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Abstract

For simulation to be truly useful for investigating many problems in agricultural economics, non-

simplifying optimization techniques need to be employed.  General methods for simulation

optimization that do not inhibit system characterization or analysis are available, and they would

appear to provide much of the mathematical and optimizing rigor demanded by economists.  This

paper describes the theory and algorithm of a robust and efficient simulation optimization approach,

the Complex Method.  An example of implementing the algorithm is illustrated using a pest

management problem.
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Optimizing Complex Bioeconomic Simulations

Using an Efficient Search Heuristic

Richard F. Kazmierczak, Jr.1

INTRODUCTION

Realistic bioeconomic models are generally composed of multiple, highly non-linear

biological and economic relationships.  Although these bioeconomic models owe their realism to

non-linearity, numerical optimization can only be directly accomplished if objective and constraint

functions are analytically expressed (Evtushenko 1985).  In addition, even if the models are

analytically expressed, complexity can lead to difficulties in obtaining or approximating the required

gradient vectors (e.g., Talpaz et al. 1978; Standiford and Howitt 1992).  Linearization has been used

to combat this problem, but the solution point depends on the choice of the initial path from which

approximation is constructed, and thus may have no connection with the location of the true

optimum (Baumol 1982).  Other types of model simplification and solution methods have been

developed, including combining simulation with linear, non-linear, and recursive programming

(Dudley and Burt 1973; Chien and Bradford 1976; Kingma 1978; Richardson and Condra 1981).

However, these alternate approaches require either drastic model simplification or specific model

formulation, implying restrictions on the size of the control and/or state-space of the modeled system

(Sierra and Condon 1987; Jacobson and Schruben 1989).  This problem of simplification has arisen



  The tendency for the computational time associated with numerical algorithms to increase exponentially with the2

number of variables used to define the empirical problem.  This leads to unworkably long computation times for problems
involving more than a few variables (Cipra 1991).

  In practice, the ability to derive a solution in the form of an explicit formula (Wolfram 1991).3

2

repeatedly in dynamic bioeconomic investigations, where the curse of dimensionality  continues to2

plague empirical implementation of theoretical models.

In an attempt to avoid unrealistic representation of agricultural systems, researchers have

periodically relied on simulation.  Simulation as a research tool in agricultural economics arose as

the definition of an agricultural research problem was being expanded to include issues surrounding

natural resources, economic development, and national economic policy (Johnson and Rausser

1977).  Although simulation demonstrated its value as a practical substitute for direct physical,

biological, and social experiments, the method did not necessarily lead to closed-form  mathematical3

solutions and thus continued to pose optimization problems (Anderson 1974).  Path, pattern, and

random searches may successfully avoid reliance on estimated analytics, but generally at the cost

of extreme computational expense.  In theory, simulations also can be optimized by parameter

sweeps, a process where one or more model parameters are systematically and exhaustively varied

and their effects on simulation responses noted (Minkoff 1987).  However, the expense associated

with this process often promotes simplification in the form of limited comparisons of potential policy

options (e.g., Reichelderfer and Bender 1979).  The ad hoc, non-optimizing nature of these kinds of

investigations has led to reduced credibility for simulation studies (Boggess 1984; Musser and Tew

1984).

While various studies have demonstrated that simulation optimization can be used to

investigate problems with a specific structure or with limited dimensions, the inability to link a

general optimization process with complex bioeconomic models has contributed to the

underutilization of simulation as a modeling tool in economics compared to its widespread adoption



max P

T

0

1 U(t),X(t), t e	 rt dt

�X(t) 
 f U(t),X(t), t , X(0) 
 X 0 (X 0 fixed in Ün ) ,
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in other disciplines.  For simulation to be truly useful for investigating many problems in agricultural

economics, non-simplifying optimization techniques need to be employed.  General methods for

simulation optimization that do not inhibit system characterization or analysis are available, and they

would appear to provide much of the mathematical and optimizing rigor demanded by economists.

This paper describes the theory and algorithm of a robust and efficient simulation optimization

approach, the Complex Method.  An example of implementing the algorithm is illustrated using a

pest management problem.

THE OPTIMIZATION PROBLEM

Consider the general dynamic optimization problem

subject to the equations of motion

where  is the system response at time  for  decision variables 

represented by the vector .  Let the decision variables be constrained in membership and non-

negativity as 

while pure state constraints include non-negativity and various terminal conditions:
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(2)

Some or all of these state constraints may be represented by system responses from the same model

generating .  

Difficulties are encountered when trying to proceed towards an empirical solution to a

problem of this form.  If, as is often the case when modeling bioeconomic systems over time,

, , , and/or  represent complex response

functions that cannot necessarily be expressed explicitly in terms of  , then the problem

may be numerically intractable given that standard solution techniques rely on the calculation of

gradient vectors.  Specialized methods, such as response surface techniques (Myers 1971), pattern

searches (Hooke and Jeeves 1961), and random searches (Smith 1973), may also be unsuitable

because they either assume that the:  1) search involves a function with a known algebraic form; 2)

number of available computer runs is essentially unlimited; and/or 3) number of controllable inputs

under investigation is relatively small.  In addition, these specialized methods generally assume that

all system responses are observed without error or statistical variation.  However, if 

is stochastically simulated, the objective becomes one of

where  is the unknown theoretical function.  If a typical search algorithm is used, then comparing

the mean responses of the system based on a limited number of observations at each point in the

feasible region may result in the selection of a wrong direction for the search.  The ideal search

heuristic would be one that incorporated theoretical optimization conditions and a flexible

mechanism to account for stochastic behavior.  One such technique, the Complex Method, is
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  Note that the relationship between simplexes of the Complex Method and the simplex method of linear programming4

algorithms is in name only.  Where as the simplex of linear programming is a permanently rigid geometric figure defined by
constraint boundaries, the Complex Method simplex is a movable, flexible geometric figure in hyperspace.

   Indicates that no three points defining the simplex are collinear.5

5

applicable to situations where an analytic mathematical representation of the system is difficult to

obtain, but it is possible to order the responses arising from different levels of the controllable inputs.

THE COMPLEX METHOD

The Complex Method is a general and powerful optimization algorithm that arose from the

idea of applying simplexes  to the optimization of either physical processes or mathematical4

functions (Spendley, Hext, and Himsworth 1962; Nelder and Mead 1965).  As a direct optimization

procedure, the Complex method does not require gradients of the objective function.  Instead, it

operates with information on the relative response rank associated with control levels. 

SIMPLEX MANIPULATION

At the core of the Complex Method is a simplex manipulation algorithm.  A simplex can be

geometrically defined as a convex hull of  points, or vertices, in general position  in , where 5

denotes the number of controllable variables over which optimization is to take place.  Thus, the

procedure derives its name from the geometric figure that is moved through  in search of an

optimum.  The movement of the simplex can be broken down into six basic operations:  initialization,

ordering, reflection, expansion, retraction, and shrinkage (Lee 1986).  In the description that follows,

 indicates a current simplex vertex with the rank of , where  is the best system response and 

is the worst system response out of all the simplex's vertices.  A vertex denoted by  indicates that

the vertex is either unranked or not a member of the current simplex.  Angled brackets, as in

, indicate that the included vertices are members of the same simplex. 
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(3)

To begin, a set of  feasible vertices, each consisting of specific time-paths for each

control variable, must be identified and used to define the initial simplex.  A number of identification

schemes can be used, ranging from those that generate the initial vertices randomly to those that

attempt to distribute the initial vertices uniformly throughout the solution space (Mitchell and Kaplan

1968; Sargent 1973).  Because convergence difficulties tend to arise in bounded problems if the

initial simplex lies close to the edge of the feasible region, non-random selection methods have

proven to be the most useful and tend to provide the largest initial coverage of the feasible region.

This latter objective is desirable because convergence speed tends to be highest when the initial

simplex contains the final optimum.  To accomplish the non-random initiation of the simplex, the first

vertex is defined as the central point of the feasible region, and includes the vector elements

where  is the upper and  is the lower constraint boundary on the control variable .  Other

initial vertices are then identified by dividing the range of all control variables into two equal

sub-ranges and taking the center of each newly created sub-region as a vertex.  This second

operation yields  potential points in hyperspace, of which the  outermost feasible vertices are

included in the initial simplex.  Figure 1, where the dotted lines indicate the unknown response

surface, illustrates the initialization for a simple problem of two control variables.  Point A denotes

the center of the bounded feasible region, while points B and C are two of the  potential vertices

included in the initial simplex.
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Figure 1. Initialization of the simplex given two control variables ( , ) , with the unknown
response surface indicated by the dotted lines.
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(4)

(5)

Once an initial set of vertices are chosen, ordering occurs by whatever method is appropriate

given the structure of the empirical model.  In general, ordering is conducted by evaluating the

system response for each individual vertex and then ranking the responses, and thus the vertices, by

comparison.  The initial evaluation and ordering is usually the most computationally intensive part

of the simplex search algorithm because it requires  vertex evaluations.  With respect to Figure

1, the vertices would be ordered, from best to worst, as {A,B,C}.

After the initial ordering, the algorithm proceeds by moving the simplex away from the worst

vertex  (point C in Figure 1).  To do this, the centroid  (point  in Figure 2) of the current

simplex vertices is calculated after excluding .  Thus, the centroid is the hyperspace center of the

non-worst vertices, and provides a focal point through which a potentially superior vertex can be

found.  Calculating the centroid as

a reflected vertex  is obtained from

where  is a reflection coefficient that determines how far away from the inferior vertex the

reflected  vertex will be located.  If the simulation response of  (point D in Figure 2) is superior

to the next-to-worst vertex  (point B in Figure 2), then  replaces the worst vertex  as a

member of the current simplex, thus moving and changing the shape of the simplex (to ABD in

Figure 2).  Stopping criteria are then tested, and if not satisfied, the vertices are re-ranked and the

process begins again.
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Figure 2. Reflection of an initial simplex given two control variables ( , ), with point m
being the calculated centroid, the dashed arrowed line indicating the path of
reflection, point D being the new, superior vertex of the simplex, and the unknown
response surface indicated by the dotted lines.
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(6)

(7)

(8)

It is possible for the process of reflection to yield a vertex  that is superior to the best

vertex .  If this occurs, then it may be advantageous to continue the search in the direction of the

original reflection.  This is accomplished by calculating an expanded vertex

where  is the expansion coefficient.  For  superior to , the new simplex is defined by

replacing  with .  However, if  is not superior to , then  once again replaces  and a

new  is calculated after reordering.

But what happens if the  (point D in Figure 3) is actually inferior to  (point B in Figure

3), thereby making its replacement of  an act of futility?  When this occurs, a retraction process

is used to move the reflected vertex back along the projection path towards .  The retracted vertex

is given by

where  is the retraction coefficient.  After systematically increasing  until  is superior

to , a new simplex is formed by replacing  with  (point E in Figure 3).  Stopping criteria are

checked, and if not satisfied, a new ranking and reflection initiated.  If  continues to be inferior

to , then a shrinkage process is used to reduce the size of the simplex by moving all but the best

vertex towards the best vertex:

A completely new system evaluation must now be obtained for all but  of the simplex, and

re-ranking determined before proceeding on to a new reflection.  This makes the shrinkage operation
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Figure 3. Reflection and retraction of an initial simplex given two control variables ( , ),
with point m being the calculated centroid, the dashed arrowed line indicating the
path of reflection, point D being the potential new, but inferior vertex of the simplex,
point E being the retracted new vertex of the simplex, and the unknown response
surface indicated by the dotted lines.
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(9)

(10)

computationally expensive, but it generally represents progress due to the narrowing of the search

field. 

Although only alluded to in the above discussion, stopping criteria are a critical part of

simplex manipulation.  One potential and theoretically optimal criterion would stop the search when

the simplex collapses to a single point in hyperspace.  However, the success of this criterion is highly

dependent on the shape of the response surface in the neighborhood of the optimum and the

appropriate scaling of , , and .  Other, near-optimal, criterion have also been explored.

Assuming the existence of a simplex , where response values at each vertex are

denoted by , then Nelder and Mead (1965) proposed to define an optimizer

 as when 

where

In other words, the stopping criteria halts the search when the standard error of the response values

of all simplex vertices are less than the tolerance level , or when the simplex has collapsed to a

pre-defined size.  Note that this stopping criteria can fail if the initial simplex is too small relative to

the tolerance level , but the choice of an arbitrarily small  involves a trade-off with the number

of iterations the optimization process must execute.  Of course, the interior of the remaining simplex

could be exhaustively searched for the true optimum.
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CONSTRAINTS AND STOCHASTICITY

As presented above, the simplex manipulation makes no provisions for preventing a projected

vertex from leaving the feasible region.  This can be accomplished by testing each projected vertex

for adherence to the constraint set.  If the projected vertex falls outside the constraints (as does point

F in Figure 3), thus violating a control variable bound, then it can be set equal to the constraint limit.

If the projected vertex results in a violation of explicit and/or implicit simulated response constraints,

then it can be systematically retracted until it enters back into the feasible region (Box 1965). 

While directly applicable to problems involving deterministic simulation, simplex

manipulation also can be generalized to stochastic systems.  Given that system stochasticity results

in a situation where there is no guarantee that a vertex rejected on the basis of comparing single

simulations is indeed the worst point, the probability of an erroneous rejection increases as the

variance in system responses increases.  This variance problem can only be addressed by

incorporating multiple observations on the simulated response for any given vertex.  One way of

doing this is to calculate batch-mean confidence intervals for each vertex.  Because the confidence

interval lengths will shorten as the number of simulation observations on any given vertex increases,

a vertex can be rejected (with a chosen level of probability) as soon as its confidence interval is

distinct and its mean is worse than the other vertices of the simplex.  If confidence interval

calculations and comparisons are sequentially made after a small numbers of simulations on a set of

vertices, then the total number of simulations for each search step can be minimized.

Stochasticity in the simulation constraint set can also lead to problems because stochastic

variation implies that the constraints may never be satisfied on anything other than a probabilistic

level. Thus, attaining a solution would require that the constraints be stated in terms of the maximum

acceptable risk of violation (Azadivar and Lee 1988).  For example, a stochastic constraint might

be expressed as
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(11)

(12)

(13)

(14)

where  and  is the maximum acceptable risk of violating the constraint.  This

representation can lead to constraints formulated and evaluated in terms of upper or lower

confidence limits:

where  represents the upper confidence limit and  the lower confidence

limit on the equation of motion .

CONVERGENCE

In an early work on the nature of iterative solution procedures, Ortega and Rheinboldt (1970)

examined methods of the form

for finding the critical points of a function , where  is a step-length parameter and 

is a relaxation parameter.  The authors demonstrated that an iterative maximizer must have the

property

where  is bounded from above.  Wolfe extended their analysis to show that the optimizer should

also be able to satisfy
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(15)
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(18)

and

where  denotes the gradient vector of  and  denotes the Euclidean norm of .  This

section will sketch the sufficient conditions associated with equations [14] through [16] and present

a convergence theorem for the Simplex Method.   A preliminary proof of the theorem is relegated

to the appendix.

To begin, consider the fact that the Nelder-Mead algorithm yields at least three distinct

sequences of vertices that can be examined. These include the best approximate solutions , the

worst approximate solutions , and the centroids of all the simplexes, .  The sequence  

trivially satisfies condition [14] because   is replaced by  only if .  Demonstrating

condition [15] or [16] for sequence  , however, requires a concavity assumption on  such that

where concavity also suggests the inequality
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  Woods’ theorem was set in the context of a minimization problem.  The theorem presented here has been set in the6

contest of maximization.
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(19)

(20)

(21)

when  and .  With these additional assumptions, the vertices of any simplex 

will have response values greater than  such that, if a reflected vertex is accepted,

If, however, a contraction vertex is accepted or the simplex is shrunk, then

and condition [15] or [16] holds for all  .  In fact, this line of reasoning suggests that every

sequence  has the non-decreasing property.

Having demonstrated the potential viability of sequences   and  , the sequence

 remains to be examined.  Consider the simple example in Figure 4, where the vertices of a

simplex  are  and , with  having just been accepted by the Nelder-Mead algorithm.  From

this example, it can be observed that 

thereby violating condition [14].  Thus, the sequence  is shown to be unacceptable, and only

the sequences  and  can be considered viable alternatives.  It is with these two sequences

that the following convergence theorem was postulated by Woods (1985):6
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Figure 4. Demonstrating the inferiority of the centroid as a potential optimal solution.  Given

the initial simplex ,  would be accepted by the algorithm as a replacement

vertex.  However, it is obvious that , demonstrating the

inferiority of the sequence  .
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(22)

(23)

(24)

THEOREM:  If the set  is bounded, where  is the worst

vertex of the initial simplex, then a subsequence of the sequence of simplexes

converges to some .  Additionally, let the Nelder-Mead

algorithm be modified such that, at the  iteration, the expansion step  is

accepted only if 

and the reflection step  is accepted only if 

for some  and .  If , then  is accepted only if 

Then, for any  and strictly concave , each convergent subsequence

of the sequence  generated by the algorithm converges to some degenerate

simplex .  Moreover, the function values at all limit points are

equal, and the set of limit points is connected, so that the sequence either converges

to a point, or else there are infinitely many limit points.

Furthermore, a corollary near the end of the above theorem’s proof (see appendix) establishes that

the Nelder-Mead algorithm will converge to a connected set of limit points even when the

calculations are implemented on a finite precision, discrete computing machine.

The formal arguments for convergence hinge, to a large degree, on the concavity of the

response function.  In reality, however, few complex simulations will yield globally concave



19

response surfaces.  In these cases, the above discussion would apply to locally concave regions and

would establish convergence to a local optimizer.  As a practical matter, the difficulties associated

with non-global concavity can be overcome by initializing the algorithm over different regions of the

feasible space and comparing the resulting optimizers.  Studies suggest that the method is empirically

better at finding the global optimum among many local optima than might be expected given the

current status of convergence proofs (Barton 1987; Kim and Blake 1988). 

ADVANTAGES AND DISADVANTAGES

What makes the Complex Method attractive is its adaptive features.  In particular, a simplex

is moved through solution space in such a way that allows it to reflect, extend, contract, and/or

shrink to conform to the characteristics of the response surface.  The simplex can elongate down

long, inclined planes, change direction upon encountering a valley at an angle, or contract in the

neighborhood of the optimum, with the aim of eventually including the optimum within the bounds

of the simplex. This is in contrast to other external optimization procedures, most of which try to

move along a line towards the optimum.  The advantages of the method include: 

1) Beginning at a point far from the optimum, the search approaches the neighborhood of the

optimum rapidly compared to other techniques (Suk and Mitra 1972); 

2) In general, a search results in only a small fraction of the feasible solution space being

simulated, thereby conserving computing resources (Lee 1986); 

3) A search can be easily modified to accommodate various special characteristic of the

simulated system, including stochasticity (Lee 1986); 

4) The approach is completely generalizable and can be used on both continuous and discrete

simulations (Beveridge and Schechter 1970); and

5) The approach does not require an explicit expression of the objective or constraint functions.
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Disadvantages of the Complex Method center on its potential to yield only locally optimal solutions,

particularly when the response surface is very convoluted.  However, in addition to the apparent

robust characteristics of the optimizer (Barton 1987), research suggests that problems involving

social welfare objectives, such as those often investigated with bioeconomic models, may inherently

yield an extensive range of acceptable, near-optimal solutions within the feasible region (Chapman

1987; Rowse 1988).

EXAMPLE APPLICATION

As a demonstration of the Complex Method and its potential utility in agricultural economic

research, consider the production model described in Kazmierczak et al. (1993).  The authors

examined the potential economic impacts of synergism between increased pesticide regulation and

the ability of pest organisms to develop resistance to the control technology set.  Concerns revolved

around the possibility that regulatory withdrawal would lead to accelerated resistance development

to the control chemicals remaining post-regulation, thereby inducing long-run declines in the flow

of economic benefits from the perennial production system and increased use of pesticides.  Given

the time-dynamic nature of the problem and the intricacy of the pest/predator relationships in the

system, an empirical biological model was needed to realistically track not only fluctuations in

population levels and crop production, but also changes in the underlying genetic structure of the

populations.  While such models had been developed by entomologists, they generally consisted of

complex computer simulations not easily summarized by a set of analytic equations (Tabashnik

1990).  Simplification of the solution space was an alternative that has been used in a number of pest

management studies, but this proved to be unsatisfactory given the desire for policy relevance.  Thus,

the requirements of the problem suggested the use of an external optimizer, such as the Complex

method, which could be implemented through a number of specific steps:
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1) Initialization.  Generation of the initial simplex entailed the creation of a set of vertices, with

each vertex composed of  elements representing a possible time-path of pest control

actions that could be taken over a 25 year planning horizon.  Considering re-entry and day-

to-harvest restrictions, a baseline no-regulation scenario included 6 different control

chemicals available for use in each of 20 time-steps per year.  Thus, each  element of a

vertex was defined as being the amount of a particular pesticide used in a specific time step,

giving each vertex 3000 elements or controllable variables.  The levels obtainable by each

vertex element were bounded by labeled application rates, and ranged in discrete increments

from zero use to 25 percent above the recommended application rate for each chemical in

each time period.  Given 3000 controllable variables, the initial simplex consisted of 3001

vertices uniformly distributed throughout the solution space.

2) Ordering.  Each vertex defined in step (1) yielded a system response in terms of resistance-

and/or regulation-induced changes in total economic surplus over 25 years.  Given that each

vertex evaluation required 30 seconds on a Pentium /120mhz microcomputer, the entire®

simplex consumed approximately 25 hours of computation time, illustrating both the expense

involved in evaluating the initial simplex and the relatively inexpensive evaluation of

additional vertices generated in subsequent steps.  The system responses were then used to

arrange the vertices in descending order relative to the amount of surplus each generated,

and the worst performing vertex was identified. 

3) Reflection and Expansion.  The generation of new and potentially superior time-paths of pest

control proceeded by calculating the centroid, or the mean of the control actions taken in

each specific time-step of a planning horizon across all vertices except the worst performer.

This point was used to determine the reflection vector, which served to point the search

away from a poorly performing region of the solution space and towards the general region
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of all the other vertices.  From this pointer, a new vertex was projected.  Given the

summation nature of the centroid, this calculation was stored and altered for subsequent

reflections based on the entry and exit of vertices from the current simplex.  Thus, the

computational expense of reflection and expansion was minimal.  Identifying the appropriate

values for reflection and expansion coefficients was dependent on system scaling and

required some experimentation, although optimum convergence speed and stability generally

occur when the reflection coefficient is one-half the magnitude of the expansion coefficient

(Lee 1986).  Once projected, a potentially superior vertex was checked against constraint

boundaries.  Any vertex elements violating a constraint boundary were reset equal to the

value of the constraint boundary.  The system response was then generated for the newly

projected pesticide use time-path and checked against explicit and implicit system

constraints.  A projected vertex was included in the simplex if all constraints were satisfied

and the associated system response exceeded that of the next-to-worst vertex.  After the

simplex was reformed, stopping criteria (step 5) were checked and, if not satisfied, a new

worst vertex was identified and the process began again at step 3.

4) Retraction.  If the projected time-path of pest control actions elicited a system response that

was no better than the response associated with the next-to-worst vertex, then the new

vertex was retracted back towards the original inferior vertex until a better vertex was found.

If a superior projected vertex was not identified during retraction, then the next-to-worst

vertex was selected and the process restarted at step (3).  If all the vertices were used as a

point of reflection without finding a superior vertex, shrinkage would have been employed

to reinitialize the simplex.  This latter operation will not be used if the reflection and

retraction coefficients are appropriately scaled.
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5) Search Termination.  Using the Nelder-Mead form of stopping criteria, the search was

terminated when the simplex collapsed to a neighborhood defined in size as 5 percent of the

mean of the system responses for all the vertices in the current simplex.  Random searches

were then conducted within the final simplex.  If no superior pesticide use time-path was

found, the best performing vertex of the final simplex was defined as the approximately

optimal solution.  Given a hypothetically complete control technology set, convergence

occurred in a maximum of 0.9 hours, or 102 iterations, after initialization.

CONCLUDING REMARKS

Empirical analyses of dynamic bioeconomic problems have been hampered over the years

by simplistic models of the biological components underlying system operation.  But, while discrete

computer simulation provides a method by which realism can be introduced to agricultural modeling,

it has not been widely adopted as a research tool because of the inability to relate simulation results

with theoretical system optimums.  The Complex Method of simulation optimization has the potential

to alleviate this shortcoming of simulation studies, thereby providing economic researchers with a

powerful tool to investigate complicated dynamic bioeconomic systems that cannot be accurately

modeled using standard empirical techniques.  

Perhaps the most important advantage of the Complex Method is the efficient use of

computer resources.  If approached using dynamic programming, the apple production problem

described above would require the simulation of every stage-state of the system.  This information

would then have to be stored for use in a recursive programming algorithm.  In essence, every

definable vertex in the feasible region would need to be evaluated.  But with the Complex Method,

only a relatively small initial set of defined vertices needs to be evaluated, followed by a sequential

addition of vertex evaluations until an approximately optimal solution is found.  In general, only a
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limited subset of all possible vertices will ever have to be evaluated, with only a small number of

objective function values being stored at any given time.  In fact, studies of theoretical deterministic

systems have suggested that less than 1 percent of all possible vertices need to be evaluated before

the Complex Method converges to an optimum (Azadivar and Lee 1988).  Stochastic systems would

require additional simulations, with the number partially dependent on the probability required for

the appropriate confidence limit estimates.  However, even analyses of stochastic systems use

significantly fewer simulations than traditional optimization alternatives.  These factors suggest that

the Complex Method can increase the ability to empirically investigate dynamic bioeconomic

problems within a framework that maintains both biological and economic realism.
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the limit simplex.  In practice, it means that the simplex has not collapsed to a single point in hyperspace.

28

(A1)

(A2)

APPENDIX:  A PRELIMINARY CONVERGENCE PROOF

The optimization theorem presented in this manuscript puts forth the fundamental proposition

that there exists some non-degenerate  limit simplex , given a bounded set , that can7

ultimately be identified through the use of a relative increase acceptance criterion.  Thus, the first

task in developing a proof of the theorem is to show that all simplexes belonging to a compact set

are, by infinite sequence theory, bounded.  Secondly, the proof requires that a limit simplex be

shown to exist under these conditions, and that a subsequence of a sequence of simplexes will

converge to this limit simplex.  Lastly, it must be shown that, for a simplex arbitrarily close to ,

movement of the simplex will result in an inferior response from the system, implying that the

movements defined by the algorithm generate a limit simplex that is the optimum (Woods 1985).

Compactness

Begin by letting  be defined as the convex hull of the set :

If, as defined in the algorithm, a vertex  generated by the operations of reflection, contraction,

and/or expansion will only be accepted as a new member of the simplex if

where  indicates the iteration generating the vertex, then the simplex  must,

by operational definition, be contained in set , which in turn is contained in convex hull .

In addition, the operation of shrinkage trivially yields vertices in the set  because  itself is defined
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as being convex.  This being the case, every simplex of the sequence  generated by the algorithm

will be an element of the compact set  and are thus bounded.

Existence of a Convergent Limit Simplex

Consider a potential sequence of best performing vertices, denoted by , from the 

iteration’s simplex, .  By compactness, it can be asserted that any subsequence of , say

, converges to a point that can be designated .  Associated with the subsequence  is

a  subsequence of simplexes, .  Continuing the process, if a second best sequence of vertices 

from  is examined, a subsequence  can be said to converge to a point .  By

construction, .  Repeating this procedure for each ordered vertex , a subsequence

of the original sequence of simplexes, denoted by , is obtained.  This subsequence has the

property, through compactness, that

Thus, any subsequence  can be said to converge to  contained in ,

verifying that a convergent limit simplex will indeed exist.

Algorithmic Convergence to a Limit Simplex

Establishing that the movements defined by the algorithm actually lead to the desired limit

simplex requires that each step in the algorithm be examined in detail.  To accomplish this, a number

of preliminary relationships need to be established.
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Preliminary Relationships

Begin by assuming that the limit simplex

is not a degenerate simplex.  The centroid of the best  vertices of  can then be identified as

and, because of strict concavity and the definition  for , the relationship

can be asserted.

Next, the mean system response distance from the centroid to the worst vertex can be

defined as 

By the continuity properties assumed for , an  implies that there exists a   such that, for

all  with the property  is also true.  Thus, if 

then for any , implying that .
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Continuing with this line of argument, let  be the smallest index such that .

Although it is possible for , it will generally be the case that , where .  Let

for .  Then, by continuity and the assumption that , there exists a  such that for

all  with .  In addition, for  and ,

or, if ,

Then, by letting  when , and  when

, where  is a positive preset value used to test for an acceptable reflected vertex, it can

be asserted by continuity and  that there exists a  such that for all  with ,

.  If , then

With this background material in mind, choose an index  so that  is an element of the

subsequence of simplexes that converge to , where .  In other words, for

each , the  best vertex of  is an element of the neighborhood  around the vertex .  By

construction of , it is assured that if  and  is a non-decreasing sequence for all

, only the  best vertices of  will have a function value greater than .  This

being true, the proof can proceed by showing that, for all types of movements described by the
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algorithm,  will have  vertices with function values greater than .  If this can be

demonstrated, it implies that  is not an accumulation point for the sequence  because

 is a non-decreasing sequence with limit point .  This contradiction implies that 

is a degenerate limit simplex, a suggestion that is false by definition.  Thus, a simplex that is

arbitrarily close to the limit simplex cannot be moved without causing a decrease in the system

response.

Reflection

Consider a potential reflection step for .  This step will be accepted and incorporated into

the current simplex only if 

for .  Because , acceptance of the reflection also implies that

In the case where ,  is only accepted if , where

Thus, if reflection is indeed accepted at this iteration, then it would imply that , or that

there are  possible points with function values greater than .  This, of course, is a

contradiction and serves to show that reflection beginning with a simplex arbitrarily close to the limit

simplex cannot yield a better system response.
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Contraction

Consider the contraction vertex  taken from .  Given the definition of a centroid

(equation [26]), drawing an analogy from equation [30], and subtracting  from both sides yields

Taking norms and using the triangle inequality provides the relationship

In this case,  would be accepted at the  iteration because , indicating more than

 possible points with function values greater than  and thus a contraction.

Next, consider another contraction vertex  taken this time from the reflection vertex :

If contraction is to be considered, then the following would have to hold:

Taken together, the previous results imply that
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Therefore, if  is considered a potential solution at the  iteration, it would be accepted and

 -- another contradiction.

Expansion

Although, as demonstrated in the Reflection section,  may not be accepted by the

algorithm without causing a contradiction, it is still possible to find that .  If so, then

the expansion vertex  is also a potentially acceptable vertex and needs to be considered.  Defining

the reflection vector as
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it can, by strict concavity, be manipulated to yield

If it is asserted that 

and  is acceptable, then

or a contradiction.  Otherwise, if , then  and the expansion vertex is not

accepted.

To this point, it has been demonstrated that for any  sufficiently close to , a new vertex

can be obtained that provides a higher function value then .  Thus, by contradiction, it is clear that

 for .  The next step is to show that the function values of all these limit points

are equal and connected.

Limit Point Relationships

Assume that there are two limit points of the sequence , say  and , each having

different response fuction values with the relationship
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Letting

by continuity there exists a  such that for .  Then for some 

and every vertex of  has a response value greater than .  Because it is also true

that  is a non-decreasing sequence for , then it cannot be true that  is a limit

point of .  Therefore, all limit points of  have the same response value.

To show that the set of limit points is connected, assume that the set of limit points is not

connected and let  be that set of limit points of .  There should then exist the subsets  and 

of  having the following properties:

1)

2)

3) , and

4) There exists open sets  and  such that 

It can be shown that there is a finite difference  between the elements of the open sets 

and .  Let  be a limit point of  in  and  be a limit point of  in .  Additionally,

let
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For every limit point  of , let be the corresponding neighborhood defined by 

It can now be shown that there is some index  such that for all ,  is an element

of some .  If this is not true, then there is an infinite subsequence of  which has no elements

of any .  By an earlier result, this subsequence converges to a degenerate simplex.  Thus, for

some  large enough, all elements of this subsequence are in a neighborhood  about the limit

point or degenerate simplex.

Suppose is in the neighborhood  for some .  Then, for all , there is

no simplex  in the  neighborhood of .  To see this, note that  for every  and the

step taken in the algorithm is bounded by .  Therefore, the new vertex at the next iteration is at

most  from .  This new vertex may not lie in the   neighborhood of  because the

elements of this neighborhood are at least  from .  Therefore, the new vertex must be

amember of  for some .  Because each simplex  must be in a neighborhood of an

element of , there are no other limit points in existence.  That is,  is an empty set, and the set

of limit points is connected.

A Corollary

Given the above proof for the main theorem, a corollary can now be drawn that relates the

operation of the algorithm to its implementation on a finite precision machine.

Corollary: If the standard condition for acceptance of  is implemented on a finite precision

machine, that is if  , then the conditions for accepting  hold.
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The general proof of the above corollary is relatively straightforward.  Let  be the positive number

representable on the machine that is closest to zero, and let  be the smallest difference between any

two different representable numbers.  Also, let  be the floating point value of  and define

.

Consider  and   and the condition .  For , if  , then

, and thus

Similarly, for , if , then

and the conditions for accepting  in the theorem also hold for the corollary.  It has also been

conjectured that the set of limit points defined in the theorem are finite, and thus a single point.

Furthermore, it is believed that the limit point is the maximizer of the response function (Woods).

However, this analysis has not been suitably developed.


