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Abstract
For simulation to be truly useful for investigating many problems in agricultural economics, non-
simplifying optimizationtechniques need to be employed. General methods for simulation
optimization that do not inhibit system chaterization or analysis are available, and they would
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paper describes the theory and algorithm of a robust and efficient simulaifoizafbn gproach,
the Complex Method. An example of implementing the algorithittustrated using a pest
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Optimizing Complex Bioeconomic Simulations
Using an Efficient Search Heuristic

Richard F. Kazmierczak, Jr.

INTRODUCTION

Realistic bioeconomic models are generally composed of multiple, highly non-linear
biological and economic relationships. Although these bioeconomic models owe their realism to
non-linearity, numerical ophization can only be dictly accomplished if objective and constraint
functions are analyticallyxpressed (Evtushenko 1985). In addition, even if the models are
analytically expressed, complexity can lead to difficulties in obtaining or approximating the required
gradient vectors (e.g., Talpaz et al. 1978; Standiford and Howitt 1992). Linearization has been used
to combat this problem, but the solution point depends on the choice of the initial path from which
approximation is constated, and thus may have no connection with the location of the true
optimum (Baumol 1982). Other types of model simpdifion and solution mkebds have been
developed, including combining simulation with linear, non-linear, and recursive progrg
(Dudley and Burt 1973; Chien and Bradford 1976; Kingma 1978; Richardson and Condra 1981).
However, these alternat@@oaches require either drastic model singaifion or specific model
formulation, implying restrictions on the size of the control andatesspace of the modeled system

(Sierra.and Condon 1987; Jacobson and Schruben 1989). This problem ofcsitigolifaas arisen
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repeatedly in dynamic bioeconomic investigations, where the curse of dimensionality continues to
plague empirical implementation of theoretical models.

In an attempt to avoidnrealistic representation of agricultural systems, researchers have
periodically relied on simulation. Simulation as a research tool in agricultural economics arose as
the definition of an agricultural research problem was being expanded to include issues surrounding
natural resources, economic development, and national economic policy (Johnson and Rausser
1977). Alhough simulation demonstied its value as a practical substitide direct physical,
biological, and social experiments, the method did roessarily lead to closed-fofrm mathematical
solutions and thus continued to pose optimizapimblems (Anderson 1974). Patlatiygn, and
random searches maycsessfully avoid reliance on estimated analytics, but generally at the cost
of extreme computational expense. Inaitye simulations also can be opized by pararmter
sweeps, a process where one or more model parameters are systematically and exhaustively varied
and their effects on simulation pasises noted (Minkoff 1987). However, the expense adsdci
with this process often promotes simplification in ttien of limited comparisons of potential policy
options (e.g., Reichelderfer and Bender 1979). dahbog non-opimizing nature of these kinds of
investigations has led to reduced credibildy simulation studies (Boggess 1984; Musser and Tew
1984).

While various studies have demonstrated that simulatiomiaption can be used to
investigateproblems with a specific structure or witinited dimensions, the inability to link a
general optimizationprocess with complex bioeconomic models has contributed to the

underutization of simulation as a modeling tool in@®mics compared to its widespread adoption

2 The tendency for the computational time associated with numerical algorithms to increase exponentially with the

number ofvariables used to define the empirical problem. This leads to unworkably long computation times for problems
involving more than a few variables (Cipra 1991).

® In practice, the dlity to derive a solution in the form of an explicit formula (Wolfram 1991).

2



in other disciplines. For simulation to be truly useful for investigating many problems in agricultural
economicsnon-simplifying opimizationtechniques need to be employed. General methods for
simulation optimization that do not inhibit system @werization or analysis are available, and they
would appear to provide much of the mathematical andh@tg rigor demanded by enomists.

This paper describes the theory and algorithm of a robust and efficient simulatioizatin
approach, the Complex Method. An example of implementing the algoriitusti;ated using a

pest management problem.

THE OPTIMIZATION PROBLEM

Consider the general dynamic impization problem

max fcl)[U(t),X(t),t] e "dt (1)

subject to the equations of motion

Xt = f[U®),X®),t] , X(©0) = X° (X° fixed inR")

where ¢[U(t), X(t),t] is the system response at time wor  decision variahlas,, ..., u,
represented by the vectbh(t) . Let the decision variables be constrained in membersbip-and

negativity as

U(t) € ] , a fixed set inR", and
g[X(®.U®).t] = 0 V= 1.k
while pure sate constraints includeon-negativity and various terminal conditions:

gj[X(t),t] >0 Vj=k+1l,.,h;

x(M) =x', Vi=1.1 (x" all fixed); and



x(M) = %', Vi=I+1,.,m (x all fixed).

Some or all of these state constraints may be represented by sygtensessrom the same model
generatingd[ U(t), X(t),t] .

Difficulties are encountered when trying to proceed towards an empirical solution to a
problem of thisform. If, as is often the case when modeling bioeconomic systems over time,
Gl U(t), X(t),t], FlU),X(t),t], gj[X(t),U(t),t], and/org].[X(t),t] represent complex response
functions that cannotessarily be expressed explicitly in terms{af(t), X(t), t} , then the problem
may be numerically intractable given that standard solution techniques rely on the calculation of
gradient vectors. Specialized methods, such as responseestethniques (Myel971), @ttern
searches (Hooke and Jeeves 1961), and random searches (Smith 1973), may also be unsuitable
because they either assume that the: 1) seavolves a function with a known algebraic form; 2)
number of available computer runs is essentiallynited; and/or 3) number of controllablepiuts
under investigation is relatively small. In aduolitj these specialized methods generally assume that
all system responses are observediouit error or wtistical variabn. However, ifdp[ U(t), X(t),t]

is stochastically simulated, the objective becomes one of
T
max E fd)[U(t),X(t),t] edty =@, )
0

where® is the unknown theoretical function. If a typical search algorithm is used, then comparing
the mean responses of the system basedlionit@d number of observations @ach point in the
feasible region may result in the selection ofrarg dilectionfor the search. The ideal search
heuristic would be one that incorpded theoretical ophization onditions and a flexible

mechanism to account for stochastic behavior. One matmique, the Complex Method, is



applicable to situations where an analytic mathematical representation of the system is difficult to

obtain, but it is possible to order the responses arising from different levels of the controllable inputs.

THE COMPLEX METHOD
The Complex Method is a general and powerfuinoigation algorithm that arodeom the
idea of applying simplexés to the optimization of eitpbbysical processes or mathematical
functions (Spendley, Hext, and Himsworth 1962; Nelder and Mead 1965). Ascaapimization
procedure, the Complex method does not require gradients of gwiwbdjunction. Ingead, it

operates withriformation on the relative response rank asdediwith control levels.

SIMPLEX MANIPULATION

At the core of the Complex Method is a simplex manipulation algorithm. A simplex can be
geometrically defined as a convex hullmfl  points, or vertices, in general positiBh in  , where
denotes the number of controllable variables over which optimization is to tde= prhus, the
procedure derives its narfr®m the geometric figure that is moved through in search of an
optimum. The movement of the simplex can be broken down into six basic operations: initialization,
ordering, reflection, expansion, rattion, and shrinkagd_ge 1986). In the description that follows,
v, indicates a current simplex vertex with the rank of , whege is the best system responsg and
is the worst system response out of all the simplex's vertices. A vertex denoted byatesthiat
the vertex is either unranked or not a member of the current simplex. Angled brackets, as in

<V,,V,,...,V,, >, indicate that the included vertices are members of the same simplex.

* Note that the relationship between simplexes of the Complex Method and the simplex method of linear programming

algorithms is in name only. Where as the simplex of linear programming is a permaigehtgametric figure defined by
constraint boundaries, the Complex Method simplex is a movable, flexible geometric figure in hyperspace.

® Indicates that no three points defining the simplex alinezy.

5



To begin, a set ov+1 feasible vertices, each consisting of specific timefpatech
control variable, must be identified and used to define the initial simplex. A number of identification
schemes can be used, ranging from those that ajenire initial vertices ralomly to those that
attempt to distribute the initial vertices uniformly throughout the solutianespMitchell and Kaplan
1968; Sargent973). Because anvergence difficulties tend to arise in bounded problems if the
initial simplex lies close to the edge of the feasible region, non-randewctisal methods have
proven to be the most useful and tend to provide the largest initial coverage of the feasible region.
This latter objective is desirable becausewergence speed tends to be highest when the initial
simplex contains the final optimum. To accomplishriba-random initiation of the simplex, the first

vertex is defined as the central point of the feasible region, and includesctbe @lements

u, = , ®)

wherec, is the upper ara], is the lower constraint boundary on the control varjable . Other
initial vertices are then identified by dividing the range of all control variables into two equal
sub-ranges and taking the centereath newly createdub-region as a vertex. This second
operation yield®2w potential points in hypeasp, of which thev outermost feasible vertices are
included in the initial simplex. Figure 1, where the dotted lines indicatartkeown response
surface, illustates the initializatioior a simple problem of two control variables. Point A denotes

the center of the bounded feasible region, while points B and C are two 2#/the potential vertices

included in the initial simplex.



Figure 1. Initialization of the simplex given two control variables (u, , ), with the unknown
response suace indicated by the dotted lines.



Once an initial set of vertices are chosen, ordering occurs aiewdr metod is appropriate
given the structure of the empirical model. In general, ordering is ctedlby evaluating the
system response for each individual vertex and then ranking fhenees, and thus the vertices, by
comparison. The initial evaluation and ordering is usually the most ¢atigmally intensive part
of the simplex search algorithm because it requive$ vertex evaluations. With respect to Figure
1, the vertices would be ordered, from best to worst, as {A,B,C}.

After the initial ordering, the algorithm proceeds by moving the simplex &waythe worst
vertexv, (point C in Figure 1). To do this, the centroid  (point  in Figure 2) of the current
simplex vertices is calculated after excluding . Thus, the centroid liyflegsace center of the
non-worst vertices, and provides a focal point through which a potentially superior vertex can be

found. Calculating the centroid as

=
N

v = v, 4)

1
W

Il
o

a reflected vertex, is obtainémm

v, = (l+a)v-av, , (5)

where o >0 is a reflection coefficient that determines how far avag the inferior vertex the
reflected vertex W be located. If the simulation rpense ofv, (point D in Figure 2) is superior

to the next-to-worst vertex, , (point B in Figure 2), then  aees the worst vertex, asa
member of the current simplex, thus moving and changing the shape of the simplex (to ABD in
Figure 2). Stopping criteria are then tested, and if not satisfied, the vertices are re-ranked and the

process begins again.



Figure 2. Reflection of an initial simplex given two control variablgs (1, , ), with point m
being the calculated centroid, the dashedveed line indtating the path of
reflection, point D being the new, superior vertex of the simplex, and the unknown
response suatce indicated by the dotted lines.



It is possible for the process of edtion to yield a vertex,  that is superior to the best
vertexv, . Ifthis occurs, then it may be advantageous to continue the search in the direction of the

original reflecton. This isaccomplished by calculating an expanded vertex

v, = YV, +(1-y)Vv, (6)

where y>1 is the expansion coefficient. RQr  superiov.to , the new simplex is defined by
replacingv,, withv, . However, i¥, is not superiortp ,then once againreplgces anda
new vV, is calculated afteraedering.

But what happens if theé.  (point D in Figure 3) is actually inferiov {q (point B in Figure
3), thereby making its replacementwf  an act dliti® When this occurs, a retctionprocess
is used to move the reflected vertex back along thegtion path towards,, . The retracted vertex

is given by

v, = Bv, +(1-B)v, (7)

where0 <B <1 is the retraction coefficient. After systematically increa8ing wntil  is superior
tov, ,,anewsimplexis formed by replaciag ~ with  (point E in Figure 3). Stopping criteria are
checked, and if not satisfied, a new ranking and reflection initiated, If  continues to be inferior

tov

w-1"1

then a shrinkage process is used to reduce the size of the simplex by moving all but the best

vertex towards the best vertex:

1

v, = E(v0+vi) i=1,...w. (8)

A completely new system evaluation must now be obtained for abput  of the simplex, and

re-ranking determined before proceeding on to a new raftecithis makes the shrinkage operation

10



Figure 3. Reflection and retraction of an initial simplex given two control variablesif , ),
with point m being the calculated centroid, the dasheahed line indtating the
path of reflection, point D being the potential new, but inferior vertex of the simplex,

point E being the retracted new vertex of the simplex, andrtkeown response
surface indicated by the dotted lines.
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computationally expensive, but it generally represpragress due to the narrowing of the search
field.

Although only alluded to in thebave discussion, stopping criteria are a critical part of
simplex manipulation. One potential and theoretically optimal criterion would stop the search when
the simplex collapses to a single point in hypacgp However, the success of this criterion is highly
dependent on the shape of the responsaagiih the nelgoorhood of the optimum and the
appropriate scaling ot y , andl . Other, meptimal, criterion have also been explored.
Assuming the existence of a simplex,,v,,...,v,> , wher@oese values aach vertex are
denoted b;{ d(v,), d(v,), ... ,(I)(VW)} , then Nelder and Mead (1965) proposed to defineianzept

$(v, ) as when

23 (o0 #)<c, ©

where

b = d(v) and €>0. (10)

i=0

A

In other words, the stopping criteria halts the search when the standard error of the response values
of all simplex vertices are less than the tolerance level , or when the simplex has collapsed to a
pre-defined size. Note that this stopping criteria can fall if the initial simplex is too small relative to
the tolerance levet |, but the choice of an arbitrarily seall  involves a trade-off with the number

of iterations the optimizatioprocess must execute. Of course, the interior of the remaining simplex

could be exhaustively searched for the true optimum.
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CONSTRAINTS AND STOCHASTICITY

As presented above, the simplex manipulation makgsawsions for preventing a pegted
vertex from leaving the feasible region. This carmbeomplished by testing eaptojected vertex
for adherence to the constraint set. If theguigd vertex falls outside the constraints (as does point
F in Figure 3), thus violating a control variable bound, then it can be set equal to the cdimsiraint
If the projected vertex results in a violation of explicit and/or implicit simulatgmbrese constraints,
then it can be systematically retracted until it enters back into the feasible (Bgioh965).

While directly applicable toproblems involving dterministic simulatin, simplex
manipulation also can be generalized to stochastic systems. Given that system stochasticity results
in a situation where there is no guarantee that a vertex rejected on the basis of comparing single
simulations is indeed the worst point, thbalility of an erroneous rejction increases as the
variance in system responses increases. This variance problem can only be addressed by
incorporating multiple observations on the siatat reponse for any given vertex. One way of
doing this is to calculate batch-meamftidence intervals foeach vertex. Because thenfidence
interval lengths will shorten as the number of simulation observations on any given vertex increases,
a vertex can be rejected (with a chosen levelrobalility) as oon as its confidence interval is
distinct and its mean is worse than the other vertices of the simplex. If confidence interval
calculations and comparisons are sequentially made after a small numbers of simulations on a set of
vertices, then the total number of simulationsdach search step can be imized.

Stochasticity in the simulation constraint set can also lead to probésrasde stochastic
variation implies that the constraints may never be satisfied on anything other than digttobab
level. Thus, attaining a solution would require that the constraints be stated in terms of the maximum
acceptable risk of violation (Azadivar and LE288). For example, a stochastic constraint might

be expressed as

13



P[fl(U,X,t)scl] >1-a, . (11)

where 0<a,<1 andca, is the maximum acceptable risk of violating the constraint. This
representation can lead to constraifisnulated and evaluated in terms wbper or lower

confidencdimits:

HU,(UX,t) < C, for  P[f,(UX,t)<C]> 1-q (12)

HL,(UX,t) > C, for P[f(UX1)>C]> 1-a,,

where HU,(U,X,t) represents the upper confidelioé and HL,(U,X,t) the lower enfidence

limit on the equation of motioh (U, X;t)

CONVERGENCE

In an early work on the nature of iterative solution procedures, Ortega and Rheinboldt (1970)

examined methods of the form

Vk+1 = Vk - (‘)kakpk k = 0,1,... (13)

for finding the critical points of a functioth: R"~R* , whesec R* is a step-length parametes arfitt

is a relaxation parameter. The authors dematesirthat an iterative mamizer must have the

property

¢(Vk+1)2(b(vk) k=0,1,... (14)

where¢ is bounded from above. Wolfe extended their analysis to show thatithizeshould

also be able to satisfy
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lim Vd)(vk)TPk

=0 (15)
Sl
and
lim
Keooo Vd)(vk) =0 (16)
whereV denotes the gradient vectordof — &iRj| denotes the Euclidean nBym of . This

section will sketch theudficient conditions assoated with equationd 4] through [16] and present
a convergence theorem for the Simplex Method. Arpireary proof of the theorem is related
to the appendix.

To begin, consider the fact that the Nelder-Mead algorithm yields at least three distinct
sequences of vertices that can be examined. These include the best alprsaimion§vok} , the
worst approximate solutions/,} , and the centroids of all the simpléx&s, . The sedughce
trivially satisfies conditiorj14] because{vok} is replaced by onlydf \7)>c|)(v0k> . Demonstrating

condition [15] or [16] for sequencévv'v‘ I, however, requires a concavity assumptipn on  such that

(I)[ocv1 + (l—oc)vz] > ocd)(vl) - (1—oc)d)(v2) ael0,]] (17)
where concavity also suggests the inequality

d)( ﬁ:aivi) > ij o, (V) (18)

15



w
wheno, >0 V i andZ «.=1 . With these additional assumptions, the vertices of any sig)plex
i=1

will have reponse values gater thartb(vv‘: > such that, if a reflected vertex is accepted,
olve) - oful) > ol ®

If, however, a congiction vertex is accepted or the simplexhigisk, then
M) > o) 0

and conditior[15] or [16] holds for all {vvé‘} . Indct, this line of reasoning suggests that every
sequencdV,“} has the non-decreasing property.

Having demonstrated the potential \iip of sequences{vok} andv,) , the sequence
{v¥} remains to be examined. Consider the simple example in Figure 4, where the vertices of a
simplexS, arev, and, ,withi having just been accepted by the Nelder-Mead algorithm. From

this example, it can be observed that

¢(§(vo+v1)) > d)( %(vowr)) (21)

thereby violating condition [14]. Thus, the sequehcé! is shown todmeeptable, and only
the sequencels,}  andl,}  can be considered viable alternatives. It is with these two sequences

that the following convergence theorem was pasgéal by Wods (1985}

® Woods' theorem was set in the context of a minimization problem. The theorem presented here has been set in the

contest of maximization.
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Response

N

V, Vertex

Figure 4. Demonstrating the inferiority of the centroid as a potential optimal solution. Given

the initial simplex<v,,v,> v, would be accepted by the algorithm as a replacement

vertex. However, it is obvious thal{%(vo +v1) ) %(vowr) , demonstrating the

inferiority of the sequencévk}
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THEOREM: Ifthe selL(vfj) = {v: d)(V)zd)(Vﬁ)} is bounded, where s the worst
vertex of the initial simplex, then a subsequence of the sequence of simplexes
converges to som&*=<v,,v,,...,V,> . Additionally, let the Nelder-Mead
algorithm be modified such that, at #té iteration, the expansion/e§tep is

accepted only if
i) = ofv) > ) @
and the reflection steprk is accepted only if

) > masdafu ). o s ) o}

for somee>0 andb(vv'v‘>¢0 : Iﬂ)(vv'v‘>:0 , them  @&cepted only if

(])(Vr) >e>0 . (24)

Then, for ang>0 and strictly concave R"-R! each onvergent subsequence
of the sequenceéS } generated by the algoritbmverges to some degenerate
simplexél* =<Vy;, Vo, ---:Vo; > . Moreover, the function values at all limit points are
equal, and the set of limit points isrmected, so that the sequence eitlbeverges

to a point, or else there are infinitely many limit points.

Furthermore, a corollary near the end of the above theorem’s proof (see appendix) establishes that
the Nelder-Mead algorithm willanverge to a coratted set ofimit points even when the
calculations are implemented on a finite precision, disccomputing machine.

The formal arguments for convergence hinge, to a large degree, on the concavity of the

responsdunction. In reality, however, few complex simulation#l wield globally concave

18



response surfaces. In these cases,libeeadiscussion would apply to locally concave regions and
would establish convergence to a localmjer. As a pactical matter, the difficulties associated

with non-global concavity can be overcome by initializing the algorithm over different regions of the
feasible space and comparing the resulting optimizers. Studies suggest thahtteisrepirically

better at finding the global optimum among many local optima than might be expected given the

current satus of onvergence proofs (Barton 1987; Kim and Blake 1988).

ADVANTAGES AND DISADVANTAGES

What makes the Complex Methattractive is its adaptive features. In particular, a simplex
is moved through solution ape in such a way that allows it to reflect, extecontact, and/or
shrink to conform to the chacteristics of the r@®nse sudce. The simplex can elongate down
long, inclined planes, change directiopon encountering a valley at an angle, or @mttin the
neighborhood of the optimum, with the aim of eventually including the optimum withivoteds
of the simplex. This is in contrast to other external optimizgirmecedures, most of which try to

move along a line towards the optimum. The advantages of the method include:

1) Beginning at a point far from the optimum, the search approaches the neighborhood of the
optimum rapidly compared to other techniques (Suk and Mitra 1972);

2) In general, a search results in only a small fraction of the feasible solution space being
simulated, thereby conserving computing resources 1086);

3) A search can be easily modified to accommodate various special characteristic of the
simulated system, including stochasticity (LI€6);

4) The approach is congikly generalizable and can be used on bothroemtis and discrete
simulations (Beveridge and Schechter 1970); and

5) The approach does not require an explicit expression of thetwigj or constrairfunctions.

19



Disadvantages of the Complex Method center on its potential to yield only locally optimal solutions,
particularly when the response sgé is very onvoluted. However, in addition to the apparent
robust chaaicteristics of the ophizer (Barton1987), research suggests that problems involving
social welfare objectives, such as those often investigated withobioeic models, may inherently

yield an extensive range of acceptable rrmadimal solutions within the feasible region (Chapman

1987; Rowse 1988).

EXAMPLE APPLICATION

As a demonstration of the Complex Method and its potenti&y it agricultural eonomic
research, consider the production model described in Kazmierczak et al. (1993). The authors
examined the potential economic impacts of synergism between increased pesticide regulation and
the ability of pest organisms to develop resistance to the ctetioiology set. Concerns revolved
around the posdiity that regulabry withdrawal would lead taccelerated resistance development
to the control chemicals remaining post-regulation, thereby inducing long-run declines in the flow
of economic benefits from the perennial production system and increased use of pesticides. Given
the time-dynamic nature of the problem and thedaty of the pest/predator relationships in the
system, an empirical biological model was needed to realistically track not only fluctuations in
population levels and crop production, but also changes in the underlying genetic structure of the
populations. While such models had been developed by entomologists, they generally consisted of
complex computer simulations not easily summarized by a set of analytic equations (Tabashnik
1990). Simplification of the solution ape was an alternative that has been used in a number of pest
management studies, but this proved to be unsatisfactory given the desire for policy relevance. Thus,
the requirements of the problem suggested the use of an extemmeepsuch as the Complex
method, which could be implemented through a number of specific steps:

20



1)

2)

3)

Initialization.Generation of the initial simplex entailed the creation of a set of vertices, with
each vertex composed @f  elements representing a possible time-path of pest control
actions that could be taken over a 25 year planning horizon. Considering re-entry and day-
to-harvest restrictions, a baseline@-regulation scenario included 6 different control
chemicals available for use @ach of 20 time-steps per year. Thus, each element of a
vertex was defined as being the amount of a particular pesticide used in a specific time step,
giving each verte8000 elements or controllable variables. The levels obtainaldadiy

vertex element were bounded by labeled apfitn rates, and ranged in discrete increments
from zero use to 25 percent above the recommendedafiti ratfor each chemical in

each time pead. Given 3000 controllable variables, the initial simplex consisted of 3001
vertices uniformly distributed throughout the solutioasp

Ordering. Each vertex defined in step (1) yielded a system response in terms of resistance-
and/or regulation-induced changes in total economic surplus over 25 years. Gieachat
vertex evaluation required 30 seconds on a Pefitium /120mhz microcomputer, the entire
simplex consumed approximately 25 hours of caation time,jllustrating both the expense
involved in evaluating the initial simplex and the relatively inexpensive evaluation of
additional vertices generated in subsequent steps. The syspemseswere then used to
arrange the vertices in descending order relative to the amount of saplugenerated,

and the worst performing vertex was identified.

Reflection and Expansioithe generation of new and potentially superior time-paths of pest
control proceeded by calculating the centroid, or the mean of the control actions taken in
each speciffic time-step of a plannimgrizon across all vertices except the worst performer.
This point was used to determine the reflection meathich served to point the search
away from a poorly performing region of the solutioasp and towards the general region

21



4)

of all the other vertices. From this pointer, a new vertex waegsyg. Given the
summation nature of the centroid, this calculation was stored and altered for subsequent
reflections based on the entry and exit of vertices from the current simplex. Thus, the
computational expense of reflection and expansion was minimal. Identifyingpghspaate

values for reftction and expansion coefficients was dependent on system scaling and
required some experimentation, although optimum convergence speed dity gtalerally

occur when the reflection coefficient is one-half the magnitude of the expansion coefficient
(Lee 1986). Once prefted, a potentially superior vertex was checked against constraint
boundaries. Any vertex elements violating a constraint boundary were reset equal to the
value of the constraint boundary. The system response was theatgdfoerthe newly
projected pesticide use time-path and checked against explicit and implicit system
constraints. A preicted vertex was included in the simplex if all constraints were satisfied
and the associated systemp@sse egeeded that of the next-to-worst vertex. After the
simplex was reformed, stopping criteria (step 5) were checked and, if not satisfied, a new
worst vertex was identified and the process began again at step 3.

Retraction.If the projected time-path of pest control actions elicited a systqranss that

was no better than the pEise assoated with the next-to-worst vertex, then the new
vertex was retracted back towards the original inferior vertex until a better vertéaunds

If a superior pragcted vertex was not identifigtliring retaction, then the next-to-worst
vertex was selected and thecess restarted at step (3). If all the vertices were used as a
point of reflection wihout finding a superior vertex, shrinkage would have been employed
to reinitialize the simplex. This latter operatioiil wot be used if the rediction and

retraction coefficients arepproprately scaled.
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5) Search Termination.Using the Nelder-Mead form of stopping criteria, the search was
terminated when the simplex collapsed to a neighborhood defined in size as 5 percent of the
mean of the system responses for all the vertices in the current simplex. Random searches
were then condtted within the final simplex. If no superior pesticide use time-path was
found, the best porming vertex of the final simplex was defined as the appratain
optimal solution. Given a hypothetically comj@ control telsnology set, convergence

occurred in a maximum of 0.9 hours, or 102 iterations, after initialization.

CONCLUDING REMARKS

Empirical analyses of dynamic bioeconomic problems have been hampered over the years
by simplistic models of the biological components underlying system operation. But, while discrete
computer simulation provides a method by which realism can be introduced to agricultural modeling,
it has not been widely adopted as a research tool because of flity irmatelate simulation results
with theoretical system optimums. The Complex Method of simulatiamizgtion has the potential
to alleviate thislsortcoming of simulation studies, thereby providing economic researchers with a
powerful tool to investigte complicatedynamic bioeconomic systems that cannoabeurately
modeled using standard empirical techniques.

Perhaps the most important advantage of the Complex Method is the efficient use of
computer resources. If approached using dynamic progirg, the applgroduction problem
described above would require the simulation of every stage-sf the system. Thisformation
would then have to be stored for use in a recursive progieg algorithm. In essence, every
definable vertex in the feasible region would need to be evaluated. But with the Complex Method,
only a relatively small initial set of defined vertices needs to be evaluated, followed by a sequential

addition of vertex evaluations until an approabely optimal solution ifound. In general, only a
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limited subset of all possible vertices will ever have to be atadly with only a small number of
objective function values being stored at any given time. In fact, studies of theoretical deterministic
systems have suggested that less than 1 percent of all possible vertices need to be evahgated be
the Complex Method converges to an optimum (Azadivall&ed 988). Stochastic systems would
require additional simulations, with the number partially dependent on the fitgplvafuired for

the appropate onfidencelimit estimates. However, even analyses of stochastic systems use
significantly fewer simulations than traditional optimization alternatives. Tlaesers suggest that

the Complex Method can increase thdlitghto empirically investigite dynamic bioeconomic

problems within a framework that maintains both biological and economic realism.
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APPENDIX: A PRELIMINARY CONVERGENCE PROOF

The optimization theorem presented in this manuscriptfprtts the fundamental proposition
that there exists some non-degenérhtait simplex S* , given abounded seL(vﬁ) , that can
ultimately be identifiedirough the use of a relative increaseeptance critesn. Thus, the first
task in developing a proof of the theorem is to show that all simplexes belonging toacteetp
are, by infinite sequence theory, bounded. Secondly, the proof requireslithiatsanplex be
shown to exist under these conditions, and that a subsequence of a sequence of simplexes will
converge to this limit simplex. Lastly, it must be shown tfwata simplex arbitrarily close t8&"
movement of the simplex will result in an inferior pease from the system, implying that the

movements defined by the algorithm generdtmia simplex that is the optimum (W6ds 1985).

Compactness

Begin by lettingD be defined as thenwex hull of the seL(vv(»

D = {z z=ax+(1-a)y, ae[O,l],x,yeL(vv(;)} : (A1)

If, as defined in the algorithm, a vertex generated by the operations of oeflexintaction,

and/or expansion will only baccepted as a new member of the simplex if

O(v) > dva,) = dlvy) = ¢fv) (A2)
wherek indicates the iteration generating the vertex, then the simpg,kéi,vl'“l, ,vv'§+1> must,
by operational definition, be contained in stét/fj) , Which in turn is contained in conveX hull

In addition, the operation of shrinkage trivially yields vertices in theDse¢causd itself is defined

" Non-degenerate in this case signifies that at least one vertex of the simplex is different from the be{%*\}ertex of

the limit simplex. In practice, it means that the simplex has not collapsed to a single point in hyperspace.
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as being convex. This being the case, every simplex of the seq@}‘nce ategbbgrthe algorithm

will be an element of the corapt setD and are thbunded.

Existence of a Convergent Limit Simplex

Consider a potential sequence of best performing vertices, deno{eﬁ}by , frefh the
iteration’s simplex,S, . By congztness, it can be asserted that any subsequer{wgk]of , say
{v; } converges to a point that can be desiigdyv, .Assocated with the subsequen{:ef } is
a subsequence of simplex@a} . Continuing the process, ibadskest sequence of verticéqk a}
from @(a} is examined, a subsequen{oqkb} can be saicnwecge to a pointy, . By
construction,vokbavo* . Repeating tisocedure foeachordered vertew,, ..., v, , a subsequence
of the original sequence of simplexes, denotedS&j)y , iIs obtained. This subsequence has the

property, through congztness, that

v.' - v, i=0,1,...w . (A3)

Thus, any subsequent%a(j} can be said to conver§e t&v,,v, ,...,v,, > contaifed in

verifying that a convergetimit simplex will indeed exist.

Algorithmic Convergence to a Limit Simplex
Establishing that the movements defined by the algorithm actually lead to the Gextired
simplex requires that each step in the algorithm be examinedail. dTo accomplish this, a number

of preliminary relationships need to be established.
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Preliminary Relationships

Begin by assuming that the limit simplex

ST =<V, ,V,...,V, > (A4)

is not a degenerate simplex. The centroid of thewest vertic®s of  can then be identified as

_*

Ww-
- ziw Z %VVZ (A5)

and, fecause of strict concavity and the deflnltlcb(\/ > d)(v >for 1=0,1,... w-1, the relationship
w-1
o) > =Y ofv) + Zolv,) > dlv,) (46)
can be asserted.

Next, the mean system response distance from the centroid to the worst vertex can be

defined as
€ = —> >0 . (A7)

By the continuity properties assumed fpr ,&n0 implies that there exitsta such that, for

all z with the property| z-v >8, | d(2) c|>(v )|>e is also true. Thus, if

B = {z: [z-v*| > 5} (A8)

then for anyze B, | &(2)-d(V')|>€ , implying thad)(z)>d>(v\,;>
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Continuing with this line of argument, It be the smallest index suchbtklﬁ}: cb(v&)

Although it is possibldor j =0, it will generally be the case th@i<j Whecb(a/i*>>¢(vj*> . Let

o dv) - oy 0o

‘ 2

for O<i<j. Then, by continuity and the assumption tat0 , there ex&ts@ such that for

all z with [ z-v;" | >3, | d( z)—c]>(vi*>| >¢ . In addition, for0<i<j and, :max{ Si,g} :
B = {z Iz-v 1>} (A10)
or, if 0<j<i<w,

B = {z Iz-v 1>} . (A11)

Then, by letting ewzmax{%E, e(l)(vv'v‘>|} When(l)(vv'v‘>¢0 : anathmax{%a e} when
d)(vvf >:O, wheree is a positive preset value used to test faccaaptable reflected vertex, it can
be asserted by continuity argl>0  that there exi§3§ 20 such that for all | zwith), | >8W

Id)(Z)—cl)(vV;)\ >e,. If éwzmax{éw,g},then

B, - {z Iz-v, \|>6W} . (A12)

With this background aterial in mhd, choose an indekk  so tigat  is an element of the

subsequence of simplexes that converg&to , WhéfeBi, 1=0,1,...w . In other words, for
eachi ,thé™ bestvertex 8 is an element of the neighborBood  around thev}}‘ertex . By
construction ofB, , it is assured thatOk i <] anﬂ‘)} Is a non-decreasing sequence for all

i=0,1,...,w, only thej best vertices &  will havefnction value greater thad)(vj*) . This

being true, the proof can mreed by showing thator all types of movements described by the
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algorithm, § | will havej+1 vertices witfunction values greater tha¢(vj*> . If this can be
demonstrated, it implies tha;g* is not an accumulation gointhe sequencévjk} elsause
{(b(vjk>} is a non-decreasing sequence Witlit point d)(vj*>. This contradiction implies th&"

is a degeneratimit simplex, a suggestion that is false by defomti Thus, a simplex that is
arbitrarily close to the limit simplex caot be moved without causing a decrease in the system

response.

Reflection
Consider a potential refttion stedor S . This step vil be accepted and imcporated into

the current simplex only if

c|>(vrk> > cb(vv'v‘)(l + €) (A13)

for cl)(vvf >¢ 0. Becausa/v'v‘ €B,, , acceptance of the reflection also implies that

Ava)i1€) > dlvy) = dv) (AL4)
In the case Whereb(vm',‘): 0 v, isonly accepteclb(i\‘/r) >e ,where
c|>(vv'v‘>e > (l)(v\;> = q)(vj*} . (A15)

Thus, if reflection is indeed accepted at this itergtthen it would imply thatl>(vrk>><[>(vj*> , or that
there arej+1 possible points with function values greater ¢<aﬁ> . Thisuddes is a
contradiction and serves to show that reflection beginning with a simplex arbitrarily closdirrotthe

simplex cannot yield aditer system rg®nse.
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Contraction
Consider the contraction vertebgk takieom vv'v‘. Given the definition of a centroid

(equation [26]), drawing an analogy from equation [30], and aatiig v, from both sides yields

V" o= Ziwwz;(v —v> %(vv'v‘—v\;> . (A16)

Taking norms and using the triangle inequality provides the relationship

K —. 1% . 1, k -
v, -V | > =Y v -V ||+E||vwfvwll > €, . (A7)
i=0
In this casey,  would be accepted at ki iteration beab(u@‘e)m)(vi*) , indicating more than
j possible points with function values greater tldévﬂ and thus a contraction.

Next, consider another contraction vert@t& taken this fiiova the reféction vertexvrk

1 2
Vo= v+ 2v o
c 3 (A18)

If contraction is to be considered, then the following would have to hold:
v y) = dlv) > dlw) - (A19)

Taken together, the previous results imply that

ofo) > Jofv) Zofv.] (x20)
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> %[d)(v*)*ec]*%d)(ka) (A21)

> %¢(\7*>+§e ; :2), (j)(v\;>+% (A22)

_ %¢(\7*)+§€c+§ ¢(\/j*>+% (A23)

: %¢(\7*)+%€C+§[¢(\7*)+260+%] (A24)
- V) r2e, - ¢lv) (A25)

Therefore, ifvck is considered a potential solution atkHe iteration, it woudatdepted and

¢(\7Ck> >¢(vj*> -- another contradiction.

Expansion

Although, as demonstted in the Reflection seoti, vr" may not beaccepted by the
algorithm without causing a contradiction, it i#l gtossible to find that])(vrk> >c|>(vok> . If so, then

the expansion verte»gek is also a potentially acceptable vertex and needs to be considered. Defining

the reflection vector as
5° 5 ¢ (A26)
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it can, by strict concavity, be manipulated to yield

) < ) 2ol @
- v} Zlofv)-ofv)] (v28)

If it is asserted that
av) = ofv) (A29)

and vek Is acceptable, then

alve) > ¢v) > ofv) > o) (A30)

or a contradiction. Otherwise, dﬁ(vf) < d)(vc"> : th@ﬁvﬁ) < ¢(vrk> and the expansion vertex is not
accepted.

To this point, it has been demonstrated fbaany S sufficiently close t&* , a new vertex
can be obtained that provides a higher function value tﬁen . Thus, by contradiction, it is clear that
v/ =V, forj=1,2,...w. The next step is to show that the function values of all these limit points

are equal and connected.

Limit Point Relationships
Assume that there are tWwmit points of the sequenc{ék} ,say and each having

different response fuction values with the relationship

Glv) > dlve) . (A31)
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Letting

€ = —1 " 1 A32
3 (A32)

by continuity there exists &  such that fa-v"|>6", |d)(z)—d)(v*)]>e* . Then for skme
SeB = [z |z-v >8] (A33)

and every vertex d, has a response valeatgr thanq>(v ) +e’ >d>(v**) . Because it is also true
that{cb(vi k>} is a non-decreasing sequefwrei =0, 1, ... w, then it cannot be true that *  idirait
point of{q} . Therefore, alimit points of{S(} have the same pemse value.

To show that the set of limit points isrnected, assume that the seliroit points is not
connected and & =  be that set of imit pointé® . Thieoelld then exist the subsets  afid
of V" having the following properties:

1) TnT =02

2) T, uT, =V"

3) T, #o #T,,and

4) There existsopense®  &d such®ah O, = 2, T,cO,, T,c0,

It can be shown that there is a finite differerige  between the elements of the og@n sets
andO, . Letv" be a limit point o{Sk} i, and” be alimit point{ﬁ{} Tin . Additionally,

let

(A34)
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For every limit pointV * of{q} , leB " be theooesponding neighborhood defined by

B  =[zz-V'|>&] . (A35)
It can now be shown that there is some indlex  such that feralK {S}, is an element
of someB " . If this is not true, then there is an infinite subsequen&}of which has no elements

of any B" . By an earlier result, this subsequence converges to a agggesieplex. Thus, for
someK large enough, all elements of this subsequence are in a neighd®rhood dibout the

point or degenerate simplex.

SupposeS, , k>K, is in the neighborho&d for soradl, . Then, fop&ll , there is
no simplexSJ intheB” neighborhood ©f © . To see this, note$haB - for ewdty and the
step taken in the algorithm is bounded &y . Therefore, the new vertex at the next iteration is at

most 56° fromvV* . This new vertex may not lie in the hbarhood ofv** bcause the
elements of this neighborhood are at le@st fiom . Therefore, the new vertex must be
amember ofB* for some €T, .eBause each simple§  must be in amaighood of an
element ofT, , there are no other limit points in existence. Th&jis, is an empty set, and the set

of limit points is ©onnected.
A Corollary
Given the above proof for the main theorem, a corollary can now be drawn #tes take

operation of the algorithm to its implementation on a finite precision machine.

Corollary: If the standard condition facceptance o¥,  is implemented on a finite precision

machine, that is if¢(vr)>d)(vvffl> , then the conditions &mceptingv, hold.
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The general proof of the above corollary is relatively straightforwhed.e be the positive number
representable on the machine that is closest to zero, add let  be the smallest difference between any
two different representable numbers. Also,flgk) be the floating point valke of and define
&) =M1 §(v)].

Considerv, andv, and the conditigfv,) >¢(v,) . Iﬁlév2> 0] ﬂ)(fvl) >€b(v2) , then

El)(vl) >(i>(v2> - %é, and thus

(i) v,) > (i) V)| 1+ Aé
( 1) ( 2) ZCI)(VZ) (A36)
Similarly, for El)(vz) =0, if cT)(vl) >€|)(v ), then
n 1
(I)(V1> > €>E€ (A37)

and the conditionfor acceptingv, in the theorem also hédd the corollary. It has also been
conjectured that the set of limit points defined in the theorem are finite, and thus a single point.
Furthermore, it is believed that the limit point is the maximizer of thgorese function (Woods).

However, this analysis has not been suitably developed.
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