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MIGRATION AND THE DEGREE OF COMMON
PROPERTY FOR 'A NATURAL RESOURCE
Abstract

Migration, along with growth and harvest, is one of
three fundamental ways a natural resource stock can change.
Migration across property lines makes the resource common
property. This study models migration and the degree of .
common property along the continuum from the exclusive access
of private property through limited access to open access. It
was found that wildlife travelling under their own power are
more likely to be common property than resources powered by
exogenous forces such as the wind. Pests have a higher degree
of common property than valuable resources, faster growing
resources a lower degree, and inexpensively managed resources
a higher degree. Both exclusive access and open access are
difficult to reach and most migratory resources will have
limited actcess between the two extremes. .

By definition common property has more owners than one. Multiple owners
may over-exploit the common property and dissipate its scarcity rent. An
open-access fishery is the textbook example. Other examples are open-access
forest and grazing lands. Many natural resources, however, are common
property but with limited access. Rivers, -aquifers, oilpools, pollution,
pests, diseases and wildlife can migrate across fence lines but are access-
ible only to local landowners. These landowners may capture some of the rent,
especially if migration is slow and landowners are few.,

Almost all studies of common property simplify by assuming a highly mobile
resource and a large number of landowners. An open-access equilibrium is
compared to the private property equilibrium as if the rent were completely
dissipated. A study of 1limited access with partially dissipated rent must
model migration of the resource and imperfect competition among landowners.
Migration is one of three fundamental ways a resource stock can change and
has been extensively studied by hydrologists and mathematical ecologists but
not by economists. An exception is pollution transport models [1]. Imperfect
competition for a natural resource has been studied by Cornes and Sandler [3]
in a static model without migration.

The purpose of this article is to model the degree of common property on
the continuum from the exclusive access of private property to open access,
It emphasizes migration of a resource and briefly discusses imperfect
competition among a few landowners.

' First a dynamic. biceconomic model is specified to include both migratory
pests and valuable resources. Next, functional forms for migratiom from the
mathematical ecology literature are generalized and adapted to the study of
common property. The roles of migration and imperfect competition in
determining the degree of common property are defined. Finally, the model is

illustrated for different types of natural resources.
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I. A Dynamic Model

Wildlife are natural resources which are harvested directly and also
affect the production of other commodities. Animals can be hunted for food or
recreation. They may be pests and damage crop and domestic livestock
production, or they may be desirable species and produce amenities. Hereafter
the resource will be called wildlife, and the local landowners who exploit
the wildlife will be called ranchers. Other types of resources are speclal
cases and can be described with an appropriate alteration of terms.

A rancher manages a proportion of the total wildlife in his neighborhood.
How much control he can exert depends on the mobility of the wildlife and the
size of his ranch. He seeks to maximize the value of his initial stock of
wildlife which equals the net present value of direct benefits from
harvesting plus indirect benefits of producing livestock and amenities, minus

the costs of ranching.

0

(L) j[sg] = M;x J e_at [phht + pyy[st,kJ - pcc[ht,st,k]]dt :

[+]

where j is the net present value of the ranch; h is harvest of wildlife; y is
yield of livestock and amenities; c¢ is the quantity of inputs; s is the stock
of wildlife on the ranch; k is the carrying capacity of the ranch; Py py and
P, are prices; and § is the interest rate. Each of the neighboring ranchers
has a similar decision problem,

The stock of wildlife can change over time. The rate at which wildlife
reproduce and grow on a ranch with a limited carrying capacity depends on
intrinsic growth and population density. The rate at which they migrate
depends on population densities, their mobility and forces such as prevailing
winds, And the rate at which they are harvested is controlled, of course, by

the rancher.
(2) S, = g[st,k,r] + m[st,St,k,K,v] - ht ;

where s is the change over time in the stock of wildlife on the ranch; g is
biological growth; m is the net migration onto the ranch: r is the intrinsic
growth rate for a ranch with unlimited carrying capacity; § is the aggregate
stock on neighboring ranches; K is the aggregate carrying capacity of
neighboring ranches; and v is the velocity at which wildlife travel under
their own power or windpower. Migration on to the ranch is influenced by
stocks on neighboring ranches. Thus migration links decisions of the rancher
to the decisions of his neighbors.

Rivers, aquifers and oil pools are special cases of the model with ¥ set
to zero; pollution, pests and diseases are special cases with P, set to zero;

and fisheries and forests are special cases with y set to zero but migration



4

defined so that the location of the resource stocks 1is relative to the
location of fishing vessels or logging operations and not in relation to
fixed fence lines. l

The righthand side of equation (2) is the net quantity of wildlife used‘in
time t., Multiplying the net quantity used by an imputed price gives the total
rent paid for the wildlife. This rent is total user-cost. Subtracting total
user-cost from static profits, which equal total revenue of harvest plus
total revenue of livestock and amenities minus total costs of inputs, gives a

dynamic measure of profit at time t.

(3) w[ht,st,At] = phht + pyy[st,kJ - pcc[ht,st,k]

+ At[g[st,k,r] + m[st,St,k,K,v] - ht] :

where m is dynamic profit at time t and A is the imputed price or marginal
user-cost of wildlife. 7 is the current-value Hamiltonian and A is the
current-value costate. Neither is discounted; both are denominated in dollars
at time t. Because the costate captures the effect of current decisions on
the future, maximizing the Hamiltonian in each time period is equivalent to
maximizing the net present value of the ranch in equation (1) subject to the
change in the wildlife population in equation (2).

1f functions y, g and m are concave and c is convex, the Hamiltonian is
concave and the optimum is characterized by first-order conditions with
respect to harvest, wildlife and marginal user-cost plus an initial condition

on wildlife and a terminal condition on marginal user-cost.

(4a) an/aht =0 = Py - pcac/aht - At ; 0=<¢t | ,
(4b) -Bﬂ/ast = At - SAt = -pyay/ast + pcac/aét - At[ag/ast + am/ast]; 0 = t
{4c) an/aAt =s . =g+m- ht ; 0=t
(4d) 8y 1is given ;
(4e) 1lim e ®Fx =0 |
-+

Condition (4a) equates marginal revenue to marginal costs from harvesting
plus marginal user-cost. If there were open access, the rent due the scarce
wildlife would be dissipated and the marginal user-cost would be zero. The
harvesting decision would maximize current profits with no regard for the
future. TIf there were partially limited access, the marginal user-cost would
be non-zero but less than the full rent due the wildlife.

Marginal wuser-cost is defined by condition (4b) which can be rearranged

into a form somewhat like that of condition (4a).
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(4b") 0= [pyay/ast - pcac/ast]/[6 - it/At - Bg/ast - am/asé] - At .

The marginal revenue minus the marginal costs with respect to wildlife are
capitalized by an appropriate discount rate because a change in the stock of
wildlife affects all future stocks. The marginal user-cost is the present
value of all these effects. The appropriate discount rate is the interest
rate less the rate of capital gains, the marginal growth rate and the
marginal migration rate. Migration can dissipate marginal user-cost in two
ways. The first is directly through marginal migration, causing the same
effect as discounting the future too heavily. The second is indirectly
thfough changing stocks and altering marginal revenue, marginal costs and
marginal growth. First-order conditions for each of the neighboring ranches
are linked through migration and must be solved simultaneously to determine

stocks on the ranch and stocks on neighboring ranches.

II. Migration

Growth and harvest have been studied by Clark [1] and many others but
migration has not been included in biceconomic models. In the mathematical
ecology literature, Skellam [8] was among the first to study migration in
heterogeneous environments. His work has been supplemented by many authors
with surveys by Levin [4] and McMurtrie [6] and a text by Nisbet and Gurney
(7]. The foundation of this literature is a partial differential equation
describing migration at a single point in an infinitely large enviromment.
Wildlife may move about the environment but movement will not lead to
migration if it is aimless and undirected. Nor is directed movement, called
flux, sufficient for migration. Migration is the change in directed movement.

This c¢an be explained beginning with wildlife movement per unit of time
defined as:

vn ;
where v is wildlife velocity and n is wildlife numbers. Wildlife will move if
velocity is positive. Movement may mnot be directed, however, unless it
changes systematically.
Frdt = [van/ax + nav/ax] ;

where F is directed movement called flux, dt is a unit of time and x 1is a
position in the enviromment. Wildlife will move aimlessly if they are
uniformly distributed and their velocity is constant. Conversely, wildlife
movement 1s directed with non-zero flux if (a) there is a population
gradient, or (b) velocity changes. But flux is not migration, Migration is a
change in the flux over the environment.

an/ot = [BF/ax]/dt = [‘va"’n/ax2 + 2[av/3x][6n/3x] + na2v/ax2]

Movement can be directed and flux non-zero without causing migration.

Linearly distributed wildlife travelling at a constant velocity will move

14
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down the population gradient But each animal arriving at position x is
matched by an animal departing with no net migration. Uniformly distributed
wildlife travelling at a linearly changing velocity will move down the
velocity gradient but, again, with no net migration. Wildlife migrate if (a)
wildlife are mnonlinearly distributed, (b) : there are both population and
velocity gradients, or (c) velocity is nonlinear. With suitable functional
forms, these three conditions can describe a heterogeneous environment of
changing population densities, prevailing winds, territorial behavior,
hunting pressure by man, water holes, and refuges from predators.

Migration at a point in an infinitely large enviromnment does not fit the
bioeconomic model of the previous section, however. A point corresponds to
one unit of carrying capacity whereas a ranch may comprise many units. The
ranch is surrounded by a neighborhood suitable for 1livestock and the
neighborhood is part of the total enviromment occupied by wildlife. If the
environment were infinite, the degree of common property would be
indistinguishable between small and large ranches. Measured against infinity,
a ranch of one point would appear the same as a ranch encompassing the entire
neighborhood.

A large ranch has not been modeled in the literature but a finite
environment has been modeled by two approaches (McMurtrie, p.18 [6]). Either
wildlife are assumed to travel uniformly around a habitat but die immediately
if they go beyond fixed boundaries or wildlife slow as they travel up a
gradual incline from favorable to less favorable habitat. The model to be
derived combines elements of both these approaches. Boundaries are fixed to
allow comparison with the size of the ranch but the boundaries, themselves,
slow the velocity of approaching wildlife. The finite environment is
heterogeneous, causing slower migration onto larger ranches.

The model of migration can be summarized by a theorem and its corollary.

THEOREM 1l: For a larpge ranch 4in a finite environment, wildlife will

migrate under their own power or under wind power according to:

m_ = ZZ[pk] [02 ['73 + '?4] + Wnl]k .

The term in square brackets is average migration at a point in an infinite

environment. Variance of wildlife movement, o2, multiplies terms for the
second derivative of wildlife numbers, 54 + 5,. The distance wildlife travel
on a prevailing wind, w, multiplies a term for the first derivative of
wildlife numbers, n,. Average migration at a point is scaled up by k, the
size of the ranch, and modified by 2Z(pk), the probability that mobile
wildlife at the edge of the ranch will not reach a boundary of the
environment minus the probability they will hit a boundary. In an infinite
environment, wildlife would never hit a boundary and 2Z would converge to

unity. In a finite environment, 2Z falls toward zero as the size of the ranch
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increases. Wildlife migrate onto the ranch if the size of the ranch is less
than the size of the enviromment and (a) wildlife are nonlinearly
distributed, or (b) a wind combines with a population gradient parallel to
the wind. A population gradient perpendicular to the wind does not affect
migration. Territorial behavior, hunting pressure by man, water holes and
refuges from predators would make the wvariance of wildlife movement a

function instead of a constant and add a third reason for migration.

COROLLARY 1: The three parameters for the distribution_of wildlife numbers

can be observed by three cenguses., Migration becomes:

m[s,Sr,Sj,k,K,az,w] = ZZ[pk]{az[[Sr + Sﬂ]/K - st/k]hﬂ/[K + k]

+ w[sr ] S£]3w1'5)4[[K + k]l's - kl‘s]}k .

The three censuses are for total stock on the ranch, s, total stock upwind
to right of the ranch, Sr, and total stock downwind to the left, Sz. Wildlife
will migrate onto the ranch if it is smaller than the environment and (a)
wildlife are more densely populated on neighboring ranches or (b) wildlife
are concentrated upwind. This form for migration will be incorporated into
the bioeconomic model.

PROOF: A sketch of the proof follows. A detailed proof is in the Appendix.

The ranch and neighborhood are shown in Figure 1. Each point on the x-y
plane is one unit of carrying capacity. The small circle centered at the
origin of the xX-y plane represents the ranch of radius Py and area k; the
larger concentric cirecle represents the neighborhood of radius Pr and area
k + K. Not shown is the size of the environment which is larger yet of radius
P The number of wildlife at each point, n(x,y,t) is the vertical distance
to the sloping and convex surface above. Total wildlife on the ranch and over
the neighborhood are s and s + S. The x-axis is parallel to the prevailing
wind and ¢ is the angle from the wind of a line through the origin. A point
on the line can be expressed in either Cartesian coordinates (x,y), or polar
coordinates (p,f) where x = pcosf, y = psind and p is a radius. Often in the
literature only flux in the =x-direction is considered. Nisbet and Gurney
(1982, p.132) consider both the =x- and y-directions. In Figure 1, the
direction can be at .any angle but flux must be either toward or away from the
origin,

Flux of wildlife from right to left past point (p,f) along a line through
the origin equals the numbers of wildlife on the right multiplied by the
probabilities they will move to the left minus the numbers on the left
multiplied by the probabilities they will move to the right.
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Figure 1. Distribuéion of Wildlife Numbers

o) = [, 1 Bl ol - )

oo ) ofel - e et

where pr and éé are radii to the right and left of p; ¢ is the probabiiity
wildlife will travel either from right to left or from left to right; d is
the distance wildlife must travel on their own legs; P = Py is the total
distance travelled: and w ;s the distance travelled on the wind., The double
integral evaluates wildlife movement from all points on the right to each
point on the 1ef€.l k R

Figure 2 graphs probabilities of moving distarces to the right or left.
Distances are standardized'by'deviation o. The distribution is symmetric and
applies to wildlife travelling under their own power‘or on the wind in a
finite environment of diameter ZpK. Territorial behavior, hunting pressure,
water holes or wildlife refuges will alter wildlife velocity by shifting

deviation . A larger deviation increases the céharices wildlife will travel

‘longer distances. Except for hunting pressure, these shifts to o have been

included in models of infinite environmments (McMurtrie [6]). Shifts to o in a
finite environment are more complex and not fundamental to the study of
common property: Therefore, ¢ will be assumed constant. ) '

Flux at a point will be approximated to first-order by Taylor -expansions.
Wildlife numbers are expanded around point (p,f).
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Figure 2. Probabilities of Travelling Distances Left and Right from a

Point

e =i+ - Jowen ol 7
it < oo - - oo offe - )

where 0(+) are second-order and higher terms. Probabilities are expanded

. around distances with no wind, d(pr - 22,0,6). .

oo ) = o ) oo + o) .
o)) <l )] sl o] + o)

The expansions for distances can be simplified. Figure 3 shows distances
on the x-y plane. Wildlife must travel as if their destination was distance w
upwind from their actual destination. By the law of cosines, the distances

wildlife must travel on their legs are:

d[p,_. - pﬂ,w,ﬂ] - [[pr - p£]2 + w? - Z[pr - pf]w cose]0'5;
d 2 2 : 0.5
P = Ppawym=B] = Ylp = py|? +wé - 2p. - py|W cos|n-0d )

Both distances equal P. = Py when evaluated with w set to =zero. Derivatives

evaluated with w set to zero are:
ad[pr - pE,O.B]/aw = - gos #;

ad[pr - pE,O,w-B]/aw = cos #.
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Figure 3. Distances Travelled in a Prevailing Wind

If aided by a wind, wildlife must travel under their own power approximately
w cos# less than total distance, Pr = Py - If hindered by a wind, wildlife
must travel approximately w cosd farther.

Substitute the expansions into flux and simplify.

0 P 7
F[p.ﬂ] = dn/dp I I [pr =Py ¢[pr - pﬂ]dprd%
PP -

r

PP,
-n I I 2w cosf 94/8

- . |2 « |3
I oo+ o of)

K

The first term corresponds to vdn/dx dt in the introductory explanation of
flux and the second term to ﬁav/ax dt. Thus the first double integral defines
wildlife velocity unaffected by wind. The second double integral defines the
change in velocity 'due to wind., Velocity will be seen to equal a variance
weighted by a cumulative probability. In an infinite environment, the
cumulative probability converges to 0.5 but in a finite environment an
explicit probability must be assumed. Distances are sampled over a large

enviromment and will tend toward a normal distribution.

¢[pr ) pﬂ] _ [e'(Pr'P£)2/2a2/g(2r)0.5] it

’

where the mean distance is zero and the variance is oZ2.
Substitute probabilities into the first double integral for velocity.
Evaluate the inner integral and change the remaining variable of integration

to standard normal variable z.
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vdt = Zo2dt;

(p_-p)/o 2p [fo
(5) Z[P] =I ~ 6-22/2 (27[')-0.5(12 _ ‘Il K e_22/2 (2'”)_05(12
(p tp) /0

Thus wvelocity 1is the wvariance weighted by cumulative probability Z which
equals the difference between the two shaded areas under the standard normal
curve of Figure 2.|Doubling the shaded areas for the symmetric distribution
gives the total probabilities of travelling either short or long distances.
The area between 1is the total probability of travelling intermediate
distances, Wildlife travelling short, long or intermediate distances will hit
a boundary mnever, always or half the time. Consequently, the first shaded
area plus one-half the middle area represents the probability of not reaching
a4 boundary. One-half the middle area plus the second shaded area represents
the probability of hitting a boundary. The difference between the
probabilities of not reaching and hitting a boundary is 2Z. It is greatest at
the center of the environment and zero at a boundary. It is less for a large
variance making it impossible for wildlife in a small environment to travel
at more than a moderate velocity,

Differentiate probability and substitute into the second double integral
for the change due to wind. Evaluate.

av/dw dt = -2Zw cosd dt .

Because wind both assists travel from the right and hinders travel from the
left, its effect on flux from right to left is doubled. The effect of wind is
greatest at the center and least at a boundary of the environment.

Flux becomes, approximately,

(6) F[p,ﬂ] = 22[[02/2][6n/6p] + nw cosﬁ]dt .

Flux aleng an infinite 1line, in brackets, is weighted by the cumulative
probability to give flux along a finite line.

Migration is the change in flux per unit of time. To show this, note that
flux from right to left past point (p,f#) also equals the increase over time
in the numbers of wildlife at all points to the left.

) - [l o

-.pK'

If p was larger, length would be added on the left and flux would change as
wildlife on the added length changed.

[3F/3p]/dt = dn/dt ;
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Differentiating (6), the change in numbers over time is migration at a point,

not considering wildlife growth and harvest.
(7) dn/at = Z[GZ/Bp][[oz/Z][Bn/ap] + nw cosa] .

+ 22[[02/2][82n/3p2] +w cosﬂ[an/ap]]

To apply equation (7) the distribution of wildlife must be estimated. A

quadrative functional form will estimate up to second derivatives.

(8) n[p,ﬁ,t] = go(t) + [nl(t)cosﬂ + qz(t)sinﬂ]p + [ns(t)coszﬂ + q4(t)sin29]p2.
Only the intercept need be positive but if all coefficients are positive, the
distribution of wildlife slopes down and to the left and is convex as in
Figure 1. The coefficients are functions of time and will charige with
migration.

The ranch is not just a point on a line, however. Wildlife can migrate
onto the ranch past every point on its circumference. Migration toward the
center of the ranch past one point on the circumference will increase
wildlife numbers along the radius of the ranch. Total migration onto the

ranch equals the sum of migration onto all of its radii.

2 Py
m_ = I Py I dn/dt dpdd
0 0

Substitute in equations (7) and (8) and integrate to obtain THEOREM 1.

Integrate over the distribution of wildlife numbers to find total stocks.

Pl 2n
s_ = J I pn dfdp = kn, + kz[ns + q‘]/Aw i
t Jo Jo

P (/2 (
5, - I K I pn d0dp = Kny/2 + [ R + k}l.s i k1.5]'712/3“1.5
Py -w/2 Ny

+ K[K + 2k][q3 + n,l|/8x ;

o, 3n)2 i
5, = I K f pn dédp = Kno/2 - [ K + le'5- kl's]n12/3wl'5
Pr /2 -

+ K[K + Zk] ['73 + 174]/811' . .

Solve for n4, + n, by adding §, and S£ to get total stock on mneighboring

ranches, dividing by K to get average density, also dividing S, by k and

subtracting to get the difference in average densities, and rearranging.



13
ns + Ny = [[sr + sﬁ]/x - st/k] lwr/[K + k]

Solve for n, by subtracting SE from Sr and rearranging.
ny = [Sr - SB] 311‘1'5/4[[1( + k]1'5 - kl's]
Finally, substitute intoc migration to obtain COROLLARY 1.

N IITI. The Degree of Common Property

One rancher could have exclusive access to wildlife. Many ranchers could
have open: access. But more likely, a few ranchers will have limited access to
wildlife and the degree of common property will be between the two extremes.

Wildlife with legs can be common property whether or not they actually
migrate. It is enough they potentially could migrate because an increase in
stock would reduce migration.

am/ast = -22024ﬂ/[K + k]

Negative marginal migration causes marginal user-cost in equation (4b’) to be
too small. The effect is less on a larger ranch because the magnitude of
marginal migration declines.
Bzm/astapk = 12[62/6pk]024n/[K + k} :

where the size of the neighborhood, K + k, is constant. Except in an infinite
environment, the change in cumulative probability is negative and the change
in marginal migration positive. Therefore, marginal migration increases
toward zero and decreases in magnitude.

To reach exclusive access, the ranch must become large enough to encompass
the entire' environment traversed by wildlife. If the neighborhood suitable
for ranching is smaller than the enviromment, wildlife can travel beyond the
boundaries of the neighborhood. Even the largest possible ranch could not
gain exclusive access. At the other extreme, open access may seldom occur. A
large variance is not enough because the chance of hitting a boundary is also
large and cumulative probabilié& small. The environment must be large as
well. Nor is this result specific to the normal distribution in Figure 2. For

“open access, wildlife must travel unpredictably in a very large environment.

Wildlife travelling on the wind are common property only if they migrate.
Marginal migration does mnot depend on the wind and marginal user-cost is
affected only indirectly by changes in the stock on the ranch.

Non-cooperative, Nash behavior was assumed in deriving marginal migratiom,
but other types of behavior are possible [3]. A rancher must conjecture about
the wvariations to wildlife stock by his neighbors in reaction to his own

variations.
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am/ast - 22{02[[dsr/ds + dSB/ds]/K - l/kJAW/[K + K]

+ w[dsr/ds - dSE/d§]3ﬂ1'5/4[[K + k]1‘5 . kl's]}k ;

where dSr/ds and dSE/ds are conjectural variations. A rancher who does not
cooperate with his neighbors would have zero conjectural wvariations. But
suppose wildlife were uniformly distributed over the neighborhoo& and each
rancher were convinced his neighbors would react to maintain. a uniform
distribution. Cooperative conjectural variations would be

(dS_ + dS,)/K = ds/k ; dS_ = dS, .

Both migration and marginal migration would be zero and the common properéy
problem would be eliminated.

This cooperative approach is sometimes advocated as a "land stewardship®
policy. Cooperative equilibrium would be unstable unless each rancher could
monitor the actions of his neighbors and credibly threaten to retaliate
against exploitive actions. Cooperative management of wildlife migrating on
their own legs might be possible, but not of wildlife migrating on the wind.
Downwind ranchers have no credible threat against upwind ranchers.

In the illustrations to follow, noncooperative behavior is assumed. The
degree of common property among ranchers is measured by the proportion of
rent dissipated. The proportion dissipated equals one minus the proportion
captured and the proportion captured is the actual marginal user-cost divided

by'the hypothetical marginal user-cost of privately-owned wildlife.

IV. Illustrations
Migration in the equation of COROLLARY 1 causes economies of scale.
Illustrations are clearest if yield of livestock, quantities of inputs and

growth of wildlife are scale-neutral functions of population densities.

(9a) y=all - ps i :
(9b) c = [st/k]'"’ht;
(9c) g = r[l - St/k}St; i

Yield of livestock in equation (9a) has a maximum yield per unit of
carrying capacity equal to «. Yield declines as the degree of competition
between wildlife and livestock goes from no competition, with £ equal to
zero, to complete competition, with B equal to one. Inputs in equation (9b)
decrease with population density, where elasticity vy is greater than or equal
to one. Growth of wildlife in equation (9%9c) 1is described by a logistic.

function.

No migration
Nonmigratory wildlife with exclusive access are the benchmark In

determining the degree of common property for migratory wildlife with limited
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access. Table 1 contains model parameters for a hypothetical species,
crocodiles, which have some wvalue for harvesting but are predominantly
predators. In a steady-state, harvest equals growth. Multiplying by prices
gives steady-state revenue from harvest of crocodiles, revenues from yield of
livestock and costs of inputs. These are graphed versus crocodile population
in Figure 4. The two ranch sizes demonstrate the scale neutrality of the

growth, yleld and cost functions.

Table 1. Model Parameters for Crocodiles

ParameterT Value
Py, 15
P 5
P, 50
) 0.05
o 20
B 0.95
¥ 1.25
r 0.75
o? 0
W - 0
K+ k 9000
L 10000

1ph: harvest price; py: livestock yield price; P.: input price;

6: interest rate; oa: maximum livestock yield; B: percent competition with
livestock/100; +: input elasticity; r: intrinsic growth rate;

o?: variance of travel; w: wind distance; K + k: carrying capacity of

neighborhood; «: carrying capacity of enviromment.

Solving optimality conditions (4a), (4b) and (4c) with & and 1 set to
zero~ gives a steady-state of 0.30 crocodiles per unit of carrying capacity
for all ranch sizes. Crocodiles are managed at a low density because they are
pests with a negative marginal user-cost of -$209.40/unit of stock. An open

access pest would be managed at the other extreme with a density of 1, a

1. The first-order conditions are solved by General INterative Optimizer
(GINO) (Liebman et al, 1986).

0
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marginal user-cost of =zero, and total revenue from livestock yield minus
total cost of inputs as small as possible in Figure 4.

Another nommigratory species, koalas, are predominantly wvaluable and
compete little agalnst livestock with price Py of 150 and parameter g of
0.05. The exclusive access steady-state 1ls 0.67 koalas per unit of carrying
capacity. Koalas are managed at a high density because they are valuable with
a positive marginal user-cost of $67.47/unit of stock. A valuable open-access
qucies would be managed at a density of only 0.42 with a marginal wuser-cost

of zero and total revenue of harvest equal to the total cost of inputs.2

& (Thousands)
40 5

=*— TR haevest - T yield . ~K- 1C inputs I

4]

20

11

—10 ) 1 1 1 L
Lt} 200 00 [Hill} uon 1000 1204

Crocodiles

Figure 4. Total Revenues and Costs for Carrying Capacities of
500 and 1000

Density-dependent migration

Even 1if wildlife do not actually migrate, potential migration causes

economies of scale. To demonstrate, consider two mobile species, dingoes and

2, Total revenue equal to total cost is sometimes quoted as the rule for
open-access. It is not a general rule, however, but follows from assuming
marginal cost of inputs is constant with respect to_harvest. If marginal
cost of inputs is constant, inputs receive no rent and total revenue
equals total cost once user-cost is dissipated. But if marginal cost
increases with harvest, inputs receive rent and total revenue exceeds
total costs, even in open access, Zero marginal user-cost with no rent to
the resource is the general rule for open access.
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kangaroos. Assume both are .uniformly distributed over the neighborhood so
there is no actual migration. Dingoes are pests like crocodiles, kangaroos
are wvaluable 1like koalas but both have a standard deviation of travel equal
to the radius of the environment, 56.42, Figures 5 and 6 compare the
population densities and marginal user-costs among species. Immobile
crocodiles and koalas are managed the same on all sized ranches. Dingoes are
under-controlled yet even the smallest ranch captures some of the marginal
user-cost., No ranch captures all the marginal user-cost. Similarly, kangaroos
are over-exploited, particularly on small ranches. The marginal user-cost is

néver completely dissipated nor captured.
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Figure 5., Population Densities

In Figure 7, the proportion of marginal user-cost dissipated measures the
degree of common property. For density-dependent migration the degree of
common property is greatest on small ranches but never reaches one. Both the
environment and the variance would have to increase by a factor of 10 until
the smallest ranch was 1/100,000 of the enviromment before 98 percent of the
marginal user-cost of dingoes would be dissipated. Neither does the degree of
common property go to =zero. The largest ranch encompassing the entire
neighborhood but only 9/10 of the environment still dissipates 8 percent of

the marginal user-cost of kangaroos.
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Figure 6. Marginal User-costs
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Dingoes have a higher degree of common property than kangaroos because

pests damage livestock yields and amplify the effect that marginal migration

has on marginal user-cost in equation (4b’). Figure 7 compares two other
pésts, rabbits and brumbies, to dingoes. Rabbits are faster growing at rate r
of 1.00 and brumbies are less expensively controlled with price p 6 of 10.
Curiously, rapid growth decreases the degree of common property. Rabbit
populations are indeed greater but marginal migration becomes relatively less
important than marginal growth. Curiously, again, inexpensive control
increases the degree of common property. Brumbie populations are smaller but

marginal migration frustrates more extensive control efforts.

Wind-dxiven migration

Figure 7 also shows the degree of common ﬁroperty for two wind-driven
species, locusts and ducks. Locusts are pests. Ducks are wvaluable. Both are
carried on a wind which travels the radius of the environment, 56.42, per
unit of time. The population gradient in the direction of the wind is assumed
constant at 0.001 because both locusts and ducks migrate seasonally.
Migration 1s exogenous to the ranch and the degree of common property is
independent of ranch size. Locusts are costly with.a significant degree of
common property, but ducks are beneficial with a negative degree. The rancher
actually captures more rent from migrating ducks than he would otherwise.

Endogenous migration with a changing population gradient over time will
reach a steady-state of uniformly distributed wildlife with no gradient, no
wind-driven migration and a zero degree of common property. A larger ranch
will adjust more quickly to the steady-state but, in the long-run, the size

of the ranch is unimportant for wind-driven migration,

V. Conclusions

Migration, along with growth and harvest, is one of three fundamental ways
in which a wildlife population can change. Migration across fence 1lines
attenuates the right of a rancher to exclude others from the wildlife and is
a root cause of common property. Yet migration has seldom been incorporated
into bioceconomic models or studies of common property.

Migration at a point in an infinite environment has been modeled
extensively in the mathematical ecology literature. But a bloeconomic model
must superimpose a pattern of land ownership. Im this study, migration was
derived for various sized ranches in a finite neighborhood under the two
basic modes of power: wildlife travelling on their own legs and wildlife
powered by an exogenous force such as the wind.

It was found that wildlife travelling under their own power are common
property, even if they do not actually migrate, Their potential to enter or
leave a ranch restricts a rancher's ability to control them as pests or
conserve them as valuable wildlife. As a general rule, pests have a higher

degree of common property than valuable wildlife; faster pgrowing wildlife

&
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have a lower degree of common property; and inexpensively controlled wildlife
have a higher degree,

Wildlife travelling under wind power are common property only if they
actually migrate. For seasonal migration across a large environment, the
degree of 'common property is independent of ranch size. Pests have a higher
degree of common property, as before, but valuable wildlife have a negative
degree. A rancher receives "manna from heaven" and captures more rent than if
wildlife did not migrate. For non-éeasonal migration under wind power, a
uniformly distributed population with no migration and a zero degree of
common property will eventually be reached. Larger ranches may adjust more
quickly but in the long run the size of the ranch is unimportant.

Finally, migration can convey economies of scale to larger ranches with
lower degrees of common property on the continuum from open through limited
to exclusive access. Open-access can occur only for wildlife travelling
unpredictably in a very large environment. Even the textbook examﬁle of a
fishery may not meet these conditions. A fisherman using a vessel equipped
with sonar eliminates unpredictability and should capture rent from the
fishery. Certainly a rancher will capture a significant portion of rent from
wildlife. Nor can exclusive access be achiéved if the envircnment is bigger
than the neighborhood. The owner of all fishing vessels on the ocean or all
land in the vicinity of a national park could not capture all the rent.

In conclusion, common property is a key feature of natural resource
management. Migration is the root cause. Bioeconomic studies have avoided
modeling migration by comparing open with exclusive access. Govermnment
policies are based on this comparison. But the degree of common property
almost always lies between the two extremes and bioceconomic models and

policies should begin to include migration.
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Appendix
Detailed Derivation of Migration

For explanation of the mathematical symbols and the interpretation of
equations, please refer to section II "Migration". Equations with a t symbol.
are from the text. Begin with the definition of flux.

el L 1 o) ol - )

ol ] s o

Taylor expand numbers and probability.

+ n[pr,ﬂ,t] - n[p,ﬂ,t] + ['or - p]an/ap + 0[[pr - p]2: ;

! “

oo <ol - ol 1)

o

b ofaon - rpnt]) = ofaloy - 5pr0.6]) < wfoevad) resm] + ofst]:

.

qs[d[pr - pﬂ,w,ﬂ-ﬂ]] - ¢rd[pr - pﬂ,o,ﬂ'-ﬂ]] + w[aqs/ad] [ad/aw] + o[w2]

.

Define distance.
t d[pr - pE.w,ﬂ] = [[pr - 92]2 + w? - 2[pr - pﬂ]w cosﬂ]o's;

t d[pr - pB,w,fr—B] = [[pr - p£]2 + w? - Z[pr - pz]w cos[fr—ﬂ]]o'S.

Evaluate distance and its derivative at zero.

d[pr = 93-0:9] - pr - P£§
d[pr - p‘e,lolﬁ-g] = pr - PE-

[a/aw]d[pr - pj,w,all
w=0
2 "0-5 i .
= 0.5[[pr-p£] + w2‘ - Z[pr-pﬁlw cosﬂ] [2W - 2[pr-p£]cosﬂ]

-1
e o o

t 6'd[pr - pB,O,G]/aw = - cosf .

w=0
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el - semed)]
S e e ) = O S
< beod (o) )

+ = - pcosw cosf + sinzk sind .

w=0

t ad[pr - pE,O,ﬁ-GJ/Bw = cos #§.

Substitute into the expansion of probability.

¢[d[pr-p£] ,w,ﬂ] - ¢[pr-p£] - W cosf 8¢/6[pr-p£] + O[Wz] ;

¢[d[pr-_p£],w,w-ﬂ] —-¢[pr-p£] + w cosf 6¢/a[pr—p£] + O[WZ] .

o) = Tl o s sl ol
oot e+ o] oo sl ol Mo,
[T b - oend) - 2o s
P R B
o] o of s,

f F[p’(;] = on/0p J: J:'N [pr ) pﬁ]'qﬁ[pr ) pﬂ]dprdp,e
K

P P
- n I-P J'pn 2w_ cosf aqﬁ/a[pr - p‘e]dprdp‘e + 0[-]2 + 0[-]3
7]
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Define probability as normal.

. ) ¢[Pr ] p£] _ [e-(Pr-P£)2/2a2/a(2ﬂ)0’5] .

Evaluate the first double integral from flux.

r

fp Ip” [pr - p£]¢[pr - pf]dprdpg n

PP
-(p_-p;,)2/20%
- dt I I [pr - pﬁ]e r 4 Jo(2m) 03 dp_dp,
-(p_~py)2 /207 -0.51p ~p i
= dt I oe YA (21) Lok de
p =P
/
0 -(p _-p,)2/207 -(p-p)2%/20% -0.5
= dt J -a[e e 4 - e £ ][Zﬁ] dp£ .
-px
z = [p,c - pf]/a z = [p - pj]/d
dz = - dpz/a dz = - dpj/a
(p.-p)/o -22/2 ) 0 -z2/2 -0.5
= dt 02[ J ® e 27y %24z - J e (2%) dz]
ZpN/U (PK+P)/U
2p Jo 2
(p_-p)/a -z2/2 K z2/2 -0.5
~ dt 02[ I " e (2m) 034z - e (27) dz]
o (p tP)/0 :

+  wdt = Zo2dt.

Differentiate probability.

:

a¢/a[pr-p£] - - [{pr«bﬁ] e-(pr-pf)z/zaz/aa(zﬂ)°'5] at .
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Evaluate the second double integral from flux.

P P, 3
I_ I 2w cosf 3¢/a[pr - Pg] dprdpg ‘
PK P
A
’ ‘(Pl._.'pﬂ)Q/z‘JJ2 0.5
= - 2w cosﬂ[dt/a] II [pr - pﬂ]e Jo(2x) dprdp‘E
t dv/8w dt = -2Zw cosé dt .
Simplify flux.
f F[ ,e] = 22[[02/2] [an/ap’] + 1w cosa]dt )
Differentiate to get migration at a point.
1 dn/dt = 2[62/6p][[02/2][8n/8p] + nw cosﬁ] )
+ 22[[02/2][62n/6p2] + w cosB[Bn/ap]] . <
Define the wildlife distribution.
t n[p,ﬂ,t] = ny(t) + [ql(t)cosﬂ + n2(t)sin6]p + [qs(t)coszﬂ + n4(t)sin26] p?
Define migration onto the ranch.
2 Pl )
1 m,_ = Io Py IO an/8t dpdf :

[ o] - o] e
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Differentiate the wildlife distribution.

an/dp = n,cosf + n, sind + 2[q3c0528 + msin"’ﬂ]p

Substitute into migration within fluxes, F(pk,ﬂ) and F(p,8), and integrate.

~

0dd powers of cosf# and sinf are . .zero.

27
m,_ = j Py z[pk]{a"’.[nlcosa + n,sind + 2[q'3c0328 + q4sin2€]pk]

+ 2W[r]0c039 + [q1c0528 + n,sind cos{i]pk + [r)scosaﬂ + n,,sinzacosﬂ]pf;l} -df

27
- J. Py z[O]{02 [q1c059 + qzsinﬂ] + 2wn, cosﬂ.} d4
0 .

= Py Z[pk]{?z Z[ns + n4] wpy + 2umy ﬂpk}

1 m_ = ZZ[pk] [a"'[qa + r;“] + wnl]k .

Integrate stocks on the ranch.

Pr 2n
b s, = J I pn dédp
_ 0 Y0

0 27 _
= I k J. p[qo+ [qlc‘osﬂ + q_QSinﬂ]p + [q3c0529 + n4sin26]p2]d9dp
o Jo |

Pr
I Pro2n + p3[ﬂs+ n4]w dp
0

I

PE Mo + *pi[n3+n4]ﬂ

= kn, + k"’[qa + nq]/hvr .

—
in
rt
E
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Integrate the stocks to the right of the ranch.

7

Pr w/2
Sr = J j p[qo + [q1c059 + qzsinﬂ]p + [q5c0520 + ndsinzﬁ]pz]dﬂdp

Y
= I K pqu[w/Z + ﬂ/2] + p2q1[1 + 1] + p3|ng + 14 [n/4 + ﬂ/&] dp

- 172[0f - o|nom + 2/3[0g - sp|ne + 1/8[ng - o] [ns + no]

1

1/2 [K+k-k] no+2/3 [[K+k] 1.3 g1 5] n./xr 141/8 [[Kﬂc] 2. kz] I:n3+n4:| /m

—
7]
I

Kng/2 + [[K + k]l'S-kl'S]n12/31rl'5 + K[K + 2k] [ns + r'“]/Bvr .

Integrate stocks to the left of the ranch.

2

PR 3n/2 '

S£ = I 'j 12 P[ﬂo + [qlcosﬂ + qzsinﬁ]p + [n3éos29 + q4sin2€]]d8dp
P T
k

p
= I Kpn0[3ﬂ/2 - ﬂ/Z] + pznl[-l & 1] + p3ny + 1, [3ﬁ/a - ﬂ/&]dp ]
Pk - -

r

-
K + 2k] ng + q4]/8ﬁ .

.

} S, = Kne/2 - [[K + k]l's-kl's]q12/3w1'5 + K

Solve for 53 + n,.

Sr + SB = Kn, + K[k + ZR][QS + q4]/4W .

7]

[Sr + Sﬂ]/K - st/k =1g - fg + [K+2k-k] [ns + n,,]/b,yr = [K+k] [ns + q4]/£m

or

R Vo [
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Solve for ny.
S_ - S, = [[K + k]l's - k1'5]q1 47313

or

tom = [sr . sﬂ] 3«1'5/4[[1< + k]1°5_ ] k1-5]

Finally, substitute 55 + n4 and n; into migration.

t m[s,Sr,SB,k,K,UQ,wJ = ZZ[pk]{&2[[Sr + SE]/K - St/k]4ﬂ/[K + k]

f + w[Sr - 32]371'1'5/4[[1( +

k]l.5

; kl's]}k .





