

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

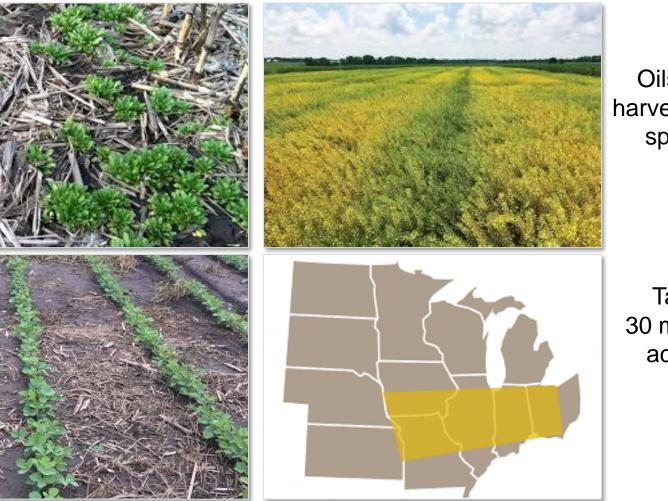
Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Regulating Ag Innovation without Killing it

Nicholas Kalaitzandonakes University of Missouri

Economics and Management of Agrobiotechnology Center http://www.emac.missouri.edu

EMAC



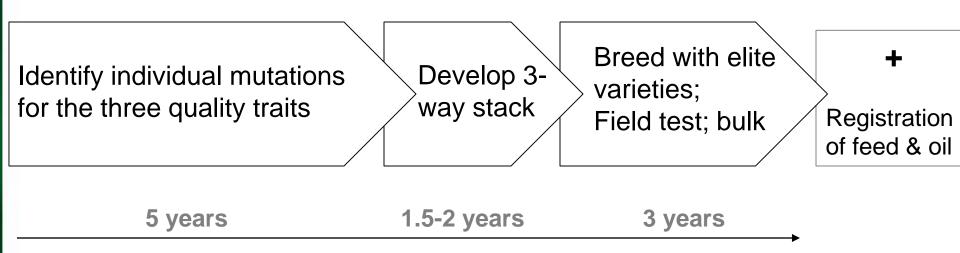
Pennycress --as harvestable cover crop

Winter cover crop

No-till soybeans planted after harvest

Oilseed harvested in spring

Target 30 million acres


Pennycress domestication & "canola moment"

- Lower seed fiberLower glucosinolatesLower erucid acid
- Increase yieldEarlier maturityReduced shattering

Potential development path

Potential development path

Genetic Engineering?

Develop trait construct, transformation initial efficacy screening and proof of concept

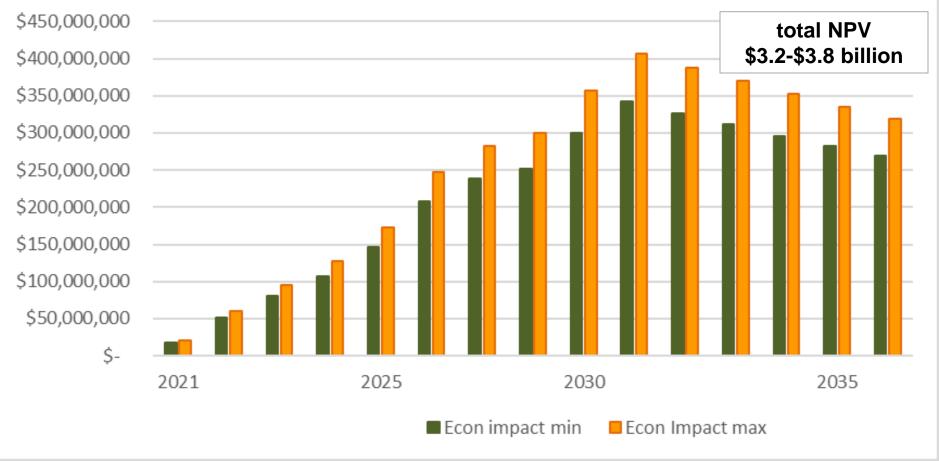
Initial field trials, molecular characterization of events, begin event selection

Trait integration into elite breeding lines, broad field testing along with regulatory compliance and safety testing, regulatory science Regulatory Registration Pre-commercial and commercial testing, bulk up

±10 years

+ registration of feed and oil

The economics of editing:



DISCOVERY Gene/Trait Identification	PHASE I Proof Of Concept	PHASE II Early Development	PHASE III Advanced Development	PHASE IV Pre-launch
2013-14: First wild accessions	ldentify desired traits, design editing cassete	Perform edits, early field trials	Extensive field trials	2020: Preparing for product launch
Sample plants gathered from the wild. Collaboration with universities & USDA breeding programs	Three traits: Seed coat Low glucosinolates Low erucic acid	Mulitplex editing allowed modification of all traits at one time. Development of transformation	AIR Breeding edited varieties with elite varieties	Field work continues. Seed bulk up Meal ுsting
6-7 years de	evelopment &	less than \$7	million in sp	and ending

Funding Rounds:	2015: \$2.5 M Series A	2017: \$2.4 M Venture Capital	2018: \$2.0 M Venture Capital	Total: \$6.9 M
Arabidopsis, canola, etc.	for agronomics	Parallel preeding for agronomics	Parallel breeding for agronomics	

Potential economic impact of innovation

EMAC

Author calculations

The impact of regulation

Emerging Regulatory Environment for Genome Editing

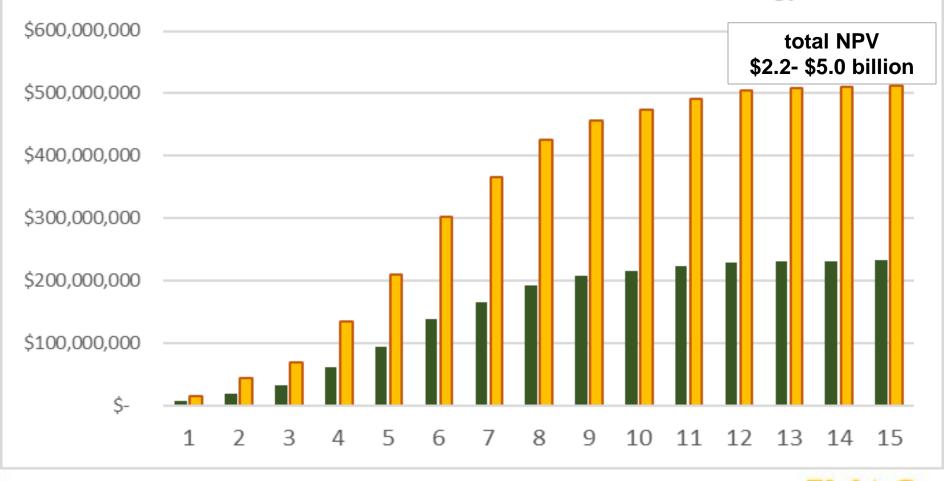
	Type of Edit			
possible via conventional breeding?	yes	yes	yes	no
nucleic acid template?	no	short	long	yes
"Foreign" DNA	no	no	no	yes
			SDN-3	SDN-3
Selected Countries	SDN-1	SDN-2	cisgenic	transgenic
Argentina	Not GE	Not GE	Likely not GE	GE
Brazil	Not GE	Likely not GE	Likely not GE	GE
US	(Not GE)	Depends	Depends	Depends
Australia	Not GE	GE	GE	GE
Japan (Environment)	Not GE	Not GE	Not GE	GE
Japan (Health)	Not GE	Not GE	GE	GE
EU	(GE)	GE	GE	GE

The costs of regulation

Bureaucratic cost
Compliance cost
Opportunity costs

The case for efficient regulation

Emerging regulatory environment & impact


Emerging Regulatory Environment for Genome Editing

	Type of Edit			
possible via conventional breeding?	yes	yes	yes	no
nucleic acid template?	no	short	long	yes
"Foreign" DNA	no	no	no	yes
			SDN-3	SDN-3
Selected Countries	SDN-1	SDN-2	cisgenic	transgenic
Argentina	Not GE	Not GE	Likely not GE	GE
Brazil	Not GE	Likely not GE	Likely not GE	GE
US	Not GE	Depends	Depends	Depends
Australia	Not GE	GE	GE	GE
Japan (Environment)	Not GE	Not GE	Not GE	GE
Japan (Health)	Not GE	Not GE	GE	GE
EU	GE	GE	GE	GE
				Carlos and the second second second

Impact of regulation on other genome editing innovation

Potential Economic Benefit of ASR Resistance Technology in Corn

Author calculations

Concluding comments

- Agricultural innovation creates significant economic benefits for society
- Excessive, uncertain, complex regulations can undercut innovation and limit the potential benefits
- Foregone economic benefits are often the largest part of regulatory costs
- To maximize the benefits of agricultural innovation, regulations must be risk-proportional & efficient

