 

with a high mortality rate caused by the disease. In this case, we investigate a 

scenario with higher disease-induced death rate but keep all other parameters 

unchanged from the baseline. As shown in Figure 4.12, the optimal path of 

vaccinations, however, is highly comparable to the one in the Baseline Scenario 

(shown in Figure 4.2). 

 

Figure 4.11 Simulation results for Scenario 5 with 
high disease mortality rate 

 

Figure 4.12 Optimal vaccination rate for Scenario 
5 

 

Figure 4.13 shows the optimal paths for all scenarios.  We see that, by 

comparing the High Mortality Rate Scenario (Scenario 5, green line) with the 

Baseline Scenario (Scenario 1, blue line), the early vaccination plan remains at 
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maximum for the initial three years for both high and low mortality rates. However, 

the vaccination rate declines faster for the High Mortality Rate Scenario (Scenario 

5, green line) than for the Baseline Scenario (Scenario 1, blue line) as more 

individuals are removed from the population due to the high mortality rate.  

 
Figure 4.13 Simulation results of vaccination rates for all scenarios 

Similarly, we can observe from Figure 4.15, Figure 4.16 and Figure 4.17 

that Exposed, Infected, and Recovered populations decline faster in the High 

Mortality Rate Scenario (Scenario 5, green line) than in the Baseline Scenario 

(Scenario 1, blue line) due to the high mortality rate.  Figure 4.14 shows that 

Susceptible populations for both scenarios drop at the same speed, as the 

vaccination level remains at maximum level. However, the Susceptible population 

rebounds at a faster pace for the High Mortality Rate Scenario (Scenario 5, green 

line) than in the Baseline Scenario (Scenario 1, blue line), which corresponds to 

the change in vaccination plans shown in Figure 4.13: when the mortality rate is 

high, fewer people need to be vaccinated and removed from the Susceptible group 

after the initial period of the pandemic.  
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Figure 4.14 Simulation results of Susceptible 

population for all scenarios 

 
Figure 4.15 Simulation results of Exposed 

population for all scenarios 

 
Figure 4.16 Simulation results of Infected population 

for all scenarios 

 
Figure 4.17 Simulation results of Recovered 
population for all scenarios 

 

In the Long Incubation Period Scenario (Scenario 6), we assume a lower 

rate (𝜖  = 0.1) at which the exposed individuals become infectious than in the 

baseline scenario (𝜖  = 0.5). The latency period is defined as 1/ 𝜖. Therefore, a 

lower progression rate from exposed to infected group represents a longer 

incubation period.  In this scenario, by changing the progression rate from 0.5 to 

0.1, we assume the disease has an incubation period five times as long as in the 

baseline. In other words, the exposed group takes five times longer to develop 

symptoms in the Long Incubation Period Scenario than in the baseline scenario. 

The contrast between simulation results shown in Figure 4.19 (Long Incubation 

Period Scenario) and Figure 4.4 (Baseline Scenario) indicates that initial round of 
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maximum level of vaccination is not as extensive when the incubation period is 

long. If the incubation period is long, ceteris paribus, the vaccination strategy can 

become less aggressive. Figure 4.18 shows that when the vaccination rate drops, 

the exposed population also drops, but the Susceptible group starts to grow and 

quickly makes up most of the total population. 

 
Figure 4.18 Simulation results for Scenario 6 with long 

incubation period 

 
Figure 4.19 Optimal vaccination rate for Scenario 

6 

 

In addition to testing the sensitivity of key transmission parameters, we also 

explore sensitivity of weight parameters. Compared to baseline, when the 

parameter value for total population becomes 1 (High Benefit Scenario, Scenario 

7), the maximum vaccination rate will be extended until year 9, the longest period 

of time among all scenarios, as shown in Figure 4.21. When the value of 

maintaining the population increases, the vaccination level should be at its 

maximum for an extended period. This makes sense, as maintaining the 

population can be interpreted as maintaining high level of the nation’s wellbeing. 

Thus, to reach high level of total population, an intense vaccination effort is 

required for an extended period, limiting the infection and death rates.  
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Figure 4.20 Simulation results for Scenario 7 with long 

incubation period 

 
Figure 4.21 Optimal vaccination rate for Scenario 

7 
 

Next, we explore sensitivity of weight parameter on vaccination cost. 

Compared to the Baseline Scenario, when the cost parameter value for vaccination 

drops from 1 to 0.5 in the Low Vaccination Cost Scenario (Scenario 8), the 

maximum vaccination rate will be extended until year 8, as shown in Figure 4.23, 

which is longer than the three year period of maximum vaccination effort in the 

Baseline scenario, as shown in Figure 4.2. The comparison between high and low 

vaccination costs implicates that if vaccination cost drops, assuming all other 

parameters are the same, the vaccination plan can be carried out for an extended 

period of time.  

 
Figure 4.22 Simulation results for Scenario 8 with long 

incubation period 

 
Figure 4.23 Optimal vaccination rate for Scenario 

8 
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To summarize, there are several important indications from the above 

simulation results. First, from a disease control perspective, an early round of 

vaccination is a key part of disease management. The vaccination schedule needs 

to be carried out at its maximum level for initial period when necessary. Only when 

the disease is less infectious with a low incidence rate, as shown in the Low 

Contact Rate Scenario (Scenario 2), should only a small proportion of population 

be vaccinated. 

 

Second, if the recovery rate of the infectious disease is known to be high, 

then a less aggressive vaccination plan can be considered.  These results are 

indicated in Figure 4.13, where the maximum level of vaccination only needs to be 

carried out for fewer than two years in the High Recovery Rate Scenario (Scenario 

3, yellow line), instead of three years in the Baseline Scenario (blue line). Therefore, 

from disease control and cost control perspective, the intensity of vaccination 

campaign can be reduced when the recovery rate is high. 

 

In contrast, the Zero Recovery Rate Scenario (Scenario 4) requires the 

most aggressive vaccination strategy. When no recovery can occur, significant 

amount of immunization through vaccines is needed to maintain survival. In this 

extreme scenario, the maximum level of vaccination needs to be carried out for the 

longest period (purple line) and declines at slowest speed afterwards among all 

other scenarios, as shown in Figure 4.13.   

 

Third, assume all else equal, if the benefit of maintaining total population is 

high or the cost of implementing vaccination plan is low, then it makes sense to 

have an extended vaccination period, as shown in Figure 4.21 and Figure 4.23. 

Therefore, from disease control and cost control perspectives, a social planner can 

take the weight parameter on total population and vaccination cost into account 

when determining the optimal vaccination strategy.  
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4.2 Numerical Results for Shadow price  
 Constraints in the optimal control problem also have important economic 

interpretations. As shown in Figure 4.24, Figure 4.25, Figure 4.26, and Figure 4.26, 

shadow prices (𝜆#, λ&, λ), λ*) indicate the marginal variation in the value function 

with respect to each state variable at each point in time. Previously defined 

transversality conditions 𝜆#(𝑇) = 0 , 𝜆&(𝑇) = 0, 𝜆)(𝑇) = 0, 𝜆*(𝑇) = 0 in Section 3.1, 

equations ( 3-7 ), are all met. Transversality conditions dictate that as t moves 

towards the terminal time T, shadow values of the state variable must go to zero. 

In other words, the marginal variation of additional increase in the state variable 

becomes zero towards the end of horizon. 

 

Figures show that, in general, during the early stage of the pandemic when 

vaccination plan is carried out at maximum effort, the marginal value of reducing 

population in disease transmission such as Exposed, Infected, and Recovered 

keeps growing and eventually flattens out towards the end of horizon. Among all 

scenarios, the marginal value of reducing Susceptible, Exposed, and Infected 

population grows most rapidly in Scenario 5 (High Mortality Rate Scenario, green 

line) when disease mortality is high. This makes sense, as fewer people are 

exposed or infected, higher marginal benefits in the value function can be achieved. 

This is especially the case when the disease mortality rate is the highest. In 

contrast, the marginal value of increasing total population becomes smaller at each 

point in time as more people are removed from the disease transmission system, 

such as the Exposed, Infected, and Recovered groups. Note that the shadow price 

for the Recovered population is not presented, as R(t) does not appear in the other 

differential equations of �̇�(𝑡), �̇�(𝑡), 𝐼(̇𝑡), �̇�(𝑡).  
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Figure 4.24 Shadow price for the Susceptible (𝜆")  

 
Figure 4.25 Shadow price for the Exposed (𝜆#) 

 
Figure 4.26 Shadow price for the Infected (𝜆$) 

 
Figure 4.27 Shadow price for total population (𝜆%) 

 

4.3 Numerical Results for Basic Reproduction Number: 
 

In this section, we evaluate the impact of optimal control strategies on the 

total infection number under various baseline reproduction numbers. Recall that 

the baseline reproduction number is an indicator of virulence—the higher the ℛ!, 

the more secondary infections can result from a single primary infection. We 

calculate different basic reproduction numbers (Equation 2.8) by varying the key 

disease transmission parameters one at a time. Meanwhile, the optimal control 

solution is recalibrated numerically with different disease transmission parameter 

values. Additionally, the SEIR transmission dynamics derived in section 2.1, are 

also solved without optimal control (u = 0) via the “ode45” function in MATLAB, 
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using Equation ( 2-9 ). Then we explicitly focus on the total infected population 

numbers with and without optimal control, and these are presented with the 

corresponding basic reproduction numbers. Figures below are graphical 

representations of ℛ! against total infected population with (red dots) and without 

optimal control (blue dots). Furthermore, the 3D plots below highlight the sensitivity 

of ℛ! with respect to each of the transmission parameters. 

 

As presented in the figures below, among all key disease transmission 

parameters, namely contact rate 𝛽 , progression rate 𝜖 , mortality rate 𝛿 , and 

recovery rate	𝛾, ℛ! is most sensitive to changes in the contact rate 𝛽. Therefore,  

ℛ! changes significantly with changes in contact rate 𝛽, as shown in Figure 4.28.  

Values for ℛ!	only vary within a limited range (mostly below 1) with changes in 

progression rate 𝜖, mortality rate 𝛿, and recovery rate	𝛾. 

 

Figure 4.28 shows that the infected population size increases as ℛ! 

increases. Figure 4.29 shows that the increase of ℛ! is driven by the increasing 

contact rates. However, Figure 4.28 also shows that the infected population size 

increases much slower when optimal control is applied (red dots) and when ℛ! < 

4. In the absence of any vaccination (blue dots), the infected population increases 

significantly when ℛ! is below 4 but slows down when ℛ! becomes even larger. 

Intuitively, if the secondary infection is out of control, then implementing 

vaccination alone is not enough to prevent the outburst of case numbers. Thus, 

this result suggests that vaccination strategy needs to be carried out in a timely 

manner during the early stage of a pandemic when the spread of disease is still 

under control. In case of a pandemic, the reasonable range for the basic 

reproduction number should be 1.5-6.49. If a vaccination plan is implemented 

when ℛ! < 4, then the case number is likely to grow at a slower pace than with no 

vaccination. However, if ℛ!  > 4, suggesting much severe spread of infectious 

disease, then the social planner needs to consider stronger preventive measures 

than vaccination alone. In this case, when ℛ! > 4, the growth of case numbers 
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flattens even without any vaccination, which is possible due to the decreasing 

population from high mortality. 

 

As shown in Figure 4.30, Figure 4.32, and Figure 4.34, when ℛ! is low (ℛ! < 

0.5), implementing a vaccination program is not as meaningful as when ℛ! 

becomes higher (ℛ! > 0.5) because the infected population with control grows at 

slower pace only when ℛ! is high enough. This suggests that a social planner 

needs to consider existing secondary infection status prior to implementing a 

vaccination strategy. For example, if ℛ! is within a very low range (i.e. ℛ! < 0.5), 

then no vaccination action needs to be taken. But when ℛ! reaches a certain range 

(i.e. 0.4 < ℛ! < 4), the effect of vaccination plan can effectively slow down the 

growth of infected population and therefore limit the infection population size. 

However, if secondary infection is out of control, i.e. ℛ! > 4 in this case, then a 

vaccination strategy alone is not effective enough to curtail the growth of case 

numbers and therefore other control measures should be considered.  

 

 
Figure 4.28 Basic Reproduction Number by 

Contact Rate 

 

 
Figure 4.29 3D plot of Basic Reproduction Number by 

Contact Rate and total Infected Population 
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Figure 4.30 Basic Reproduction Number by 

Progression Rate 

 
Figure 4.31 3D plot of Basic Reproduction Number by 

Recovery Rate and total Infected Population 

 
Figure 4.32 Basic Reproduction Number by 

Recovery Rate 

 
Figure 4.33 3D plot of Basic Reproduction Number by 

Progression Rate and total Infected Population 

 
Figure 4.34 Basic Reproduction Number by 

Mortality Rate 

 
Figure 4.35 3D plot of Basic Reproduction Number by 

Mortality Rate and total Infected Population 
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4.4 Numerical Results for Using Terminal Condition 

As discussed in section 3.1, equation ( 3-7 ), instead of assuming free 

terminal conditions, we can use a terminal condition such as  𝐼(𝑇) = 0. In this 

case, all states are free at the terminal time except for the Infected state.  The 

Infected state is instead fixed at terminal time:  

 
𝜆#(𝑇) = 0 , 𝜆&(𝑇) = 0, 𝜆*(𝑇) = 0, but 𝜆)(𝑇) = 𝑘 

where k is an unknown constant. The value of 𝑘 directly affects the terminal value 

of 𝐼(𝑇). Note that the normal Forward-Backward Sweep method cannot be used 

to find the appropriate value of 𝑘 that ensures terminal value of 𝐼(𝑇). Therefore, 

we use a secant code, a type of shooting method, to find the appropriate value of 

𝑘  that satisfies the endpoint conditions. 

 
From a social planner’s perspective, the optimal vaccination schedule 

should be arranged based on certain goals that need to be achieved at the terminal 

time. For example, the total infected population should be controlled under a 

certain threshold by the end of a presidential administration. Therefore, we present 

a few terminal conditions for 𝐼(𝑇) and their corresponding optimal controls and 

state values below. Note that 𝐼(𝑇) = 0  was not considered because it is 

reasonable to assume a small size of infected population remains at the endpoint; 

total eradication of an infectious disease may be extremely hard to achieve.  

 

Using the same parameter values in the Baseline Scenario defined at the 

beginning of this chapter, we compare optimal control solution when 𝐼(𝑇)  is 

specified with the optimal control solution to when 𝐼(𝑇) is free. 

 
Parameter Baseline Scenario Description 

b 0.525 Natural birth rate 
d 0.5 Natural death rate 
𝜷 0.001 Contact rate 
𝝐 0.5 Latency 
𝜹 0.2 Disease induced death rate 
𝜸 0.1 Recovery rate 
A 1 Weight parameter 
𝑺𝟎 1000 Initial population size of group S 



 35 

Parameter Baseline Scenario Description 
𝑬𝟎 100 Initial population size of group E 
𝑰𝟎 50 Initial population size of group I 
𝑹𝟎 15 Initial population size of group R 
A 0.1 Weight parameter for Total Population N 
c 1 Weight parameter for vaccination “u” 

Table 4.2 Parameter values in the Baseline Scenario 

Figure 4.36 below shows numerical solutions for vaccination rates based 

on different terminal condition for the infected state at end point. Compare the 

optimal vaccination schedules across different endpoint assumptions. We can see 

that when terminal conditions 𝐼(𝑇) = 𝑋  are imposed, all schedules require 

maximum vaccination initially, then a gradual decrease over a certain period until 

vaccinations increase later in the time horizon. Smaller endpoint values 𝐼(𝑇) = 𝑋 

require a stronger effort in the second surge of vaccinations.  

 

 
Note that S(T), E(T), and N(T) are free in the above scenarios. The only difference across scenarios is the 

terminal condition for I(T) 
 

Figure 4.36 Vaccination Rate with different terminal conditions for I(T) 
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As shown in Figure 4.36,  𝐼(𝑇) = 0.1 requires the strongest second-round 

vaccination effort which is at maximum level for few years prior to the end of the 

terminal time for those who did not receive vaccination during the first few years. 

For 𝐼(𝑇) = 0.5 and 𝐼(𝑇) = 1, the second-round vaccination effort is still necessary 

but only proportional to the susceptible population who has not been vaccinated 

yet.  For free 𝐼(𝑇) condition, second round of vaccination is not needed, which is 

equivalent to the optimal control problem in equation ( 3-7 ).  

 

The terminal condition of 𝐼(𝑇) indicates that, if the social planner wants to 

ensure only limited infected population can be left out by the end of an 

administration period, then a second round of vaccination should be considered. 

Driving 𝐼(𝑇) lower requires stronger effort devoted to vaccination later in the time 

horizon. Note that the second-round vaccination means that people who did not 

get vaccinated early will receive vaccinations later.  
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5 Conclusion 
This paper first reviews the classic SIR model and then introduces a 

deterministic SEIR model proposed by Lenhart [5] that considers an incubation 

period for the disease inside its host. Compared to the classic SIR model, an 

“exposed” group is introduced into the transmission dynamics. The consideration 

of an “exposed” group introduces incubation period as one of the key diseases’ 

transmission parameters in the optimal control model. In addition, a vaccination 

policy is also introduced into the SEIR model as proposed by Lenhart. 

 

To understand the role of vaccination policy in controlling the spread of an 

infectious disease through a finite time horizon, we set up the Optimal Control 

problem as proposed by Lenhart. The goal of the optimal control is to find the best 

vaccination strategy that maximizes net benefits over time with a finite time horizon. 

We use Pontryagin’s Maximum Principle to characterize the optimal level of 

vaccination. The optimality system is solved using Runge-Kutta of order four 

scheme (RK4) with the forward-backward sweep algorithm in MATLAB.  

 

Using initial parameter values suggested by Lenhart as the baseline scenario, 

we explore other scenarios by varying parameter values one at a time. The goal 

of the simulation is to understand how optimal trajectories of vaccination vary 

under different assumptions. There are several important observations from the 

above simulation results. 

  

First, from a disease control perspective, an early round of vaccination is a key 

part of disease management. The vaccination schedule needs to be carried out at 

maximum level at the beginning of the pandemic if necessary.  As emphasized by 

sensitivity analysis results for reproduction number, implementing a vaccination 

plan can effectively slow down the growth of infected population and therefore limit 

the infection population size in a timely way. 
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Second, a high recovery rate can effectively reduce the optimal intensity of a 

vaccination program, limiting the overall cost of vaccine implementation. From a 

social planner’s perspective, if the recovery rate of the disease is already high, 

then a high-intensity vaccination plan may not be needed, as shown in the 

simulation results in section 4.1. However, if the disease has no available medical 

cure and recovery rate is low, then the social planner should consider more intense 

level of vaccination implementation.  

 

Third, compared to the classic SIR model, the inclusion of an Exposed group 

in SEIR model allows for an incubation period for the disease inside its host, where 

an infected person remains latent without clinical symptoms or signs of infection 

before becoming infectious. As shown in the simulation results, the length of 

incubation period has a direct impact on optimal vaccination plans: a longer 

incubation period leads to less stringent vaccination level, and vice versa. 

Therefore, it is more meaningful and realistic to include an Exposed group when 

analyzing infectious diseases. From a social planner’s perspective, the vaccination 

plan can be relaxed or tightened, depending on the time that passes between 

being exposed to a virus and having symptoms. 

 

Fourth, in addition to assuming free terminal conditions, we also explore 

optimal vaccination trajectories by setting the terminal condition of 𝐼(𝑇) to fixed 

conditions. Comparing the optimal vaccination schedules across different endpoint 

assumptions of 𝐼(𝑇) = 𝑋, we can see that when terminal conditions are imposed, 

all schedules require maximum vaccination initially, then a gradual decrease over 

a certain period until the next round of vaccination is required. A smaller endpoint 

value 𝐼(𝑇) = 𝑋 requires a stronger vaccination effort later in the time horizon. From 

social planner’s perspective, to ensure only limited infected population left by the 

end of an administration period, it is necessary to vaccinate a remaining group of 

individuals who did not receive vaccinations the first time.  
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Finally, this paper can be further enhanced by considering the dynamic 

relationships among the key factors for disease transmission and prevalence. For 

example, as a future enhancement of this paper, we could introduce a second 

control variable such as a recovery rate into the model. Dual control variables of 

both recovery rate and vaccination rate will be more meaningful for social planners 

to maintain the balance between intensity of vaccination level and recovery rate 

dynamically based on existing treatment plan. In addition, we can also consider a 

time optimal control model that drives the disease transmission and prevalence 

from any given initial states to the desired terminal state in minimum amount of 

time. In this case, the objective function only has a linear term, and the optimal 

solution can be either Bang-Bang or singular or both. Different from what we are 

showing in this paper, the solution to a linear problem will involve discontinuities, 

switching between boundary extreme values of the control set.  
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7 Appendix  
7.1 Optimal Control Problem with Discounting 
 

In section 3.1, we formulated the optimal control problem without considering 

discounting in objection function equation ( 3-1 ).  Now we introduce the 

discounting term 𝑒"1. into the objective function of the optimal control problem. In 

addition, we also assign weight parameters into the objective functions.  

 

Max: J(u) = ∫ [𝐴 ∗ 𝑁(𝑡) − 𝑐 ∗ 𝑢(𝑡)&]𝑒"1.𝑑𝑡'
!  

( 7-1) 

Subject to 

�̇�(𝑡) = 𝑏𝑁(𝑡) − 𝑑𝑆(𝑡) 	−
𝛽𝑆(𝑡)𝐼(𝑡)
𝑁(𝑡) − 𝑢(𝑡)𝑆(𝑡) 

( 7-2) 

𝐸(𝑡)̇ =
𝛽𝑆(𝑡)𝐼(𝑡)
𝑁(𝑡) − (𝜖 + 𝑑)𝐸(𝑡) 

( 7-3) 

𝐼(̇𝑡) = 𝜖𝐸(𝑡) − (𝑑 + 𝛿 + 𝛾)𝐼(𝑡) 
( 7-4) 

�̇�(𝑡) = (𝑏 − 𝑑)𝑁(𝑡) − 𝛿𝐼(𝑡) 
( 7-5) 

 

The current-value Hamiltonian for this problem is 

 
	H-(S(t), E(t), I(t), N(t), u(t), t)

= A𝑁− 𝑐𝑢2 + 𝜇! 3𝑏𝑁− 𝑑𝑆	 −
𝛽𝑆𝐼
𝑁 − 𝑢𝑆4 + 𝜇" 5

𝛽𝑆𝐼
𝑁 − (𝜖 + 𝑑)𝐸6

+ 𝜇#[𝜖𝐸 − (𝑑+ 𝛿+ 𝛾)𝐼] + 𝜇$[(𝑏 − 𝑑)𝑁− 𝛿𝐼] 
( 7-6) 

 

where 𝜇#, 𝜇&, 𝜇), 𝜇*	 are current-value shadow prices 
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𝜇#̇ = 𝜌𝜇# −
¶𝐻2

¶𝑆 = 𝜌𝜇# + i𝑑 + 𝑢∗ +
𝛽𝐼
𝑁j 𝜇# −

𝛽𝐼
𝑁 𝜇& 

( 7-7) 

𝜇&̇ = 	𝜌𝜇& −
¶𝐻2

¶𝐸 = 𝜌𝜇& + (𝜖 + 𝑑)𝜇& − 𝜖𝜇) 

( 7-8) 

𝜇)̇ = 	𝜌𝜇) −
¶𝐻2

¶𝐼 = 𝜌𝜇) +	
𝛽𝑆
𝑁 𝜇# −

𝛽𝑆
𝑁 𝜇& + (𝑑 + 𝛿 + 𝛾)𝜇) + 𝛿𝜇* 

( 7-9) 

𝜇*̇ = 	𝜌𝜇* −
¶𝐻2

¶𝑁 = 𝜌𝜇* − 𝐴 − i
𝛽𝑆𝐼
𝑁& + 𝑏j𝜇# +

𝛽𝑆𝐼
𝑁& 𝜇& − (𝑏 − 𝑑)𝜇* 

( 7-10) 

The optimal control 𝑢(𝑡)∗is obtained by invoking the optimality condition, 

which is achieved by differentiating the Hamiltonian with respect to the control 

variable: 

𝐿𝑒𝑡	
¶𝐻2

¶𝑢 = 0, 

−𝑆 ∗ 𝜇# − 2𝑐 ∗ 𝑢(𝑡) = 0 

 

𝑢(𝑡)∗ = −
𝜇#(𝑡)𝑆(𝑡)

2𝑐  

 

 
Parameter Scenario 

7  

Baseline 

Scenario7 

Low Discount 

rate (new 

base) 

Scenario8 

High 

Discount 

rate 

Scenario9 

High 

Benefit 

Scenario10 

High cost 

Description 

b 0.525     Natural birth rate 

d 0.5     Natural death rate 

𝛽 0.001     Disease transmission rate 

𝜖 0.5     Latency 

𝛿 0.2     Disease induced death rate 

𝛾 0.1     Recovery rate 

A 1   2  Weight parameter for Total 

Population N 
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Parameter Scenario 

7  

Baseline 

Scenario7 

Low Discount 

rate (new 

base) 

Scenario8 

High 

Discount 

rate 

Scenario9 

High 

Benefit 

Scenario10 

High cost 

Description 

𝑆" 1000     Initial population size of group 

S 

𝐸" 100     Initial population size of group 

E 

𝜌 NA 0.05 0.2   Discount rate 

c 1    0.5 Weight parameter for 

vaccination “u” 

𝐼" 50     Initial population size of group 

I 

𝑅" 15     Initial population size of group 

R 

Table 7.1 Parameter values use in each scenario 

Without discount rates, patterns for SEIRN paths are smooth overtime, as 

shown in the simulation results in section4.1. As shown in the figures below, with 

2% discount rate (scenario 7), the maximum vaccination rate will be extended until 

year 7. With 20% discount rate (scenario 8), the extended period for maximum 

vaccination rate drops to 4 years. Patterns for SEIR paths are also smoother in 

when discount rate is 20%. When parameter value for total population becomes 2 

(scenario 9), the maximum vaccination rate will be extended until year 8. When 

parameter value for vaccination becomes 0.5 (scenario 10), the maximum 

vaccination rate will be extended until year 10, the longest period of time among 

all other scenarios. The implication is that, if vaccination cost drops, a more 

powerful vaccination plan can be carried out for an extended period of time. 
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Figure 7.1 Simulation results for Scenario 1, the 
baseline scenario 

 

 
Figure 7.2 Optimal vaccination rate for Scenario 1 

 

 
Figure 7.3 Simulation results for Scenario 7, with 2% 
discount rate 

 
Figure 7.4 Optimal vaccination rate for Scenario 7 

 
Figure 7.5 Simulation results for Scenario 8, with high 
discount rate 

 

 
Figure 7.6 Optimal vaccination rate for Scenario 8 
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Figure 7.7 Simulation results for Scenario 9 with A = 
2 

 
Figure 7.8 Optimal vaccination rate for Scenario 9 

 
Figure 7.9 Simulation results for Scenario 10 with c = 
0.5 

 
Figure 7.10 Optimal vaccination rate for Scenario 
10 

 


