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1 Introduction
All econometric models are wrong, but some are useful. They mirror only certain
aspects of reality, and these imperfectly. But in complex situations they can
provide structure and clarity that improves decisions. The process of discovering
the reliability with which various aspects of reality are accommodated in an
econometric model is known as specification analysis. It is a vital step in learning
about the properties of a given model, in determining whether to use a model
in actual decision making, and in improving models and, thereby, decisions.
This article outlines the essentials of Bayesian specification analysis, as prac-

ticed using state of the art simulation methods. This approach is especially
pertinent to models used for decision making, because Bayesian inference is the
econometric cornerstone of decision making within the expected utility theory
on which virtually all modern economics is constructed ([6], [22]). It is attrac-
tive in practical work because it is straightforward to apply and can be used to
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study the congruence of any complete econometric model with relevant features
of the data.
This topic has received close attention in the Bayesian mathematical sta-

tistics literature but is less well known among practicing applied economists.
There are two approaches, sometimes combined in various ways. The first is to
ask: having expressed a model, what are its predictions for observables, before
using data for inference? How consistent are these predictions with the actual
data? The classic exposition of this approach is [4], and a recent treatment
using modern computational techniques is [11]. Combining the terminology of
this literature and that of econometrics, we use the term predictive specification
analysis for this approach here.
The second approach is to ask: having expressed a model, and having used

the observed data for inference about its parameters, what would we predict
would happen in an independent replication of the observables? (In a prediction
problem this is similar to asking what would happen in the next T observations,
where T is the size of the original sample.) The event that the replications are
quite different from what was actually observed, for some interesting aspect of
the data, constitutes the notion of surprise: this idea has been developed in a
series of important studies including [14], [16], [15], [20] and [2]. We use the
term post-predictive specification analysis for this approach.
Section 2 of this article briefly reviews the conceptual foundations of Bayesian

inference in econometrics. Since the ideas treated in this paper are best first
understood by means of examples, Section 3 sets out some models of changing
volatility in financial returns and introduces a data set for their application.
Predictive specification analysis is taken up in Section 4, which includes an ap-
plication to evolving volatility. Section 5 turns to the formal comparison of
alternative models. The process of post-predictive specification analysis is set
out in Section 6 and applied to evolving volatility models. Section 7 concludes.

2 Bayesian analysis
The concept of a complete model is central to Bayesian specification analysis. A
complete model specifies the distribution of a T ×1 vector of observable random
variables, y ∈ Y, by means of a kA× 1 vector of unknown parameters θA ∈ ΘA.
Conditional on θA the probability density of the observables is

p (y | θA, A) =
TY
t=1

p (yt | y1, ..., yt−1,θA, A) (1)

This function is familiar from non-Bayesian analysis - after y is observed,
and the observed value yo replaces the argument y, (1) becomes the likelihood
function.
A complete model includes a prior density for the unobservable parameters,

p (θA | A). The combination of the prior density and the density for observables
(1) provides the joint density of parameters and observables:
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p (θA,y | A) = p (θA | A) p (y | θA, A) . (2)

This joint distribution is the key to Bayesian inference and specification
analysis. The marginal density for y,

p (y | A) =
Z
ΘA

p (θA,y | A) dθA, (3)

is the model predictive density of the observable y. Conditional on observed
y = yo,

p (θA | yo, A) = p (θA,yo) /p (yo | A) , (4)

the posterior density of the unknown parameter vector θA.
The third and final component of a complete model is a vector of interest

ω. Elements of ω may include transformations of parameters ω = g (θA;A),
for example the value of returns to scale in a production function. They
also include observables whose values are not yet known, for example ω =
(yT+1, yT+2, yT+3)

0 in a forecasting problem. A complete model provides the
density p (ω | θA,y, A). Then the model predictive density of ω is

p (ω | A) =
Z
ΘA

Z
Y

p (θA,y) p (ω | θA,y, A) dydθA, (5)

and the posterior density of the vector of interest is

p (ω | yo, A) =
Z
ΘA

p (θA | yo, A) p (ω | θA,yo, A) dθA. (6)

Expressions like (6) are not immediately useful in applications, because
the integral on the right side typically cannot be obtained in closed form.
In modern Bayesian analysis this problem is usually obviated by means of
a posterior simulator. This is an algorithm that produces random vectors
θ
(m)
A (m = 1, 2, ...) whose distribution corresponds to the posterior density (4)1.
Simulation from the other three distributions, corresponding to the prior density
p (θA | A), the observables density p (y | θA, A), and the vector of interest den-
sity p (ω | θA,y, A) is typically straightforward. (Some examples will be offered
subsequently.) Taken together, these simulators make it possible to generate
synthetic random vectors from each of these distributions above. For example,

to simulate from (3), draw eθA ∼ p (θA | A) and then ey ∼ p³y | eθA, A´; to simu-
late from (6), draw eθA ∼ p (θA | yo, A) and then eω ∼ p³ω | eθA,yo, A´. These
capabilities are central to implementing the program of Bayesian specification
analysis described in this article.

1These algorithms use varied methods, some quite sophisticated, to achieve this correspon-
dence. Moreoever, the nature of the correspondence varies with the simulator. These details
are beyond the scope of this article, but there are quite a few accessible surveys and texts,
including [8], [5] and [10].
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3 Some alternative data distributions
The modeling of returns to financial assets has emerged as a challenging problem
of considerable practical importance in recent years. The importance stems
from such decision problems as the pricing of financial derivatives like options
and strategies for avoiding risk such as hedging. In all of these situations the
distribution of asset returns, and in particular the conditional distribution of
future asset returns, is central to rational decision making. The problem is
interesting, because the distributions in question are clearly not normal and
do not appear to be of any other simple form. There is also strong evidence
that the spread of distributions, and possibly the shape, changes as conditioning
information evolves.
A leading model that captures some of these characteristics for a single asset

return is the generalized autoregressive conditional heteroskedasticity (GARCH)
model introduced by Bollserslev [3]. Denote the observable asset return from
period t− 1 to period t by yt and the variance of yt at time t by ht. Given ht,

yt ∼ N (µ, ht) (7)

and variance evolves as

ht = α+ γ (yt−1 − µ)2 + δht−1. (8)

So long as | γ + δ |< 1 the return series {yt} is stationary and displays peri-
ods of both high volatility (large values of (yt − µ)2) and low volatility (small
(yt − µ)2) relative to its unconditional variance of α/ (1− γ − δ). The uncon-
ditional distribution of yt is non-normal - it displays excess kurtosis, and the
accompanying “fat tails” in its unconditional probability density relative to the
normal.
The GARCH model so formulated still tends to display an unconditional

distribution with insufficient weight in its tails relative to data histograms. This
defect is often obviated by substituting

yt ∼ t (µ, ht; ν) (9)

in place of (7). The Student-t distribution is more leptokurtic than the normal
distribution. As the degrees of freedom parameter ν falls, the tails of the dis-
tribution fatten. Conditional moments of yt exist only up to order ν, so that
ν > 2 is required for finite variance, ν > 4 for a finite fourth moment, and so
on. The t-GARCH model, consisting of (9) and (8) is widely regarded as the
best fitting simple model for financial asset returns.
An alternative model for financial returns is the Markov normal mixture

model ([19],[21]). In this model there is a latent state st associated with each
period t, taking on one of the values st = 1, ...,m. If st = i, then

yt ∼ N
¡
µi, τ

2
i

¢
(10)

The transition between states is governed by a first order discrete Markov chain,

P (st = j | st−1 = i) = pij .
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If pii >> pij (j 6= i) for most i, and if there is a substantial difference in the µi,
or (particularly) in the σ2i from state to state, then yt will display persistence
in volatility.
The number of states in the Markov normal mixture model can be chosen

to be as large as desired. As a consequence, the model shares the flexibility of
many nonparametric methods. Nevertheless it imposes some constraints that
are uncharacteristic of financial asset returns. The most important is that the
return series {yt} is serially uncorrelated (a good approximation for many re-
turn series) if and only if µ1 = ... = µm ≡ µ, but then the distribution of
yt is necessarily symmetric about µ (not so good). This and similar problems
can be avoided, and greater flexibility achieved, by substituting a more general
distribution for (10).
This extension is accomplished in the compound Markov normal mixture

model [13], which is doubly indexed by a latent state vector st = (st1, st2)
0.

Given st = (i, j)
0,

yt ∼ N
¡
β + φi + ψij ,σ

2σ2iσ
2
ij

¢
. (11)

The first index st1 evolves exactly as does the index st in the Markov normal
mixture model. The second index st2 depends only on the contemporaneous
st1, with

P (st2 = j | st1 = i) = rij .
Thus the compound Markov normal mixture model is the same as the Markov
normal mixture model, but with (10) replaced by a mixture of normals distrib-
ution.2

4 Predictive specification analysis
The GARCH and mixture distributions do not, alone, constitute complete mod-
els. It remains to specify prior distributions, as well as a vector of interest. The
process of predictive specification analysis consists of three steps: choosing a
vector of interest that summarizes interesting aspects of the data, ω; (2) select-
ing a trial prior distribution; and (3) examining the implications of the prior
distribution for the vector of interest ω. Steps (2) and (3) may be repeated,
experimenting with different prior distributions. This process is best described
by illustration.
The outstanding statistical characteristics of returns to financial assets tend

to be changing but persistent volatility, excessive leptokurtosis relative to the
normal distribution, and the “leverage” phenomenon in which extreme negative
returns are more likely to presage high volatility than are similarly extreme
positive returns. For some return series, the distribution of asset returns is also
skewed to the left.
These characteristics can all be captured through transformations ω of the

observable returns y. The transformed observables used in this study, which
2A detailed discussion of this model, including the apparent identification problem in (11)

is given in [13].
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constitute the vector of interest, are detailed in Table 1. The first three functions
capture persistence in volatility: ω1 is the first order sample autocorrelation
coefficient of the series

©
y2t
ª
, and ω2 is the 20th order sample autocorrelation

coefficient. The function ω3 is the ratio of ω2 to ω1, which is one aspect the rate
of decay of the sample autocorrelation function of

©
y2t
ª
. The next two elements

of ω address leptokurtosis: ω4 is the sample excess kurtosis coefficient and ω5 is
the ratio of the range statistic to the interquartile range. The sample skewness
is ω6. Leverage phenomena are captured by ω7, the sample correlation between
yt and y2t+1, and ω8, the sample correlation between yt and y2t−1. The last
element of the vector of interest, ω9, is simply the sample standard deviation,
whose importance will become clear shortly.

Table 1
Definition of vector of interest

Preliminary statistics:
yT =

PT
t=1 yt/T sT =

PT
t=1 (yt − yT )2 /T

y
(2)
T =

PT
t=1 y

2
t /T s

(2)
T =

PT
t=1

³
y2t − y(2)T

´2
/T

ω1 First order volatility
PT−1

t=1

³
y2t − y(2)T

´³
y2t+1 − y(2)T

´
/T

ω2 20th order volatility
PT−20

t=1

³
y2t − y(2)T

´³
y2t+20 − y(2)T

´
/T

ω3 Volatility decay ω2/ω1
ω4 Excess kurtosis

PT
t=1 (yt − yT )4 /T (sT )2 − 3

ω5 Quantile ratio
¡
y(T ) − y(1)

¢
/
¡
y(3T/4) − y(T/4)

¢
ω6 Skewness

PT
t=1 (yt − yT )3 /T (sT )3/2

ω7 Leverage ahead
PT−1

t=1 (yt − yT )
³
y2t+1 − y(2)T

´
/T
³
sT · s(2)T

´1/2
ω8 Leverage behind

PT
t=2 (yt − yT )

³
y2t−1 − y(2)T

´
/T
³
sT · s(2)T

´1/2
ω9 Standard deviation (sT )

1/2

To illustrate Bayesian specification analysis, we shall apply the GARCH
and mixture models described in the previous section to the daily returns of the
Standard and Poors 500 index used in [21]. It extends from January 3, 1928,
through April 29, 1991, a total of 17,052 observations. Returns are formed
as yt = log (pt/pt−1), where pt is the daily index; see [21] for complete details.
Table 2 provides, in the first column, the observed values ω = ωo for this period.
To interpret these values, consider a model for returns that is much simpler

than those described in the previous section: yt ∼ N
¡
µ,σ2

¢
i.i.d. The sampling

distribution of ω1, ...,ω8 does not depend on the value of µ or σ2. Therefore
the model predictive distribution of each of ω1 through ω8, for a sample size of
17,052 (or any other size) will be the same no matter what the prior distribution
of the unknown parameters µ and σ2. Some quantiles of this distribution are
also indicated in Table 2.
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Table 2
Predictive distribution of vector of interest

Gaussian i.i.d. model
Data Median (25%, 75%) (1%, 99%)

ω1 1st volatility .218 .000 (-.005, .005) (-.018, .018)
ω2 20th volatility .083 .000 (-.005, .005) (-.018, .018)
ω3 Volatility decay .382 .000 (-1.00, .982) (-31.3, 31.9)
ω4 Excess kurtosis 22.4 -.001 (-.026, .024) (-.083, .090)
ω5 Quantile ratio 39.9 5.874 (5.686, 6.089) (5.301, 6.761)
ω6 Skewness × 100 -.373 .000 (-.010, .010) (-.030, .030)
ω7 Leverage ahead .0312 .0000 (-.0052, .0053) (-.0177, .0179)
ω8 Leverage behind -.0752 .0000 (-.0051, .0052) (-.0180, .0176)
ω9 Stan deviation .0115

The failure of the normal model is strikingly evident. None of the character-
istics of the data captured in the functions of interest ω are consistent with an
i.i.d. normal model. The observed values of volatility

¡
ωo1,ω

o
2,ω

0
3

¢
, the thickness

of the tails of the distribution (ωo4,ω
o
5), skewness (ω

o
6) and leverage (ω

o
7,ω

o
8) are

so improbable as to be impossible for most practical purposes.
In the GARCH model, as well as in the other models considered in this

article, the model predictive distribution of ω depends on the prior density
p (θA | A) as well as the data density (1). This is generally the case, as is
evident from (2) and (5). It is therefore necessary to specify a proper prior
distribution for the parameters µ, α, γ and δ of the GARCH model. Given
the prior density p (θA | A), the simulation eθA ∼ p (θA | A) followed by ey ∼
p
³
y | eθA, A´ followed by the computation of eω as indicated in Table 1 (with eyt

in place of yt) produces a single drawing from the predictive distribution with
density (5). Repetition of this process many times provides quantiles for the
predictive density p (ω | A).
This exercise is useful for several purposes. First, it yields an informal in-

dication of whether a GARCH model is capable of accounting for the observed
values of the vector of interest ωo provided in column 3 of Table 2. If, after
experimenting with alternative prior distributions, we found that some of these
values were well outside (say) the centered 98% predictive interval, we would
question the ability of any model with a GARCH data density to account for
the salient observed features of the data. We might then carry out the exercise
with alternative models, rather than invest resources in developing a posterior
simulator (or even non-Bayesian estimation methods) for the GARCH model.
Thus, this exercise can be an effective part of research strategy in applied econo-
metrics.
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Table 3
Predictive distribution of vector of interest

GARCH model
Data Median (25%, 75%) (1%, 99%)

ω1 1st volatility .218 .335 (.154, .468) (.003, .710)
ω2 20th volatility .083 .0013 (-.004, 010) (-.016, .188)
ω3 Volatility decay .382 .004 (-.123, .044) (-.568, .849)
ω4 Excess kurtosis 22.4 1.49 (.206, 10.9) (-.043, 662)
ω5 Quantile ratio 39.9 11.03 (6.89, 23.4) (5.52, 151)
ω6 Skewness -.004 .000 (-.0003, .0003) (-.037, .034)
ω7 Leverage ahead .0312 .000 (-.013, .013) (-.164, .168)
ω8 Leverage behind -.0752 .000 (-.014, .013) (-.194, .191)
ω9 Stan deviation .0115 .013 (.006, .031) (.001, .245)

The GARCH model does not fail in this way. Table 3 provides quantiles for
the predictive density of ω for a GARCH model with the prior distribution

log (α) ∼ N (−10, 2.2) , (12)

(γ, δ, 1− γ − δ) ∼ Beta(1, 1, 1). (13)

The distribution (13) corresponds to a “flat” prior for γ and δ, defined on the
unit simplex {γ > 0, δ > 0, γ + δ < 1}. Given this prior, (12) was chosen to
provide a range of sample standard deviations (ω9) roughly centered at the
observed value of .0115 but including a wide range of alternative values. Alter-
natives to (13)–for example, Beta distributions with somewhat different values
of the parameters–had distinct but small effects on the predictive distribution
of ω.
This exercise serves two other purposes as well. First, it provides a concrete

interpretation of the model and an understanding of the prior distribution. Any
model must be understood ultimately in terms of its implications for observables,
and the construction of p (ω | A) does precisely that. As changes in the prior
are made, their effect on p (ω | A) can be studied. This is essential for a serious
subjective Bayesian, and a useful learning exercise for anyone interested in the
properties of the model.
The other purpose served by the predictive density p (ω | A) is to provide a

common ground in setting prior distributions for alternative models. For exam-
ple, suppose the prior distribution for α were log (α) ∼ N (0, 2.2) rather than
(12). Then the GARCH model would suffer in comparison with other models,
because the variance of the observable would be pushed toward unreasonable
values by the prior distribution. As will be seen in the next section, it is impor-
tant to guard against such situations, which can arise unwittingly if priors are
not taken seriously.
For these reasons we repeat the exercise of drawing from the predictive den-

sity p (ω | A) for the other three models under consideration. The prior dis-
tribution for the t-GARCH model begins with the same prior distribution (13)
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for γ and δ. The prior distribution for the degrees of freedom parameter ν
is ν − 4 ∼ χ2(4). The restriction ν > 4 ensures the existence of population
conditional fourth moments; without this restriction, the sample measures of
volatility and excess kurtosis, for T = 17, 052, can become so large as to over-
flow computer floating point representation. The prior distribution of α was
again chosen to bring ωo9 well within its support; here, log (α) ∼ N (−12, 2.2).

Table 4
Predictive distribution of vector of interest

t-GARCH model
Data Median (25%, 75%) (1%, 99%)

ω1 1st volatility .218 .334 (-.187, .459) (.004, .718)
ω2 20th volatility .083 .001 (-.002 .012) (-.014, .244)
ω3 Volatility decay .382 .004 (-.007, .052) (-.458, .935)
ω4 Excess kurtosis 22.4 17.2 (3.23, 196) (.634, 3607)
ω5 Quantile ratio 39.9 29.88 (14.6, 113) 7.98, 6.0 ×105)
ω6 Skewness -.004 .000 (-.002, .002) (-.204, .211)
ω7 Leverage ahead .0312 .000 (-.027, .026) (-.343, .344)
ω8 Leverage below -.0752 .000 (-.028, .027) (-.350, .352)
ω9 Stan deviation .0115 .008 (.003, .025) (.001, 2266)

The quantiles shown in Table 5 indicate that t-GARCH can also account
for the observed ωoi . Moreover comparison of Tables 4 and 5 provides a quick
study in the properties of the t-GARCH model relative to GARCH: about the
same scope for persistence in volatility, much thicker tails in the unconditional
distribution of yt, a somewhat greater capacity for skewness and leverage, and
a much wider range of sample variance in yt.
Whereas the GARCH model has only a few parameters, compound Markov

normal mixture models can have many. The two instances studied here are
m1 = 6, m2 = 3 and m1 = m2 = 7. (The next section sets forth the reason for
these choices.) The former model has 96 free parameters, and the latter 203.
Following [13] the prior distributions in these models are symmetric across

the states. In the transition matrix P the rows are independent, each with
a Dirichlet (multivariate Beta) distribution. The parameters of the Dirichlet
distribution for row i are all the same (r) except for position i, where the
parameter value is r∗. By choosing r∗ > r, the prior incorporates the purpose
of P, which is to provide persistence in states. The prior is centered about the
probability (m1 − 1) r/ [r∗ + (m1 − 1) r] of the current persistent state changing
each period; this corresponds to a mean duration time of 1 + r∗/ (m1 − 1) r
periods in each state. The prior here has r = 1, r∗ = 40, so when m1 = 6 the
mean prior probability of changing persistent states each period is 1/9.
The row of the probability matrix R for choices of transitory states are also

independent in the prior, with all parameter values equal to r. Since r = 1, this
is equivalent to a “flat” prior on the m1-dimensional unit simplex. The variance
parameters σ2, σ21 and σ22 all have inverted gamma distributions: .75/σ

2
i ∼
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χ2(.75), .75/σ2ij ∼ χ2(.75), and the parameters of the prior distribution for
σ2 are chosen to make the predictive distribution for ω9 include the observed
standard deviation, but also have a wide range — just as was done with the prior
for α in the GARCH models. These prior distributions also identify σ2, σ21
and σ22 in the data density (11) — that is, they render the posterior distribution
proper. (A detailed discussion of these and related points is given in [13].) The
prior distribution of the compound normal mixture model is completed with the
independent priors φi | σ2 ∼ N

¡
0,σ2

¢
and ϕij |

¡
σ2,σ2i

¢ ∼ N ¡0,σ2σ2i ¢.
Table 5

Predictive distribution of vector of interest
Compound Markov normal mixture model, m1 = 6, m2 = 3

Data Median (25%, 75%) (1%, 99%)
ω1 1st volatility .218 .100 (.054, .155) (-.001, .330)
ω2 20th volatility .083 .008 (.001, .020) (-.010, .071)
ω3 Volatility decay .382 .085 (.005, .191) (-.752, 1.65)
ω4 Excess kurtosis 22.4 27.6 (14.1, 58.4) (2.52, 710)
ω5 Quantile ratio 39.9 189.9 (67.5, 732) (12.9, 1.0× 105)
ω6 Skewness -.004 .000 (-.003, .003) (-.041, .041)
ω7 Leverage ahead .0312 .000 (-.012, .012) (-.056, .055)
ω8 Leverage behind -.0752 .000 (-.012, .012) (-.056, .056)
ω9 Stan deviation .0115 .048 (.016, .195) (.003, 29.9)

Table 6
Predictive distribution of vector of interest

Compound Markov normal mixture model, m1 = 7, m2 = 7

Data Median (25%, 75) (1%, 99%)
ω1 1st volatility .218 .043 (.018, .075) (-.002, .213)
ω2 20th volatility .083 .001 (-.002, .008) (-.008, .043)
ω3 Volatility decay .382 .028 (-.071, .181) (-3.34, 4.32)
ω4 Excess kurtosis 22.4 77.8 (39.8, 171) (9.15, 2041)
ω5 Quantile ratio 39.9 603 (205, 2432) (35.7, 3.7× 105)
ω6 Skewness -.004 .000 (-.006, .006) (-.089, .101)
ω7 Leverage ahead .0312 .000 (-.010, .010) (-.046, .049)
ω8 Leverage behind -.0752 .000 (-.010, .010) (-.048, .049)
ω9 Stan deviation .0115 .1106 (.036, 457) (.005, 76.2)

These prior distributions are best understood in terms of their implications
for observables - the density p (ω | A). Table 5 provides quantiles for these
distributions in the case m1 = 6, m2 = 3, while Table 6 does so for m1 =
m2 = 7. The observed persistence in volatility lies near the upper range of the
distribution (especially ω2 in the m1 = m2 = 7 model) but are by no means
effectively ruled out. The functions of interest corresponding to the shape of
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the unconditional distribution (ω4, ω5, ω6) are all well within the support of
the predictive distribution. These models have more difficulty in accounting for
the observed leverage, in particular the correlation between yt and y2t+1.
This elucidation of the prior density p (ω | A) corresponding to a prior distri-

bution p (θA | A) is the key in choosing prior distributions; indeed, it is hard to
see how else subjective prior distributions can be elucidated.3 It also indicates
whether the model at hand (data density combined with prior density) can ac-
count for individual ωoi . But note that it says nothing about whether the model
is consistent with the entire observed vector of interest. To examine this ques-
tion it is necessary to move to the posterior density (4) and the corresponding
density of the vector of interest (6).

5 Formal model comparison
This section examines the question, how probable are these models relative to
one another? The following section takes up the issue of studying deficiencies
in each model without regard to specific alternatives.
Let the models in question be denoted A,B, ... and extend the notation for

model A, of Section 2, to models B and beyond in the obvious way. The case
of just two models, A and B, will suffice to convey the essentials. If we assign
prior probabilities to each model, p(A) and p(B) with p(A) + p(B) = 1, then
we have in hand a joint probability distribution of models A and B, parameter
vectors θA and θB , and observables y. Then the posterior odds ratio in favor
of model A is

p (A | yo)
p (B | yo) =

p (A) p (yo | A) /p (yo)
p (B) p (yo | B) /p (yo) =

p (A)

p (B)
·
R
ΘA
p (θA,y

o | A) dθAR
ΘB
p (θB ,yo | B) dθB(14)

=
p (A)

p (B)
·
R
ΘA
p (θA | A) p (yo | θA, A) dθAR

ΘB
p (θB | B) p (yo | θB , B) dθB . (15)

(The last equality in (14) invokes (3), and (2) is used in (15).) The first ratio
in (15) is the prior odds ratio, the second ratio is the Bayes factor, and the
numerator and denominator of the Bayes factor are respectively the marginal
likelihoods of models A and B.
Since p (A | yo) + p (B | yo) = 1, the posterior odds ratio determines the

posterior model probabilities p (A | yo) and p (B | yo). Given additional models
C,D, ..., the posterior odds ratios lead immediately to all the posterior model
probabilities. The marginal likelihoods p (yo | A), p (yo | B) , ... are the key el-
ements in these computations. The required integrations (the numerator and
denominator of the Bayes factor in (15)) cannot be performed analytically (text-
book examples aside, and certainly for the models used in this article) but they
can be approximated using methods that are similar in nature to posterior sim-
ulators; see [10] for an introductory discussion.

3There is a substantial literature on elicitation of prior distributions that builds on this
fact: see for example [7], [17] and [18].
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Table 7
Log marginal likelihood values, alternative models

Gaussian 51,927 Mix(2,2) 56,677 Mix(6,6) 57,199
GARCH 56,641 Mix(3,3) 57,074 Mix(7,7) 57,245
t-GARCH 57,243 Mix(4,4) 57,097 Mix(8,8) 57,206

Mix(5,5) 57,192 Mix(6,3) 57,261

Table 7 provides the (natural) logarithm of the marginal likelihood value
of eleven alternative models, using our data set of 17,052 returns. From these
values and a given set of prior odds ratios, posterior probabilities and odds ratios
can be computed. For example, if all prior model probabilities are 1/11, the
posterior odds ratio in favor of the compound Markov normal mixture model
with 4 permanent states and 4 transitory states within each permanent state
(m1 = m2 = 4), versus the same model with m1 = m2 = 3, is exp(57, 097 −
57, 074) = 9.7× 109. Thus the model probability ratios implied in Table 7 are
rather large. This stems from the fact that there are so many observations.
The Gaussian model has by far the lowest marginal likelihood, reflecting

deficiencies previously noted. As additional states are added to the mixture
models they become increasingly flexible, and their marginal likelihoods rise.
The compound Markov normal mixture model with m1 = m2 = 2 provides the
least flexibility of those considered; its marginal likelihood is similar to that
of the GARCH model. The incorporation of additional states increases the
marginal likelihood, with by far the largest increase being from m1 = m2 = 2 to
m1 = m2 = 3.4 The mixture model withm1 = m2 = 7 has a marginal likelihood
comparable to t-GARCH. There are other models, for whichm1 6= m2, that have
even larger marginal likelihood values, like the one for m1 = 6, m2 = 3 shown
in Table 7.
These findings provide a formal comparison of models, but they yield no

insight into why (for example) posterior odds are overwhelmingly against the
GARCH model, or why they favor (though not as strongly) some of the mixture
models over the t-GARCH model. There are several useful by-products of the
posterior distribution that can provide a wealth of such information. One is
the decomposition of the marginal likelihood and Bayes factors observation by
observation, as discussed in [12]. Another is to repeat the specification analysis
carried out in Section 4, but using the posterior rather than the prior.

4Unlike log-likelihood statistics from maximum likelihood estimation, marginal likelihood
values do not necessarily increase for nesting models: compare m1 = m2 = 7 with m1 = m2 =
8 in Table 7. The intuition is that as the prior distributions p (θA | A) is spread over more
and more dimensions, p (yo | A) will be reduced unless there is a compensating (or greater)
increase in the average value of the data density. Thus, there is an inherent penalty for large
numbers of parameters in the marginal likelihood, much as in Akaike’s information criterion
(AIC) and Schwarz’s Bayesian information criterion (SBIC). In fact, SBIC is a transformation
of an approximation to log marginal likelihood.
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6 Post-predictive specification analysis
Consider the following conceptual experiment. We have observed data yo, and
the corresponding vector of interest ωo, in an experiment that can be repeated.
Then given the complete model A and the data, the predicted distribution of
the vector of interest ω over future independent experiments is

p (ω | yo, A) =
Z
ΘA

p (θA | yo, A) p (ω | θA, A) dθA. (16)

Note that (16) differs from (6), in that here p (ω | yo,θA, A) = p (ω | θA, A),
reflecting the independence of the future expereiments and the recorded experi-
ment that produced the data yo. The observed ωo, in the context of this distri-
bution, tells us much about the model A. In particular, ωo may be implausible
— p (ωo | yo, A) is quite small, or ωoi lies in the extreme tails of p (ωi | yo, A);
the two are usually equivalent.5 Such an outcome is a surprise, in the sense
of Good ([14], [15]): the probability of the observed event occurring again in a
great many repetitions of the experiment is quite low.
Of course time series are not repeated experiments. But for a long stationary

time series with T observations, a nearly equivalent conceptual experiment is to
ask about the next T observations instead of the next experiment, and the T
observations after those, and so on.
Carrying out a post-predictive analysis requires little additional effort, given

the draws eθ(m)A ∼ p (θA | yo, A) from a posterior simulator. We simply repeat

the exercise of Section 4, using these eθ(m)A in place of the draws from the prior
distribution.
The results of this exercise for the GARCH model are shown in Table 8.

From the post-predictive quantiles of ω1, ω2 and ω3 we see that the slow rate
of decay in the autocorrelation function of y2t is inconsistent with the GARCH
specification. (Note that the first autocorrelation is predicted to be higher, the
twentieth lower, and the ratio of the twentieth to the first is predicted to be
much lower.) From the post-predictive quantiles of ω4 and ω5 it is evident that
the GARCH model implies tails in the unconditional distribution of yt that are
in general too thick. (The distribution of the excess kurtosis lies well above that
observed, and the observed quantile ratio is in the bottom 1% quantile of the
post-predictive distribution.) Observed skewness and leverage are well within
the support of the post-predictive distribution.

5The distinction is far from innocuous, however; see [2].
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Table 8
Post-predictive distribution of vector of interest

GARCH model
Data Median (25%, 75%) (1%, 99%)

ω1 1st volatility .218 .549 (.468, .620) (.221, .787)
ω2 20th volatility .083 -.001 (-.002, .001) (-.007, .079)
ω3 Volatility decay .382 -.001 (-.004, .003) (-.013, .164)
ω4 Excess kurtosis 22.4 165 (88.1, 448) (31.1, 3997)
ω5 Quantile ratio 39.9 87.2 (66.0, 132) (39.0, 865)
ω6 Skewness -.004 -.001 (-.014, .015) (-.178, .231)
ω7 Leverage ahead .0312 .002 (-.082, .080) (-.432, .414)
ω8 Leverage behind -.0752 -.002 (-.098, .102) (-.466, .418)
ω9 Stan deviation .0115 .0034 (.0031, .0040) (.0026, .0159)

Table 9
Post-predictive distribution of vector of interest

t-GARCH model
Data Median (25%, 75%) (1%, 99%)

ω1 1st volatility .218 .474 (.350, .586) (.101, .777)
ω2 20th volatility .083 .000 (-.0004, .003) (-.002, .132)
ω3 Volatility decay .382 .000 (-.001, .007) (-.005, .256)
ω4 Excess kurtosis 22.4 1312 (712, 2388) (184, 7683)
ω5 Quantile ratio 39.9 1031 (558, 2124) (217, 22940)
ω6 Skewness -.004 -.003 (-.086, .082) (-.522, .468)
ω7 Leverage ahead .0312 -.001 (-.155, .146) (-.534, .510)
ω8 Leverage behind -.0752 .006 (-.178, .164) (-.544, .553)
ω9 Stan deviation .0115 .028 (.018, .054) (.010, .504)

The post-predictive distributions of the ωi from t-GARCH (Table 9) are all
substantially more diffuse. For the measures of tail thickness in the uncondi-
tional distribution (ω4 and ω5) the distributions are also shifted upward — well
beyond the observed values ωoi . The GARCH model places the observed stan-
dard deviation ωo9 near the high end of the post-predictive distribution, while
the t-GARCH model puts it at the low end.
The analysis in Tables 8 and 9 presents a series of specification problems

with GARCH and t-GARCH. (A full exploration of these problems is beyond the
scope of this article.) An important clue is the unsuccessful effort of these models
to accommodate the slow decay in volatility correlations. This leads to high
values of γ + δ: the post-predictive interquartile range for the t-GARCH model
is (.9948, .9975), and the centered post-predictive 98% intervals is (.9913, .9998).
Such models are close to being integrated GARCH (IGARCH) models; in these
models the observed value of yt eventually collapses about its unconditional
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mean, but in the intervening period very large values of |yt| typically arise
before they collapse [9]. This characteristic is evident in the post-predictive
distribution of the largest absolute return in the series: it is .228 in the data set,
whereas for the t-GARCH model the median of the post-predictive distribution
of the largest absolute return is .929, the interquartile range is (.480, 1.60), and
the 98% centered interval is (.298, 87.0). Some resolution of these difficulties
is provided by fractionally integrated GARCH (FIGARCH) models [1], whose
consideration is beyond the scope of this article.

Table 10
Post-predictive distribution of vector of interest

Compound Markov normal mixture model, m1 = 6, m2 = 3

Data Median (25%, 75%) (1%, 99%)
ω1 1st volatility .218 .147 (.120, .172) .037, .233)
ω2 20th volatility .083 .088 (.068, .108) (.019, .163)
ω3 Volatility decay .382 .601 (.506, .711) (.282, 1.14)
ω4 Excess kurtosis 22.4 16.8 (13.9, 21.1) (8.64, 71.1)
ω5 Quantile ratio 39.9 31.3 (28.0, 35.8) (21.2, 60.1)
ω6 Skewness -.004 -.002 (-.004, .004) (-.011, .010)
ω7 Leverage ahead .0312 -.019 (-.033, -.005) (-.007, .030)
ω8 Leverage behind -.0752 -.022 (-.035, -.006) (-.068, .027)
ω9 Stan deviation .0115 .012 (.011, .012) (.009, .144)

A similar post-predictive specification analysis of the compound Markov
normal mixture models appears in Tables 10 and 11. For both models, almost all
of the observed functions of interest ωoi lie well within their predictive intervals.
The only possible point of difficulty is leverage: the observed combination of
leverage ahead and leverage behind is near the limit of what these models can
accommodate.

Table 11
Post-predictive distribution of vector of interest

Compound Markov normal mixture model, m1 = 7, m2 = 7

Data Median (25%, 75%) (1%, 99%)
ω1 1st volatility .218 .138 (.103, .166) (.013, .236)
ω2 20th volatility .083 .079 (.057, .101) (.006, .161)
ω3 Volatility decay .382 .590 (.478, .708) (.214, 1.36)
ω4 Excess kurtosis 22.4 18.6 (14.8, 25.3) (9.27, 22.9)
ω5 Quantile ratio 39.9 33.2 (29.0, 39.5) (21.4, 90.0)
ω6 Skewness -.373 -.001 (-.004, .001) (-.023, .016)
ω7 Leverage ahead .0312 -.017 (-.032, -.041) (-.071, .036)
ω8 Leverage behind -.0752 -.021 (0.034, -.079) (-.074, .023)
ω9 Stan deviation .0115 .012 (.011, .012) (.009, .015)
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The contrast between the post-predictive analyses of the GARCH and mix-
ture models is striking. The mixture models makemuch more precise statements
about the characteristics of observables in the future, and these characteristics
(with the possible exception of leverage) are consistent with past observation:
there are few, if any, surprises. The GARCH models lead to quite vague predic-
tions, that are nonetheless essentially inconsistent with what has been observed.
This strong contrast between the models is rooted in the way they cope with the
observed pattern of persistence in volatility. In the GARCH models, this phe-
nomenon can only be accommodated by a near-unit root, which has unpleasant
consequences for long-run behavior. The mixture models, on the other hand,
can incorporate quite persistent movements in volatility, without linking them
to the long run.

7 Conclusion
These examples illustrate how Bayesian specification analysis can be used to
capture the implications of models for observables. The goal of this analysis is
to highlight inconsistencies between models and observed data, thus increasing
our understanding of models and sowing the seeds for the development of better
models and improved decision making.
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